多轴专用汽车转向传动机构的设计
- 格式:doc
- 大小:174.00 KB
- 文档页数:4
第六章多轴汽车的转向系统汽车转向系(Steering System)是用来控制汽车行驶方向、保证汽车直线行驶并灵活改变行驶方向的总成系统。
多轴汽车的转向行驶性能包括转向机动性和转向行驶稳定性等性能。
这些性能都具有非常重要的地位。
汽车转向系的基本要求有:1)转向必须安全可靠。
2)要有正确的运动规律,保证稳定的行驶方向,准确执行驾驶人的意志,保证具有良好的稳态转向特性,防止车身侧倾时过大地牵动车轮转向。
3)多轴汽车应保证具有良好的机动性能,具有较小的转弯半径、转向通道和轨迹差等机动性参数。
4)应保证驾驶操作轻便,以减轻驾驶人的劳动强度。
转向时施加在转向盘上的手力,中型车不得超过360N,重型车和多轴越野车不得超过450N,必要时须加装助力和动力系统。
5)转向盘的回转圈数要尽可能减少,且应具有自动回正能力;特别在车轮受到地面冲击时,不可产生过大的反冲力,一般都应安装阻尼装置,以防止反冲和摆振。
6)对于多轴汽车动力分组转向的后组,必须安装可靠的锁死装置,以确保高速行驶的稳定性和安全性。
多轴汽车的转向系统较为复杂,问题很多,本书仅在介绍转向模式和转向形式的基础上着重介绍转向机动性、转向稳定性和转向轻便性。
第一节转向模式和转向形式一、转向模式所谓转向模式,是指在不同工况下的转向驾驶模式,包括常态转向驾驶、瞬心在后轴线上的转向驾驶、斜向驾驶,90°驾驶、原地回转驾驶、横向驾驶以及复位驾驶七种模式,具体如图6-1所示。
二、转向形式转向形式,是指转向的类型和方式。
例如选用何种转向器,是否装有助力和动力系统,特别是全轮转向,还是部分车轮转向。
在部分车轮(轴)转向中,哪些车轮(轴)是转向轮(轴),哪些是非转向轮(轴)等。
多轴汽车一般都采用机械传递,选用循环球式转向器,装有防振阻尼装置和助力装置以及动力转向系统,且具有应急转向功能。
随着车轴数的增多,转向系统越来越复杂,普遍采用分组动力转向和转向轴与非转向轴的棍合转向,即“转-非”混合或“转-随”混合。
多轴专用汽车转向传动机构的设计1 前言大型专用汽车的转向轴多在二轴以上,有的甚至多达五轴,其转向性能的好坏直接影响车辆行驶的灵活性、操纵稳定性、经济性和轮胎的使用寿命,而且车轴越多,转向对车辆行驶影响越大。
作为转向系统的转向梯形机构,文献运用参数方程对转向梯形机构进行了建模和分析、研究,但对转向传动机构分析和计算的几何法就十分不便,特别是结构复杂的独立悬架的传动机构计算更为不便。
本文运用参数方程法,对转向传动机构的各点用坐标参数来表示,建立参数方程求解、分析,提出了一种可运用于多轴转向的传动机构优化设计的计算方法,达到各轴转向协调的目的,提高车辆行驶的灵活性、操纵稳定性和经济性。
2 转向时各转向桥的理想转角关系图1为某前双桥转向底盘转向时各转向轴内外转向轮的理想转角关系,由于不研究转向梯形机构,只讨论转向传递关系,所以只分析内侧的车轮的转角关系。
3 一桥传动机构传动模型多轴转向汽车一般通过连杆机构来保证同一侧车轮在转向时绕同一瞬心作圆周运动。
下面以常用的连杆机构中第一轴摇臂的摆角与车轮转向臂转角的对应为例,说明连杆机构的运动关系(如图2)。
图2中:A1为车轮转向节臂初始位置;Al′为车轮转动角a1转向节臂位置;B1为一桥传动摇臂初始位置;B1′为车轮转动a1′角一桥传动摇臂位置。
4 一桥梯形机构传动模型根据文献的梯形机构的建模方式,将梯形机构简化为平面机构,则一桥梯形机构得一桥外轮转角a1′与一桥内轮转角a1之间关系(如图3)。
图3中:A1为内轮转向节臂初始位置;A1′为内轮转动a1角转向节臂位置;El为外轮转向节臂初始位置;E1′为外轮转动a1′角一桥传动摇臂位置。
一桥至二桥之间的传动模型7 设计优化由(4)、(6)、(8)、(9)、(10)式可计算出一桥车轮内、外轮的每一转角与二桥车轮内、外轮的每一转角的对应数据,将该数据与由(2)式计算出的理论转角数据进行比较。
考虑到轮胎侧偏角,理论与实际转角差可由轮胎产生侧偏角来弥补。
多轴汽车的转向机构优化设计研究随着我国经济的发展,对货车的需求越来越大。
多轴汽车作为承重能力良好的货车,是改善我国货物运输的强力工具。
本次研究依据阿克曼转角的几何原理与前轮定位参数的变化规律使用多目标优化的方法,进行复核加权函数的优化设计,结合多轴汽车车轮转向的特性,构建数学模型对优化方法进行分析。
希望本次研究有利于完善多轴汽车转向机构的优化设计,缩减研发周期,促进我国多轴汽车的设计与生产。
标签:多轴汽车;转向机构;优化设计;研究0 前言多轴汽车,是指具有较多轴数的载货汽车,与六轴、五轴的牵引半挂车的区别在于,多轴车是货箱与车头固定在一个底盘上的普通货车。
从市场上的情况来看,多轴车尽管具有强大的载重能力,销量却非常低,许多车主习惯了驾驶2轴车与3轴车,对4轴车与5轴车等多轴车的质量存有疑虑。
强化多轴汽车的性能,对提高车主对多轴车认可度,改变其小车中的状态,具有重要意义。
汽车的转向性能是保障汽车安全行驶的基本功能,而多轴汽车由于具有车身过长的特点,对转向机构具有更高的要求。
因此,对多轴汽车的转向机构进行优化设计,是提升多轴汽车性能的关键。
1 多轴转向机构设计原理转向机构的设计原理包括阿克曼转向集合原理与系统性悬架干涉最小化原理。
阿克曼几何差,是指外转向轮实际转角与理想状态下的转角的差值。
汽车以低速率进行转向时,忽略其轮胎偏角的影响,为保持汽车转向中保持纯滚动,内外的转向角度应当满足阿克曼的集合关系。
其中需要的数据有外向转交轮的转角度,内轮转角度,内外轮中心延长线与地面交点距离及轴距。
汽车转向时满足阿克曼集合集合关系的程度代表转角误差,用该数据可以对误差进行验证。
阿克曼转角的误差值越小,证明汽车的转向系统越好,对转角误差要求一般小于3度。
同时该原理可以计算出汽车最小转弯的半径,该数值还可以推出汽车机动性能。
系统性悬架干涉最小化原理,是利用前轮定位参数,保证转向稳定,防治轮胎受损而设置的。
包括前两轮前束角,外倾角,后倾角等。
多轴平板车转向机构优化设计王翠马力邓小禾(武汉理工大学汽车工程学院,湖北武汉 430070)摘要:多轴平板车通常采用液压模块组合挂车的纵向、横向拼接来满足特殊运输要求。
通过对液压模块组合挂车转向机构的研究,提出了面向构件力和转角协调的优化设计方法,给出了两纵列任意轴线车辆的优化设计数学模型,并根据所提出的方法和数学模型,在ADAMS中对典型的六轴线车辆建立了优化仿真分析模型,分析优化结果证明,在满足转角协调的基础上,考虑力的协调是可行的,而且拉杆的受力情况可以得到很大改善。
关键词:平板车;转向机构;液压模块式组合挂车;优化设计多轴平板车常采用液压模块组合挂车进行纵向、横向拼接来满足重、大、长件等特殊货物的运输要求。
组合挂车一般通过换位孔调整转向拉杆在中心转向板或转向节板上的连接关系来满足不同拼车形式下的转向要求 [1]。
对于拉杆数和轴线数较多的组合挂车,转向时需要对相当数量的车轮转角进行协调,如果优化设计中只考虑车轮的转角误差最小,而忽略拉杆力,会引起拉杆力过大等不良后果,甚至还会出现换位孔或拉杆损坏的情况。
虽然关于多轴车辆转向机构的优化已经做了很多工作[2-5],但传统的优化设计只考虑了转角协调问题 [6-7],考虑力和转角协调的优化设计目前还未见报道,因此本文通过对液压模块组合挂车转向系统的优化问题进行研究,提出了面向力和转角协调的优化设计方法,并利用ADAMS对典型六轴线车辆转向系统模型进行了优化设计。
1面向力和转角协调的优化数学模型在考虑力的情况下,液压模块组合挂车的转向机构的最优化问题属于多目标优化问题。
一方面要求拉杆力最小,另一方面要求理论转角与实际转角的误差最小。
多目标问题一般简化成单目标进行优化,常用的是线性加权法[8-9]。
但是由于拉杆力和车轮转角的量纲不同,其物理意义和数量级都相差很大,运用线性加权法会增加计算的复杂性和不稳定性,因此这里以转角误差最小为优化目标,将拉杆力作为约束条件进行单一目标优化。
多轴转向车辆转向轴设计摘要:多轴转向车辆转向机构是车辆转向时实现内、外轮理想转角关系的核心部件。
多轴转向车辆在低速时前后轮转角方向相反,使汽车具有更好的机动性,多轴转向车辆承载能力强,转弯半径小,在转向时能够改善汽车对转向盘输入的动态响应特性,一定程度上改善了横摆角速度和侧向加速度的瞬态响应型指标,越来越受市场欢迎。
关键词:多轴车辆;转向轴;转向机构Multi-axle steering vehicle steering shaft designAbstract:Multi-axle steering vehicle steering mechanism is vehicle steering implementations, ocean shipping, the ideal Angle relationship of core parts. Multi-axle steering vehicle in front and rear wheels steering Angle at low speed in the opposite direction, that car has better mobility and multi-axle steering vehicle carrying capacity is strong, small turning radius, in turn can improve the motor dynamic response of steering wheel input, to some extent improve the transient response of the yawing angular velocity and lateral acceleration type indicator, more and more popular with the market.Key Words:Multi-axis vehicle; Steering shaft; Steering mechanism1 引言近代随着世界经济的不断的蓬勃发展,大吨位的重型车辆不断的出现。
汽车转向机构设计(大学毕业设计)本文旨在探讨汽车转向机构设计的背景、意义以及其在大学毕业设计中的目的和重要性。
汽车转向机构的设计是汽车工程中的重要环节,它直接影响着车辆的操控性能和安全性。
因此,对于汽车工程专业的学生而言,深入研究和理解转向机构的设计原理和方法具有重要意义。
在大学毕业设计中选择研究汽车转向机构设计的话题,一方面可以拓宽学生的专业知识和技能,提高其在汽车工程领域的综合素质;另一方面,通过实际设计方案的研究与实施,使学生对理论知识的应用能力得到进一步锻炼和提升。
本文将首先介绍汽车转向机构设计的背景和意义,强调其在汽车工程中的重要性。
然后,将探讨转向机构设计的基本原理和方法,包括传动机构、转向系统及其相关部件的选择和设计等方面的内容。
最后,通过对实际案例的分析和总结,总结出一套完整可行的汽车转向机构设计方案,并对未来可能的改进和发展方向进行展望。
通过本文的研究,将有助于提高汽车工程专业学生对汽车转向机构设计的理解和掌握,同时也为未来相关研究和实践工作提供了借鉴和参考。
研究目标明确研究汽车转向机构设计的目标和要解决的问题,例如提高驾驶安全性、提升转向机构的性能等。
研究内容和方法明确研究汽车转向机构设计的目标和要解决的问题,例如提高驾驶安全性、提升转向机构的性能等。
研究内容和方法本文旨在对汽车转向机构进行设计,并将其作为大学毕业设计的研究内容。
本研究将详细介绍转向机构的结构、原理以及涉及的相关知识点,以便深入了解转向机构的工作原理和相关概念。
本文旨在对汽车转向机构进行设计,并将其作为大学毕业设计的研究内容。
本研究将详细介绍转向机构的结构、原理以及涉及的相关知识点,以便深入了解转向机构的工作原理和相关概念。
在进行研究时,将采用以下方法和实验步骤来解决问题:文献调研:通过查阅相关文献和资料,了解转向机构的基本构造和工作原理,掌握相关研究领域的最新进展。
理论分析:对转向机构的结构和原理进行理论分析,分析各个部件的功能和相互关系,为后续设计提供理论基础。
特种汽车多轴转向技术的优化设计摘要:本文介绍了特种汽车多轴转向技术的设计和优化内容,简要分析了转向系统的结构、转向传动、转向助力匹配和转向零部件分析等方面,总结了平面投影法、多体动力学优化法、梯形机构设计和纵向传动系统等优化目标,以及在应用数学模型和约束时要考虑的因素。
关键词:特种汽车;多轴转向;优化设计随着汽车行业的发展,用户要求大型特种车辆具有更高的转向性能。
因为转向性能直接影响汽车可控制性[1],操纵稳定性和效率,因此对特种车辆转向系统的设计提出了更高的要求。
根据用户需求,大多数大型特种车辆转向系统都设计用于多轴转向。
一般的设计方法是基于现有产品,经过并行分析后进行部分更改,这些变化不能满足估计的运行要求,并且不能提高整车的经济性。
伴随零部件改进结构的同时,特种汽车的批量开发和产品升级也在加速,转向系统的设计过程将大大缩短。
因此,为更深入了解特种汽车转向系统的合理性,有必要分析其性能,并开发设计优化的转向系统和功能。
1多轴转向机构的结构和原理对转向系统进行优化设计的主要目的是分析转向系统的结构和传动机构。
可通过结构调整优化函数变量,并通过对转向杆系进行运动学分析优化传动机构。
另外,从转向梯形机构和转向时前后轮同步轨迹协调方面进行优化设计。
1.1转向系统的结构优化平面投影法是将转向摇臂系统细分为多个子系统,并将摇臂伸入垂直面,而转向节臂伸入水平面,假设摇臂在垂直面上旋转,在水平面旋转,然后建立多个子系统的数学模型,然后与转向梯形系统组合形成系统的完整模型。
图1中所示的双前桥转向摇臂系统可以分为第一轴节壁至摇臂,摇臂至中间臂,中间臂至第二轴摇臂,第二轴摇臂至转向节臂四个系统。
这样,可以获得每个转向轮的旋转角度以及两个梯形机构[5],然后可以使用Ackerman转角关系来执行优化函数。
多体动力学优化法是利用多刚体动力学知识,首先通过对转向杆连接点坐标的参数化来确定连接点的空间布置,再进一步确定待优化杆件的空间初始角度和长度模型参数,最后建立误差目标函数,确定待优化变量的初始值,最终优化目标是以目标函数的最大值进行最小化控制,进而对各设计变量进行优化。
多轴汽车转向系的设计中国一汽集团柳州特种汽车厂(广西柳州 545006)李勇摘要:介绍了多轴汽车转向设计。
在分析该机构动作条件的基础上提出了它的安装与调节的要点,以解决这方面存在的困难。
关键词:多轴汽车转向系统设计安装要点近两年来,随着公路法规的完善,特别是公路法规已经规定商用车辆要按照轴数的多少来作为商用车辆养路费的征收标准之后,多轴汽车的市场需求量便越来越大,我厂也紧跟市场的脚步,自主研究开发了多个品种的多轴汽车,但是多轴汽车的多个转向轴因为转向的同步和协调等问题造成了很多多轴车型在转向时往往容易出现第二或者第三轴的轮胎出现异常磨损的问题,本文主要从多轴汽车的工作原理和尺寸关系要求入手,提出多轴汽车转向的设计与安装的要点。
1多轴汽车转向系的结构及工作原理图1所示转向系由转向盘、动力转向器、转向传动机构组成,转向系的工作原理是:当驾驶员转动转向盘时,转向器把这个动作传到转向臂,然后再通过第一转向纵拉杆带动前轮偏转,同时转向臂也通过第一过渡转向纵拉杆把动作传到第二转向臂,在转向助力油缸的协助下,第二转向臂通过第二转向纵拉杆带动第二轴的车轮偏转,从而实现了两个前轴一起转向。
而多轴汽车在转向时最重要的是所有的转向轴都必须同时转向,而且各轴的转角还必须是按一定的比例,从而使各轴的车轮都处于纯滚动或者只有极小的滑移,才能避免轮胎的异常磨损现象,减少轮胎磨损。
图1 双前桥汽车转向系的结构2多轴汽车转向时各转向轮理想的转角关系图2 双前桥汽车转向时各转向轴的理想转角关系图2所示是双前桥汽车转向时各转向轴的理想转角关系图,根据阿克曼原理,同一转向轴的内、外转角关系为:cot(N1)-cot(M1)=B/L1 (1)不同转向轴的同一侧车轮的转角关系应满足:L1cot(N1)=L2cot(N2) (2)L1cot(M1)=L2cot(M2) (3)式中:N1、N2-汽车第一、二轴外侧轮转角;M1、M2-汽车第一、二轴内侧轮转角;L1、L2-汽车第一、二轴到转向中心线的距离;由(1)、(2)、(3)式便可得到:同一转向轴的内、外转角的函数关系及同侧车轮转角的函数关系。
汽车转向传动机构的类型分析与优化设计一、概述汽车转向传动机构作为汽车底盘系统的重要组成部分,负责将驾驶员的转向意图转化为车轮的实际转向动作,其性能直接影响到汽车的操控稳定性、行驶安全性以及驾驶舒适性。
随着汽车技术的不断发展和市场需求的日益多样化,对汽车转向传动机构的要求也越来越高。
对汽车转向传动机构的类型进行深入分析,并在此基础上进行优化设计,具有重要的理论意义和实际应用价值。
传统的汽车转向传动机构主要包括机械式转向系统和液压助力转向系统。
机械式转向系统结构简单、可靠性高,但转向力矩较大,驾驶员操作负担较重。
液压助力转向系统通过液压装置提供助力,减轻驾驶员的转向负担,但存在能耗高、响应速度慢等缺点。
近年来,随着电子技术的快速发展,电动助力转向系统逐渐成为主流,其通过电机提供助力,具有能耗低、响应速度快、可调整性强等优点,成为现代汽车转向传动机构的重要发展方向。
即便是电动助力转向系统,也存在一些需要解决的问题。
例如,如何进一步提高转向的精准性和稳定性,如何优化转向传动机构的布局和结构设计以降低制造成本和提高可靠性,如何适应不同车型的转向需求等。
对汽车转向传动机构进行优化设计,是提高汽车性能和市场竞争力的重要途径。
本文将对汽车转向传动机构的类型进行详细分析,包括机械式、液压助力式和电动助力式等不同类型的结构特点、工作原理及优缺点。
在此基础上,结合现代设计理论和方法,提出针对电动助力转向系统的优化设计方法,包括转向力矩的优化分配、传动比的合理选择、结构布局的优化等。
通过理论分析和实验研究,验证优化设计的有效性和可行性,为汽车转向传动机构的设计和制造提供有益的参考和借鉴。
1. 汽车转向传动机构的重要性汽车转向传动机构的重要性不容忽视。
作为汽车操控系统的核心组成部分,转向传动机构直接关系到车辆的行驶安全、驾驶体验以及整体性能。
一个优质的转向传动机构能够确保车辆在行驶过程中稳定、灵活地响应驾驶员的转向操作,从而提高行驶的安全性和舒适性。
面向非线性问题的多轴线转向机构设计宋邢璟;马力;邓小禾【摘要】研究了液压模块组合挂车多轴线转向机构的转向拉杆、换位孔以及连接件之间的接触非线性问题,分析了转向机构的结构特征,并利用Adams对转向机构进行了受力分析,运用Abaqus软件建立了转向机构的非线性有限元模型,得到了在极限工况下转向拉杆、换位孔和连接件的最大应力值以及应力分布,并分析了其强度和刚度,为多轴线转向机构的设计研究提供了良好的方案.%This article discussed the contact nonlinear problem between steeringlinkages,transposition hole and adapting piece of steering gear with many axes of hydraulic pressure module composite trailer.The architectural feature of the steering gear was analyzed and conducts force was investigated by Adams.The finite element model of the steering gear was built by Abaqus,which resulted in the maximum stress and stress distribution of the steering linkages,transposition hole and adapting piece underthe maximum working condition.It provided a good scheme to the design and research of the steering gear with many axes.【期刊名称】《武汉理工大学学报(信息与管理工程版)》【年(卷),期】2013(035)003【总页数】5页(P365-368,377)【关键词】接触非线性问题;有限元分析;Abaqus;转向机构【作者】宋邢璟;马力;邓小禾【作者单位】武汉理工大学汽车工程学院,湖北武汉430070;武汉理工大学汽车工程学院,湖北武汉430070;武汉理工大学汽车工程学院,湖北武汉430070【正文语种】中文【中图分类】U463.33液压模块组合挂车常采用拉杆转向机构实现转向,在不同轴线车辆的拼接过程中通过换位孔来调整拉杆组合,实现不同轴线车辆的拼接。
多轴低速车辆液压转向系统设计1.32————————————————————————————————作者:————————————————————————————————日期:SHANDONGUNIVERSITYOFTECHNOLOGY毕业论文多轴低速车辆液压转向系统设计学院:交通与车辆工程学院专业:交通运输学生姓名:王洪康学号:0712101471 指导教师:秦华2011年6月摘要汽车转向系统是控制其行驶路线和方向的主要装置,其性能好坏直接影响汽车的操纵性和稳定性.自行式平板运输车的转向系统是集机械、电子、液压为一体的协同工作的控制系统,其转向机构的设计好坏直接影响转向控制系统的实现及转向性能的优劣。
本文根据车架结构特点及转向要求设计了液压马达驱动齿轮转向机构的转向方案,要求采用原来的悬架结构且保持低平板的优势将原来的从动式拉杆转向改成独立转向机构,工作时要求平板车的每个轮组独立转向,转向角度可达到180°,即可以正负转向90°,实现横向行驶。
它的转向行驶模式有:直行、斜行、横行,原地转向及行车转向等.由于车轮转向速度较慢,液压马达应选用低速大扭矩变量马达,并要满足方案中所需扭矩条件。
液压马达驱动齿轮转向机构采用的是行星外啮合齿轮传动.首先根据转向要求初步确定齿轮传动的主要参数,然后进行强度校核计算,最后确定了齿轮的所有参数,并选取了合适的润滑方式。
该齿轮转向机构优缺点:转向平稳、速度均匀一致易控制,不仅具有反应速度快、随动性好和转向角度大等特点, 而且可实现轮胎的纯滚动,减小轮胎磨损和完成不同模式的转向, 使平板车具有较强的灵活性。
但成本高、不宜锁定。
关键词:平板车,转向机构,行星齿轮,优化设计,变量AbstractThe automobile’s steering system is the main device that controls its drive routes and directions, whose performance will influence the yarage and stability of automobile directly。
多轴重型全挂车机械液压全轮转向装置设计研究分析摘要:多轴重型全挂车机械液压全轮转向装置,在车辆低速运转状态下能够增强转向的灵活性,在车辆高速运转状态下可以增强转向的稳定性。
由此可见,对车辆全轮转向装置的设计直接关系着车辆的安全性能。
本文笔者将通过分析转向装置的动力学关系式,积极的建立其一个相关的优化模型,同时也可以使用负荷型的优化式算法,从而建立起一个标准的模型来进行求解,以此来表明该设计理念可以在一定程度上优化多轴重型全挂车的转向性能。
关键词:多轴重型全挂车;机械液压;转向装置;设计多轴重型全挂车,是专门用来运输整部分大件或者大型设备的一种平板车。
其被广泛应用在水利工程、土建施工、电力工程等施工领域。
由于多轴重型全挂车具有可拼接性与模块性,所以它可以运载超重或者超尺寸的货物。
对挂车使用机械液压转向,能够达到全轮转向的目的。
并且转向过程中要尽量的减少轮胎的平行滑动,避免造成不必要的磨损或者由轮胎滑动引起的一系列恶性事故。
为达到这种设计目的,本文将以5轴线重型全挂车的转向装置设计为例,建立相关的模型并对模型求解和检验,以确保模型具有实用性。
1 机械液压型全轮转向装置的大体构造在对多轴重型全挂车的转向装置进行优化设计前,我们首先应该详细了解该转向装置的大体构造。
只有了解了基本构造,才能设计出符合实际的转向装置。
通常意义上来说,转向装置是由转向油缸、转向横(纵)拉杆、转向控制板以及悬架臂等多种结构构成。
同时相应的转向性装置也是由其固定的轴进行固定的,其相应的固定轴上所出现的梯形是一个正转式梯形,其后边是反转型梯形。
不管是正转的梯形还是反转的梯形都是对实际的车轮来说的,如果和车轮的实际转向的一致的就是正转型梯形,反之则为反转梯形。
而整辆车的转向操作是通过转向架来进行总体操控的,再由转向纵拉杆以及转向控制板和转向横拉杆来驱动各个悬架臂,以保障所有的车轮都按照需要的转角进行偏转。
假如车的轴数繁多的话,可以尝试用牵引杆带动的机械转向机制同液压随动机制配合起来进行全轮转向,只有这样才能真正达到机械转向以及车辆的转向同时进行的最终目的。
多轴专用汽车转向传动机构的设计
1 前言
大型专用汽车的转向轴多在二轴以上,有的甚至多达五轴,其转向性能
的好坏直接影响车辆行驶的灵活性、操纵稳定性、经济性和轮胎的使用寿命,而且车轴越多,转向对车辆行驶影响越大。
作为转向系统的转向梯形机构,文献运用参数方程对转向梯形机构进行了建模和分析、研究,但对转向传动机构分析和计算的几何法就十分不便,特别是结构复杂的独立悬架的传动机构计算更为不便。
本文运用参数方程法,对转向传动机构的各点用坐标参数来表示,建立参数方程求解、分析,提出了一种可运用于多轴转向的传动机构优化设计的计算方法,达到各轴转向协调的目的,提高车辆行驶的灵活性、操纵稳定性和经济性。
2 转向时各转向桥的理想转角关系
图1为某前双桥转向底盘转向时各转向轴内外转向轮的理想转角关系,由于不研究转向梯形机构,只讨论转向传递关系,所以只分析内侧的车轮的转角关系。
3 一桥传动机构传动模型
多轴转向汽车一般通过连杆机构来保证同一侧车轮在转向时绕同一瞬心作圆周运动。
下面以常用的连杆机构中第一轴摇臂的摆角与车轮转向臂转角的对应为例,说明连杆机构的运动关系(如图2)。
图2中:A1为车轮转向节臂初始位置;Al′为车轮转动角a1转向节臂位置;B1为一桥传动摇臂初始位置;B1′为车轮转动a1′角一桥传动摇臂位置。
4 一桥梯形机构传动模型
根据文献的梯形机构的建模方式,将梯形机构简化为平面机构,则一桥梯形机构得一桥外轮转角a1′与一桥内轮转角a1之间关系(如图3)。
图3中:A1为内轮转向节臂初始位置;A1′为内轮转动a1角转向节臂位置;El为外轮转向节臂初始位置;E1′为外轮转动a1′角一桥传动摇臂位置。
一桥至二桥之间的传动模型
7 设计优化
由(4)、(6)、(8)、(9)、(10)式可计算出一桥车轮内、外轮的每一转角与二桥车轮内、外轮的每一转角的对应数据,将该数据与由(2)式计算出的理论转角数据进行比较。
考虑到轮胎侧偏角,理论与实际转角差可由轮胎产生侧偏角来弥补。
对应于一桥内轮的每一转角,一、二桥外轮实际转角与理论转角最大相差在2°范围内且在小转角范围内(内轮转角≤20°)。
右轮实际转角与理论转角相差更小时,可认为设计合理。
若超出该范围就需对各杆件的参数进行调整,以满足要求,得到理想的协调关系。
8 结论
本文针对两轴转向车辆的转向传动机构进行了优化设计,同时对多轴转向的转向机构优化设计具有较普遍的指导意义,其原理一样,方法相同,而且不用建立统一的坐标系,每个转向轴分开计算、分析,方法简单易懂,操作性强,特别是适用于用计算机进行计算,使优化设计方便快捷,具有较强的理论意义和参考价值。