第三章 整式及其加减(基础)
- 格式:doc
- 大小:200.60 KB
- 文档页数:4
整式及其加减知识点归纳整式及其加减是数学中的基础概念,主要涉及到代数式的构建和运算。
以下是关于整式及其加减的主要知识点总结:一、整式的定义:整式是由常数、变量、加、减、乘运算组合而成的代数式。
它不包括除法运算(除数不能含有字母),但乘方运算可以出现在整式中。
•表示形式:整式可以是一个常数,一个或多个变量,以及它们的乘积。
变量可以有指数,但指数必须是自然数。
例如,x2, 3x, x3y2z 都是整式,但x1 或x−1 不是整式,因为它们包含变量的负指数。
•运算的封闭性:整式在加、减、乘运算下是封闭的,即整式与整式相加、相减或相乘,结果仍然是整式。
这意味着整式集合在这些运算下是稳定的。
•与分式的区别:整式与分式的主要区别在于分母。
整式的分母是常数(即不含变量),而分式的分母可以包含变量。
因此,整式在代数中比分式更简单、更基础。
二、整式的分类:单项式:只含有一个项的整式,例如3x2y,2π。
多项式:由多个单项式通过加法或减法运算组合而成的整式,例如3x2+2xy−1。
同类项:字母部分(包括指数)完全相同的单项式,例如3x2 和2x2。
•单项式的性质:单项式是整式中最简单的形式。
一个单项式只包含一个项,并且可以是常数、变量或它们的乘积。
单项式的次数是其变量部分中指数的总和。
例如,在单项式3x2y 中,次数是2+1=3。
•多项式的复杂性:多项式由多个单项式组成,通过加法或减法连接。
多项式的次数是其最高次单项式的次数。
例如,在多项式3x2+2xy−1 中,最高次单项式是3x2,所以多项式的次数是2。
•同类项的实际意义:同类项在实际问题中经常出现。
例如,在物理学中,当研究多个相同类型的力(如多个重力或多个弹力)时,可以将它们视为同类项并进行合并。
这样可以使问题简化,并更容易找到解决方案。
三、整式的加法与减法:加法:同类项可以直接相加,系数相加而字母部分保持不变。
例如,3x2+2x2=5x2。
减法:可以视为加法的一种,即减去一个数等于加上这个数的相反数。
北师大版七年级上册数学第三章整式及其加减含答案一、单选题(共15题,共计45分)1、如图,当过O点画不重合的2条射线时,共组成1个角;当过O点画不重合的3条射线时,共组成3个角;当过O点画不重合的4条射线时,共组成6个角;….根据以上规律,当过O点画不重合的10条射线时,共组成()个角.A.28B.36C.45D.552、下列计算正确的是()A. B. C. D.3、多项式a﹣(b﹣c)去括号的结果是()A.a﹣b﹣cB.a+b﹣cC.a+b+cD.a﹣b+c4、观察如图图形,并阅读相关文字:那么10条直线相交,最多交点的个数是()A.10B.20C.36D.455、下列各式符合代数式书写规范的是()A.a8B.m﹣1元C.D. x6、下列说法正确的是()A.0是单项式B. 的系数是5C. 是5次单项式D.的系数是07、下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.218、一个多项式A减去多项式2x2+5x﹣3,某同学将减号抄成了加号,运算结果为﹣x2+3x﹣5,那么正确的运算结果是()A.﹣3x 2﹣2x﹣4B.﹣x 2+3x﹣7C.﹣5x 2﹣7x+1D.无法确定9、如果2x m y p与3x n y q是同类项,则()A.m=q,n=pB.mn=pqC.m+n=p+qD.m=n且p=q10、﹣(m﹣n)去括号得()A.m﹣nB.﹣m﹣nC.﹣m+nD.m+n11、如果代数式4y2-2y+5的值为7,那么代数式2y2-y+1的值等于()A.2B.3C.-2D.412、若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3B.9C.12D.2713、把方程写成用含x的代数式表示y的形式,正确的是( )A. B. C. D.14、下列计算正确的是()A.3x+3y=6xyB.a 2•a 3=a 6C.b 6÷b 3=b 2D.(m 2)3=m 615、当,时,代数式和代数式的值分别为、,则、之间的关系为()A. B. C. D.以上三种情况均有可能二、填空题(共10题,共计30分)16、若a m=2,a n=-8,则a m-n=________17、若,则的值为________.18、88层的金茂大厦的电梯上,有显示楼层的液晶屏,如图,可显示01,02,…,88,由于屏幕受到损坏,显示左边数字的7根线段中有1根不能亮了,显示右边数字的7根线段中有3根不能亮了。
第三章 整式及其加减专题练习学校:___________姓名:___________班级:___________学号:___________一、单选题(每小题3分,共30分)1.下列计算正确的是( )A .527x y xy +=B .321x x −=C .22234x y yx x y −=−D .338x x x += 2.已知423x y −与2n x y 是同类项,则n 的值为( )A .1B .2C .3D .43.下列说法中正确的是( )A .单项式2πx 的次数和系数都是2B .单项式2m n 和2n m 是同类项C .多项式2234x y xy +−是三次三项式D .多项式221x x −+−的项是2x ,2x 和1 4.定义一种新运算:2a b a b ⊗=−.例如232231⊗=⨯−=,则()()2x y x y +⊗−化简后的结果是( )A .33x y −+B .yC .3x y −−D .3y 5.如图是一个正方体的平面展开图,若原正方体中相对面上的两个数字之和均为5,则x y z ++的值为( )A .4B .5C .6D .7 6.如果2312M x x =++,235N x x =−+−,则M 与N 的大小关系是( ) A .M N >B .M N <C .M N =D .与x 的大小有关 7.在式子2532x x −,22x y π,1x y +,25y −中,多项式的个数是( ) A .1 B .2 C .3 D .4 8.若221m m +=-,则2324m m −−=( )A .1−B .1C .5−D .59.已知5x y −=,3a b +=−,则()()y b x a −−+的值为( )A .8B .8−C .2D .2−10.正方形ABCD 在数轴上的位置如图所示,点A 、B 对应的数分别为2−和1−,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点C 所对应的数为0;则翻转2022次后,点C 所对应的数是( )A .2020B .2021C .2022D .2023二、填空题(每小题3分,共15分)11.k =______时()2232353x k xy xy y −−++−中不含xy 项 12.已知a ,b 互为相反数,m ,n 互为倒数,p 是最小的正整数,则102()||2020a b mn p ++−=__________.13.当2022x =时,代数式35ax bx ++的值为1,则当2022x =−时,35ax bx ++的值为__________.14.如图是一个“数值转换机”,若输入的数 1.5x =−,则输出的结果为____.15.如图,是由一些点组成的图形,按此规律,当20n =时图形中点的个数为 __.三、解答题(16题8分,17题6分,18题6分,19题7分,20题10分,21题9分,22题9分,共55分)16.化简:(1)()()2235x x x −+−−+(2)()()2222312x x x x x −+−−−+17.先化简,再求值:()()2222352mn m m mn m mn ⎡⎤−−+−−+⎣⎦, 其中m ,n 满足()2120m n −++=.18.某同学做一道数学题:已知两个多项式A 、B ,计算2A B +,他误将“2A B +”看成“2A B +”,求得的结果是2927x x −+,已知232B x x =+−,求2A B +的正确答案.19.如图,已知长方形的宽为a ,两个空白处分别是半径为a ,b 的四分之一圆.(1)用含a 、b 的式子表示阴影部分的面积;(结果保留π)(2)当6a =,2b =时,求出阴影部分的面积.20.已知:22321A a ab a =+−−,21B a ab =−+−(1)求()432A A B −−的值;(2)若2A B +的值与a 的取值无关,求b 的值.21.仔细观察下列等式:第一个:225183−=⨯第二个:229587−=⨯第三个:22139811−=⨯第四个:221713815−=⨯……(1)请你写出第六个等式:___________;(2)请写出第n 个等式:___________;(用含字母n 的等式表示);(3)运用上述规律,计算:811813897899⨯+⨯++⨯+⨯.22.在数轴上点A 表示数a ,点B 表示数b ,点 C 表示数c ,a 是多项式2241x x −−+的二次项系数,b 是最大的负整数,单项式2412x y −的次数为c .(1)a =_________,b =_________,c =__________(2)若将数轴在点B 处折叠,则点A 与点C __________重合。
北师大版七年级上册数学第三章整式及其加减含答案一、单选题(共15题,共计45分)1、已知5x=3,5y=2,则52x﹣3y=()A. B.1 C. D.2、下列运算正确的是A.2m 2+m 2=3m 4B.(mn 2) 2=mn 4C.2m·4m²=8m²D.m 5÷m 3=m 23、已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a-4ab)的值为( )A.49B.59C.77D.1394、有这样一种算法,对于输入的任意一个实数,都进行“先乘以,再加3”的运算。
现在输入一个x=4,通过第1次运算的结果为x1,再把x1输入进行第2次同样的运算,得到的运算结果为x2,…,一直这样运算下去,当运算次数不断增加时,运算结果xn()A.越来越接近4B.越来越接近于-2C.越来越接近2D.不会越来越接近于一个固定的数5、下列式子中,不是整式的是()A. B. +b C. D.4y6、计算正确的是()A.(-5) 0=0B. x2+ x3= x5C.( ab2) 3= a2b5D.2 a 2· a-1=2 a7、观察下列算式:根据上述算式中的规律,你认为的个位数字是()A.2B.4C.6D.88、已知a,b,c是三角形的三条边,则|a+b﹣c|﹣|c﹣a﹣b|的化简结果为()A.0B.2a+2bC.2cD.2a+2b﹣2c9、在﹣3,0,2x,,,, a2﹣3ab+b2这些代数式中,整式的个数为()A.2个B.3个C.4个D.5个10、如果的积中不含x的一次项,则m的值为()A.7B.8C.9D.1011、下列计算正确的是()A. 2a+5a=7aB. 2x﹣x=1C. 3+a=3aD. x2•x3=x612、多项式x5y2+2x4y3﹣3x2y2﹣4xy是()A.按x的升幂排列B.按x的降幂排列C.按y的升幂排列D.按y的降幂排列13、如果代数式的值为,那么()A. B. C. D.14、下列运算正确的是()A. B. C. D.15、当x=2时,下列代数式中与代数式2x+1的值相等的是()A.1-x 2B.3x+1C.3x-x 2D.x 2+1二、填空题(共10题,共计30分)16、某通信公司的移动电话计费标准每分钟降低a元后,再下调了20%,现在收费标准是每分钟b元,则原来收费标准每分钟是________元.17、(x+y)2可以解释为________。
第三章整式及其加减复习题一.选择题1.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数2.当m=﹣1时,代数式2m+3的值是()A.﹣1B.0C.1D.23.已知a+b=,则代数式2a+2b﹣3的值是()A.2B.﹣2C.﹣4D.﹣34.若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1B.1C.2D.35.按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=16.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)7.某商品打七折后价格为a元,则原价为()A.a元B.a元C.30%a元D.a元8.甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()C.商贩A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关9.某服装店举办促销活动,促销的方法是将原价x元的衣服以(0.7x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打7折B.原价打7折后再减去10元C.原价减去10元后再打3折D.原价打3折后再减去10元10.单项式﹣5ab的系数是()A.5B.﹣5C.2D.﹣211.下列代数式中,整式为()A.x+1B.C.D.12.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.013.化简(9x﹣3)﹣2(x+1)的结果是()A.2x﹣2B.x+1C.5x+3D.x﹣314.下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y515.按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+116.计算++++…+的结果是()A.B.C.D.17.观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a二.填空题18.对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.19.已知x﹣3=2,则代数式(x﹣3)2﹣2(x﹣3)+1的值为.20.单项式a3b2的次数是.21.合并同类项:4a2+6a2﹣a2=.22.观察下列一组数的排列规律:,,,,,,,,,,,,,,,…那么,这一组数的第2019个数是.三.解答题23.观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.24.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.第三章整式及其加减复习题参考答案与试题解析一.选择题1.【分析】分别判断每个选项即可得.B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.2.【分析】将m=﹣1代入代数式即可求值;【解答】解:将m=﹣1代入2m+3=2×(﹣1)+3=1;故选:C.【点评】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.3.【分析】注意到2a+2b﹣3只需变形得2(a+b)﹣3,再将a+b=,整体代入即可【解答】解:∵2a+2b﹣3=2(a+b)﹣3,∴将a+b=代入得:2×﹣3=﹣2故选:B.【点评】此题考查代数式求值的整体代入,只需通过因式解进行变形,再整体代入即可.4.【分析】将代数式4a2﹣6ab+3b变形后,整体代入可得结论.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.5.【分析】根据题意一一计算即可判断.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.6.【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.【点评】本题是一道列代数式的文字题,本题考查了数量之间的和差倍的关系.解答时理清关系的运算顺序是解答的关键.7.【分析】直接利用打折的意义表示出价格进而得出答案.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.【点评】此题主要考查了列代数式,正确表示出打折后价格是解题关键.8.【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:设商贩A的单价为a,商贩B的单价为b,可得:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.【点评】此题考查一元一次不等式组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.9.【分析】首先根据“折”的含义,可得x变成0.7x,是把原价打7折后,然后再用它减去10元,即是(0.7x﹣10)元,据此判断即可.【解答】解:0.7x表示原价打7折,0.7x﹣10则表示原价打7折后再减去10元,【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.10.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,可得答案【解答】解:单项式﹣5ab的系数是﹣5,故选:B.【点评】本题考查单项式,注意单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.11.【分析】直接利用整式、分式、二次根式的定义分析得出答案.【解答】解:A、x+1是整式,故此选项正确;B、,是分式,故此选项错误;C、是二次根式,故此选项错误;D、,是分式,故此选项错误;故选:A.【点评】此题主要考查了整式、分式、二次根式的定义,正确把握相关定义是解题关键.12.【分析】根据同类项的定义得出m的方程解答即可.【解答】解:根据题意可得:2m﹣1=m+1,解得:m=2,故选:A.【点评】此题考查同类项问题,关键是根据同类项的定义得出m的方程.13.【分析】原式去括号合并即可得到结果.【解答】解:原式=3x﹣1﹣2x﹣2=x﹣3,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【解答】解:A、2x5与3x2y3不是同类项,故本选项错误;B、3x3y2与3x2y3不是同类项,故本选项错误;C、﹣x2y3与3x2y3是同类项,故本选项正确;D、﹣y5与3x2y3是同类项,故本选项错误;故选:C.【点评】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.15.【分析】观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:C.【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.16.【分析】把每个分数写成两个分数之差的一半,然后再进行简便运算.【解答】解:原式===.故选:B.【点评】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.17.【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二.填空题18.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.19.【分析】直接利用完全平方公式将原式变形,进而将已知代入求出答案.【解答】解:∵x﹣3=2,∴代数式(x﹣3)2﹣2(x﹣3)+1=(x﹣3﹣1)2=(2﹣1)2=1.故答案为:1.【点评】此题主要考查了代数式求值,正确运用公式是解题关键.20.【分析】根据单项式的次数的定义解答.【解答】解:单项式a3b2的次数是3+2=5.故答案为5.【点评】本题考查了单项式的次数的定义:单项式中,所有字母的指数和叫做这个单项式的次数.21.【分析】根据合并同类项法则计算可得.【解答】解:原式=(4+6﹣1)a2=9a2,故答案为:9a2.①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.22.【分析】根据题目数字的特点,可以发现数字的变化规律,从而可以求得这一组数的第2019个数,本题得以解决.【解答】解:一列数为:,,,,,,,,,,,,,,,,…则这列数也可变为:,,,,,,,,,,,,,,,…由上列数字可知,第一个数的分母是1+21=3,这样的数有1个;第二个数的分母是1+22=5,这样的数有2个;第三个数的分母是1+23=9,这样的数有3个;…,∵1+2+3+…+63=2016<2019,∴这一组数的第2019个数是:,故答案为:.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数据.三.解答题23.【分析】(1)根据已知等式即可得;(2)根据已知等式得出规律,再利用分式的混合运算法则验证即可.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.故答案为:.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.24.【分析】(1)空白区域面积=矩形面积﹣两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【解答】解:(1)S=ab﹣a﹣b+1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;【点评】本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键.。
第三章 整式的加减第1课时 列代数式(一)命题:王年超 校核:王年超基础过关一、填空题: 1、下列各式中:(1)52;(2)a ;(3)S=vt ;4) a 2+ab ;(5);(6)3a >4b ;(7)s n +2, 其中,是代数式有 。
2、三角形三边长分别为a 、b 、c ,则此三角形周长为 。
3、洛阳至北京的路程为x 千米,小明一家三口开车用了25个小时,则轿车每小时行 千米。
4、如图所示,用一块长方形的木板锯一块最大的圆 桌面,已知长方形的长为a 厘米,则锯出的最大桌 面面积为 平方厘米,剩下的木板面积 为 平方厘米。
5、一本书共有a 页,第一天读了全书的41,第二天读了全书的31,没读的还有 页。
二、选择题1、今天的最高气温是33℃,今天的最高气温比最低气温高m ℃,则今天的最低气温是( )A 、(33-m )℃B 、33-m ℃C 、(33+m ) ℃D 、33+m ℃ 2、某种品牌的彩电降价30%以后,每台售价a 元,则该品牌彩电每台原价应为( )A 、0.7a 元B 、0.3 元C 、3.0a 元 D 、7.0a元 3、小明每分钟走a 米,小颖每分钟走b 米,半小时后,他们两人一共走了( )A 、21(a+b)米 B 、30(a -b)米 C 、30(a+b)米 D 、30a+b 米 4、教室有a 排,每排有b 个座位,那么这个教室共有( )个座位A 、abB 、a+bC 、a -bD 、a b 5、一个正方形的边长为a ,则边长增加1后的面积是( )A 、a 2-1B 、a+1C 、(a+1)2D 、a 2+1ab升级演练1、若某四位数的个位数是a,十位数b,百位数字是c,千位数字是d,则此四位数可表示为。
2、一首儿歌是这样说的:一只青蛙1张嘴,2只眼睛4条腿,两只青蛙2张嘴,4只眼睛8条腿,三只青蛙3张嘴,6只眼睛12条腿,则a只青蛙张嘴,只眼睛,条腿探究训练你能很快计算出19952吗?为了解决这个问题,我们来考察个位数为5的自然数的平方,注意每个个位数为5的自然数都可以写成10n+5的形式,于是原题即求(10n+5)2的值,n为自然数;分析n=1,2,3,…这些简单情况,从中探索其规律并归纳,猜想出结论。
整式及其加减知识点知识点整式是指由数字和字母按照加法、减法和乘法运算规则组成的多项式。
整式是代数中的基本概念,其理解和运算是学习代数的基础。
一、整式的定义和形式整式是由数字和字母按照加法、减法和乘法运算规则组成的多项式。
整式的形式可以是常项、单项或多项式。
常项是指只由数字组成的整式,单项是指只有字母与一定次数的乘方的整式,而多项式是由字母与各种次数的乘方的连乘积的和。
二、整式的加法和减法运算整式的加法和减法是整式运算的基本方法,其组合规则如下:1.同类项的加减法:同类项指的是指数部分相同的项。
对于同类项,只需将系数相加或相减,指数不变。
例如:3x^2+2x^2=5x^22.同类项之外的项相加减:对于不同类项,不能直接相加减。
只能合并同类项后再进行运算。
例如:3x+2x^2-4x^2+5x=2x^2-x+5x。
3.括号展开运算:对于整式中有括号的情况,可以通过分配律将括号内的整式与外部整式相乘。
例如:(3x+2)(x+1)=3x^2+3x+2x+2=3x^2+5x+2三、整式的乘法运算整式的乘法是通过对各项的系数和指数进行相乘得到的。
乘法运算的规则如下:1. 系数相乘:将整式中各项的系数进行相乘。
例如:2x * 3y = 6xy。
2.指数相加:对于同一个字母,如果有两个或多个指数,则将这些指数相加。
例如:x^2*x^3=x^(2+3)=x^53.同类项相乘:将系数和指数分别相乘,得到同类项的乘积。
不能合并同类项之外的项。
例如:2x*3x=6x^24.括号的乘法:将括号内的整式与外部整式分别进行乘法运算。
结果通过分配律得出。
例如:3x*(2x+1)=6x^2+3x。
四、整式的综合运算整式的综合运算是指整式的加减法和乘法在一起进行的运算。
综合运算需要根据题目给出的式子和要求进行相应的计算步骤。
在进行整式运算时,可以利用运算法则和分配律进行合理的转换和化简。
整式的加减法和乘法都需要注意合并同类项和保持字母指数的正确运算。
第三章 整式及其加减假期复习
一、选择题
1、代数式2(y ﹣2)的正确含义是( )
A 、2乘以y 减2
B 、2与y 的积减去2
C 、y 与2的差的2倍
D 、y 的2倍减去2
2、下列各式中,符合代数式书写规范的是( )
A 、2÷a
B 、a ⨯8
C 、a 6
D 、a 2
12 3、下列说法中,正确的是( )
A 、单项式2
xy
π-的系数是21- B 、单项式n 的系数和次数都是1 C 、多项式5362+-x x 由5,3,62x x 三项组成 D 、代数式错误!未找到引用源。
与
a 4都是单项式 4、若m xy 2-和33
1y x n 是同类项,则 ( ) (A )1,1==n m ; (B )3,1==n m . (C )1,3==n m ; (D )3,3==n m .
5、下列运算中正确的是 ( )
(A )ab b a 532=+; (B )532532a a a =+; (C )06622=-ab b a ; (D )022=-ba ab .
6、.a+1的相反数是( )
A 、1--a
B 、)1(--a
C 、1-a
D 、1
1+a 7、某班级中一个小组5人,在一次测试中,小华得了72分,其余4人的平均分为a 分,则这个小组的平均分数是( )
A 、错误!未找到引用源。
B 、7254+a
C 、错误!未找到引用源。
D 、错误!未找到引用源。
8、已知2,3==y x ,且0<xy ,则y x +的值等于( )
A 、5
B 、1
C 、±5
D 、±1
9、化简)2()2()2(++---x x x 的结果等于 ( )
(A )63-x (B )2-x (C )23-x (D )3-x
10、下列等式成立的是 ( )
(A )13)13(--=--m m . (B )123)12(3+-=--x x x x .
(C )b a b a -=-5)(5. (D )y x y x 47)4(7+-=+-.
11、a ,b 两数的平方和用代数式表示为( )
A.22a b +
B.2()a b +
C.2a b +
D.2
a b +
12、 当x=-2时,代数式-2x +2x-1的值等于( ) A.﹣9 B.6 C.1 D.-1
13、当代数式a+b 的值为3时,代数式2a+2b+1的值是( ) A.5 B.6 C.7 D.8
14、代数式222(41)(33)(2)xyz xy xy z yx xyz xy +-+-+--+的值是( )
A .无论x y ,取何值,都是一个常数
B .x 取不同值,其值也不同
C .x y ,取不同值,其值也不同
D .x y z ,,取值不同,其值也不同
二、填空题
1. 代数式-22314x y +xy -1___2
有项,每项系数分别是 ____ ______. 2. 若代数式-2x a y b+2与3x 5y 2-b 是同类项,则代数式3a -b=_______
3. -23
ab c 2π的系数是______,次数是______.
4. 去括号填空:=+--)(3c b a x .
5. 三个连续自然数中最小的一个数是14+n ,则它们的和是 .
6.大客车上原有)5(b a -人,中途上车若干人,车上共有乘客)58(b a -人,则中途上车的乘客是_____人.
7.某村前年产桃a 万千克,去年增产30%,今年因虫灾比去年减产10%,今年的产量是 万千克,若30a =,则今年的产量是 .
8.x 表示一个两位数,y 表示一个三位数,如果把x 放在y 的左边形成一个五位数,用代数式表示为 .
1
9. 观察下列各式:
222211⨯=+,333322⨯=+,444433⨯=+,555544
⨯=+. 三、解答题
1、化简,去括号并合并同类项
2、①-(2-2)a a ; ②-(5+)-3(2-3)x y x y ; ③5x ﹣(3x ﹣2y ); ④7x ﹣[﹣2x ﹣(8x ﹣1)].
(1))69()3(522x x x +--++-. (2))324(2)132(42
2+--+-x x x x .
3.先化简,再求值
(1))35()2143(3232a a a a a a ++--++- 其中 1-=a .
(2)y x y x xy y x 22227.03.05.02.0+-- 其中 3
2,1=
-=y x . 4.已知122+-=x x A ,3622+-=x x B .
求 : (1)B A 2+. (2)B A -2.
5.已知01)1(2
=-++y x ,求)3()5(222xy xy xy xy ---的值.
6、三个队植树,第一队种a 棵,第二队种的比第一队种的树的2倍还多8棵,第三队种的比第二队种的树的一半少6棵,问三个队共种多少棵树?并求当=100a 棵时,三个队种树的总棵数。
(4分)
7.已知 32=+ab a ,12=+b ab ,试求 222b ab a ++,22b a -的值.
8.如图所示,是两种长方形铝合金窗框已知窗框的长都是y 米,窗框宽都是x 米,若一用户需(1)型的窗框2个,(2)型的窗框5
个,则共需铝合金多少米?
y x。