1.设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数 列,则{an}的前n项和Sn=(
n 2 7n (A) 4 4 n 2 5n (B) 3 3
) (D)n 2+n
n 2 3n (C) 2 4
【解析】选A.设数列{an}的公差为d,则根据题意得
(2+2d)2=2·(2+5d),解得 d 1 或d=0(舍去),所以数列{an}
【变式备选】已知{an}是首项为19,公差为-2的等差数列,Sn
为{an}的前n项和. (1)求通项an及Sn. (2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn} 的通项公式及其前n项和Tn.
【解析】(1)因为{an}是首项为a1=19,公差d=-2的等差数
列,所以an=19-2(n-1)=-2n+21, Sn=-n2+20n. (2)由题意知bn-an=3n-1,所以bn=an+3n-1, 即bn=-2n+21+3n-1. Tn=Sn+(1+3+„+3n-1)
3n 2 11n 2 2 , n 2, 所以Sn 2 3n 11n 10, n 2, 2 2 4,
这个式子中n=2时两段函数值相等,
n 1,
故可以写为
Sn 3n 2 11n 10, n 2. 2 2
【互动探究】本例题(1)中将条件“S1,S2,S4成等比数列”改
第五节 数列的综合应用
数列的实际应用 (1)解答数列应用题的步骤. ①审题——仔细阅读材料,认真理解题意. ②建模——将已知条件翻译成数学(数列)语言,将实际问题转 化成数学问题,弄清该数列的结构和特征. ③求解——求出该问题的数学解. ④还原——将所求结果还原到原实际问题中.