原电池电动势和电极电势的测量
- 格式:ppt
- 大小:476.00 KB
- 文档页数:22
实验九原电池电动势的测定及应用一、实验目的1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。
2.学会几种电极的制备和处理方法。
3.掌握数字电位差计的丈量原理和正确的使用方法。
二、实验原理电池由正、负两极组成。
电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。
电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。
从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系:9-1)n子的数目;F为法拉第常数(其数值为E为电池的电动势。
所以测出该电池的电动势E后,进而又可求出其它热力学函数。
但必须注意,测定电池电动势时,首先要求电池反应自己是可逆的,可逆电池应满足如下条件:(1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不成逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。
因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的丈量中,经常使用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。
在进行电池电动势丈量时,为了使电池反应在接近热力学可逆条件下进行,采取电位计丈量。
原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。
由(9-1)式可推导出电池的电动势以及电极电势的表达式。
下面以铜-锌电池为例进行分析。
电池暗示式为:符号“|”代表固相(Zn 或Cu{}2(Zn Zn a +2)2()Cu a e Cu s ++222()(Cu Zn Cu a Zn a +++电池反应的吉布斯自由能变更值为: 22CuZna RT a ++-(9-2)为尺度态时自由能的变更值;体物质的活度等于11Zn a =。
而在标态时,则有:9-3)为电池的尺度电动势。
由(9-1)至(9-1)式可得: RT E E nF =-9-4)对于任一电池,其电动势等于两个电极电势之差值,其计算9-5对铜-锌电池而言2,Cu Cu +2,Zn Znϕ+2,Cu Cu +2,Zn Zn +是当a =时,铜电极和锌电极的尺度电极电势。
图1 电极电位(原电池电动势)测量原理图实验十六 电极电位和原电池电动势的测定一、目的要求1、巩固电极电位产生原因和影响因素;2、掌握测量电极电位的实验方法;3、掌握原电池、电解池电位的测量方法;4、掌握电极极化的原因;5、掌握电化学测试系统;6、理解原电池和电极电势的概念。
二、实验原理电极电位(原电池电动势)测量方法可以有以下三种方法1:电极电位的直接测量原理如图1。
当被测电极与参比电极组成测量原电池时,参比电极作电池的正极(阴极)时,有若参比电极作电池的负极(阳极)时,有式中:φ为被测电极的氢标电位;φR 为参比电极的氢标电位。
方法2:补偿法测量电极电位原理图,教材56~57页。
方法3:对消法。
图2 补偿法测量电极电位测量原理图对消法测定电动势就是在所研究的电极(电池)的外电路上加一个方向相反的电压。
当两者相等时,电路的电流为零(通过检流计指示)。
此时,所研究的电池的电动势就可以从外电路的电压数值读出。
原电池是由两个“半电池”组成,每个半电池中有一个电极和相应的溶液。
由不同的半电池可以组成各式各样的原电池,电池中的正极起还原作用,负极起氧化作用,电池的电动势等于两个电极电位的差值:左右ϕϕϕϕ-=-=-+E++++=a nF RT ln 0ϕϕ ---+=a nFRT ln 0ϕϕ 例如Cu-Zn 电池 Zn|ZnSO 4(a 1)||CuSO 4(a 2)|CuZn 的电极电位22201ln 2Zn Zn Zn Zn Zn RT F a ϕϕ+++=- Cu 的电极电位22201ln 2Cu Cu Cu Cu Cu RT F a ϕϕ+++=- Cu-Zn 电池的电动势为: ++++--=2222Cu n /Zn Zn 0Cu 0ln 2)(ααϕϕZ Cu /F RT E 三、仪器与药品 电化学测试系统 1套 饱和甘汞电极 1只盐桥 1个 电解池 1套Cu 电极片 1个 Fe 电极片 1个容量瓶 1个 量筒 1个广口瓶 3个 饱和KCl 溶液CuSO4(0.1mol.L-1)溶液 CuSO4(0.01mol.L-1)溶液NaCl (0.1mol.L-1)溶液四、实验步骤图4 工作电极的结构示意图 1、电极制备工作电极表面要平整,不能出现尖角或台阶,这些结构将会影响电极电位的分布。
实验四氧化还原与电化学
一、实验目的
1. 了解原电池的电动势和电极电势的测定方法
2. 掌握电极电势和氧化还原反应的关系
3. 掌握反应物浓度,介质对氧化还原反应的影响
二、实验原理
1. 电极电势代数值越大,其氧化态的氧化能力越强,还原态的还原能力越弱;反之,代数值越小,其氧化还原能力越弱,还原态的还原能力越强。
2. 根据氧化剂和还原剂所对应电极电势的相对大小,可以判断氧化还原反应进行的方向。
当氧化剂所对应电对的电极电势与还原剂所对应的电极电势的差值:
( 1 )大于0 时,反应能自发进行;
( 2 )等于0 时,反应处于平衡状态
( 3 )小于0 时,反应不能进行。
3. 通常用标准电极电势进行比较,当差值小于0.2 时,则考虑反应物浓度,介质酸碱性的影响,用能斯特方程计算。
4. 原电池是通过氧化还原反应将化学能转化为电能的装置,负极发生氧化反应,给出电子,正极发生还原反应,得到电子,电子通过导线由负极流向正极。
三、仪器和药品
仪器:数字式万用表、温度计、量筒、烧杯、NO2平衡仪
药品:
固体MnO2
酸HCl,H2SO4,
碱NaOH
盐KIO3、KClO3、Na2SO3、KMnO4、CuSO4、ZnSO4
其他KI-淀粉试纸,铜片,锌片
四、实验内容
五、问题、讨论
1. 介质的酸度变化时H2O2、Br2、Fe3+的氧化性有无影响?试从电极电势予以说明。
?。
实验十一 原电池电动势和电极电势的测定1 目的要求(1) 测定Cu-Zn 原电池的电动势及Cu 、Zn 电极的电极电势。
(2) 学会几种电极和盐桥的制备方法。
(3) 掌握可逆电池电动势的测量原理和UJ34型电位差计的操作技术。
2 基本原理凡把化学能转变为电能的装置称为化学电源(或电池、原电池)。
电池是由两个电极和连通两个电极的电解质溶液组成的。
如图3.1所示。
把Zn 片插入ZnSO 4溶液中构成Zn 电极,把Cu 片插在CuSO 4溶液中构成Cu 电极。
用盐桥(其中充满电解质)把这两个电极连接起来就成为Cu-Zn 电池。
可逆电池应满足如下条件:(1) 电池反应可逆,亦即电池电极反应可逆。
(2) 电池中不允许存在任何不可逆的液接界。
(3)即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。
因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。
用电位差计测量电动势也可满足通过电池电流为无限小的条件。
在电池中,每个电极都具有一定的电极电势。
当电池处于平衡态时,两个电极的电极电势之差就等于该可逆电池的电动势,按照我们常采用的习惯,规定电池的电动势等于正、负电极的电极电势之差。
即: -+-=ϕϕE (1)式中:E 是原电池的电动势。
+ϕ-ϕ分别代表正、负极的电极电势。
其中:还原氧化ααϕϕlnZF RT -=++ (2)还原氧化ααϕϕln0ZF RT -=-- (3) 在式(2)、(3)中:+ϕ-ϕ分别代表正、负电极的标准电极电势.R=8.134J.mol -1.K -1。
T 是绝对温度。
Z 是反应中得失电子的数量。
F=96500C ,称法拉第常数。
氧化α为参与电极反应的物质的还原态的活度。
对于Cu-Zn 电池,其电池表示式为:Zn|ZnSO 4(m 1)||CnSO 4(m 2)|Cu其电极反应为:⎩⎨⎧+→→+++++e Zn Zn Cu e Zn Cu 2)(2)(Cu 2222αα负极反应:正极反应:其电池反应为:)()(2222+++++→+Zn Cu Zn Cu CuZn αα其电动势为:Zn Zn Cu Cu E ,,22++-=ϕϕ (4)+++-=2221ln20,,Cu CuCu CuCu F RT αϕϕ (5) +++-=2221ln20,,Zn ZnZn ZnZnF RT αϕϕ (6) 在式5和6中,Cu 2+,Zn 2+的活度可由其浓度m i 和相应电解质溶液的平均活度系数γ±计算出来。
电解池原电池电动势电势计算电解池是一种将化学能转化为电能的装置。
在电解池中,通过电解反应使电流产生,从而把化学能转化为电能,是化学电池中最常用的一种。
电解池的原电池电动势就是在标准状态下,由电解反应引起的电动势,是电解池中化学能转变为电能的能力。
下面是电解池原电池电动势的电势计算方法。
一. 原电池电动势的定义原电池电动势E0是指在标准活化状态下,以纯物质作氧化剂和还原剂,产生1mol电子时,电池中的电势差。
二. 标准电极电势的测定标准电极电势是指在标准条件下,电化学电池中氧化反应和还原反应中电子的转移系数都是1时所测定的电极电势,它是用标准电极强度计测定的。
三. 标准电动势计算公式标准电池电动势的计算公式是:E0cell = E0cathode - E0anode其中,E0cell是标准电池电动势,E0cathode是还原电极的标准电极电势,E0anode是氧化电极的标准电极电势。
对于化学方程式2H+ + 2e− → H2,它的标准电极电势为0V。
对于化学方程式Cu2+ + 2e− → Cu,它的标准电极电势为+0.34V。
因此,铜/铜离子电池的标准电池电动势为:E0cell = E0cathode - E0anode = 0V - (+0.34V) = -0.34V四. 温度影响对于每个化学电池来说,它的电动势都会随着温度的变化而变化。
五. 氧化还原电位氧化还原电位是一种描述氧化还原反应趋势的物理量。
在实际应用中,氧化还原电位的计算、测定与预测是很关键的。
六. 应用范围电解池原电池电动势的电势计算是电化学基础知识之一,它在工业、生物、医学、环保等领域都有着广泛的应用。
对于电解池中的原电池电动势,它的电势计算是非常重要的,只有通过电势计算才能确定电池的电势差,从而实现化学能和电能之间的转化。
原电池电动势的测定及应用实验报告实验目的1、学会Cu、Zn电极的制备和简单处理方法。
2、测定Cu-Zn原电池的电动势和Cu、Zn电极的电极电势。
3、掌握电位差计(包括数字式电子电位差计)的测量原理和正确使用方法。
实验原理电池电动势E的测定必须是在热力学可逆的条件下进行。
因此在测定时,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液体接界,同时要求电池在放电或充电过程都必须在平衡态或无限接近平衡态下进行,即要求通过电池的电流无限小。
当一个可逆的化学反应是在无限缓慢的情况下进行时,就可以认为该电池的反应是在接近热力学可逆的条件下进行的。
而一个电池反应的快慢是以通过该电池电流的大小反映的,当通过电池的电流无限小时,则该可逆电池的反应就是在接近热力学可逆的情况下进行的。
为了使可逆电池在接近热力学可逆条件下进行,通常采用根据补偿法或称对消法(在外电路上加一个方向相反而电动势几乎相等的电池)设计的电位差计来测量电池的电动势。
液体接界电势的存在会破坏电池的可逆性,所设计的电池要尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。
电位差计(示意图如下),是利用补偿法测量直流电动势(或电压)的精密仪器,其工作原理如图所示:工作电源E,限流电阻R p,滑线电阻R AB构成辅助回路,待测电源E x(或标准电池E n),检流计G和R AC构成补偿回路。
按图中规定电源极性接入E、E x,双向开关K打向2,调节C点,使流过G中的电流为零。
(称达到平衡。
若E<E x或E、E x极性接反,则无法达到平衡),则E x=V AC=I R AC 即E x被电位差I R AC所补偿。
I为流过滑线电阻R AB的电流,称辅助回路的工作电流。
若已知I和R AC就可求出E x。
实际的电位差计,滑线电阻由一系列标准电阻串联而成,工作电流总是标定为一固定数值I0,使电位差计总是在统一的I0下达到平衡,从而将待测电动势的数值直接标度在各段电阻上(即标在仪器面板上),直接读取电压值,这称为电位差计的校准。
物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称:原电池电动势的测定日期2009.03.26 同组者姓名史黄亮室温16.84℃气压101.7 kPa成绩一、目的和要求1.学会一些电极的制备和处理方法;2.掌握对消法测定电池电动势及电极电势的原理和方法;3.熟悉数字式电子电位差计的工作原理和正确的使用方法。
二、基本原理测定电池电动势必须要求电池反应本身是可逆的,即电池必须在可逆的情况下工作,此时只允许有无限小的电流通过电池。
因此根据对消法原理(在外电路上加一个方向相反而电动势几乎相等的电池)设计了一种电位差计,以满足测量工作的需要。
T温度下的电极电势ψT=ψTθ-(RT/2F)*ln(1/a);—a= r±*m (r±参见附录表V-5-30)ψTθ=ψ298θ+α(T-298)+0.5β(T-298)^2—α,β为电池电极的温度系数:铜电极(Cu2+/Cu),α=-0.000016 V/K,β=0锌电极[Zn2+/Zn(Hg)],α=0.0001 V/K,β=0.62*10-6 V/K三、仪器、试剂SDC-Ⅱ数字电位差综合测试仪、YJ56电镀仪毫安表、饱和甘汞电极、U型玻璃管等;0.1000mol/L CuSO4溶液、0.0100mol/L CuSO4溶液、0.1000mol/L ZnSO4溶液、Hg2Cl2溶液、饱和KCl溶液、琼脂、氯化钾(A.R.)、铜片、锌片等。
四、实验步骤㈠、电极制备Ⅰ. 铜电极①取2片铜片,用沙皮纸将其表面打磨干净,再放入稀硝酸溶液中处理片刻,用蒸馏水冲洗干净;②将处理后的铜片放入电镀液(0.1000mol/L CuSO4溶液)中,与电源的负极相连,电源的正极与另一片铜片相连,回路中连有一只毫安表,调节电镀装置使毫安表的读数为40左右,电镀约1h;Ⅱ. 锌电极①取一片锌片,用沙皮纸将其表面的氧化物打磨去除,放入稀硫酸溶液中片刻,使其表面氧化物进一步反应完全;②用蒸馏水冲洗锌片后,将其放入Hg2Cl2溶液约6秒钟,使其表面汞齐化;③取出后再用蒸馏水淋洗,用纸吸干表面的水,放入0.1000 mol/L ZnSO4溶液中备用;㈡、制盐桥①在100ml烧杯中加入适量蒸馏水,用电磁炉煮沸;②称取12g琼脂和20g纯KCl,加入沸水中③待固体完全溶解至溶液成浆糊状时,用胶头滴管将液体注入U型玻璃管中,注满且没有气泡;④冷却后即为盐桥;㈢、测定各组电池的电动势a.(-) Zn|ZnSO4(0.1000mol/L)‖KCl(饱和)|Hg2Cl2|Hg (+)b.(-) Zn|ZnSO4(0.1000mol/L)‖KCl(饱和)|AgCl|Ag (+)c.(-) Hg|Hg2Cl2|KCl(饱和) ‖CuSO4(0.1000mol/L) |C u (+)d.(-) Ag|AgCl|KCl(饱和) ‖CuSO4(0.1000mol/L) |Cu (+)e.(-) Zn|ZnSO4(0.1000mol/L)‖CuSO4(0.1000mol/L) |Cu (+)f.(-) Cu|CuSO4(0.0100mol/L)‖CuSO4(0.1000mol/L) |Cu (+)①打开数字式电位差计的电源,打到内标档,各旋钮打至0处,按下归零按钮;②切换到测量档,将以上电池的正负极对应数字式电位差计的正负极连接好;③调整各旋钮,使右侧显示值为零(有时需要等待片刻至数值稳定),此时左侧显示的数值即被测电池的电动势;④依次测定6组电池的电动势并记录下数据。