鼓泡塔反应器设计
- 格式:ppt
- 大小:483.00 KB
- 文档页数:18
目录1 鼓泡塔反应器简介 (1)1.1 鼓泡塔的概念 (1)1.2 鼓泡塔的结构 (1)1.3 鼓泡塔类型 (2)1.3.1空心式 (2)1.3.2 多段式 (3)1.3.3 循环式 (3)1.4 鼓泡塔反应器的操作状态 (4)2 鼓泡塔反应器的流体力学特性 (6)2.1气泡直径 (6)2.2含气率 (6)2.3气液比相界面积 (7)2.4鼓泡塔内的气体阻力ΔP (7)2.5返混 (8)3 鼓泡塔反应器的传质、传热特性 (9)3.1鼓泡塔的传质 (9)3.2鼓泡塔的传热 (9)4 鼓泡塔反应器的数学模型 (11)4.1 双流体模型 (11)4.2 湍流模型 (11)5 鼓泡塔反应器的工业应用实例 (13)1 鼓泡塔反应器简介1.1 鼓泡塔的概念鼓泡塔是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。
优点:气相高度分散于液相中,具有大的液体持有量和相界接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况;结构简单,操作稳定,投资和维修费用低,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化等工业过程。
缺点:液相有较大的返混,气相有较大的压降。
当高径比大时,气泡合并速度增加,使相际接触面积减小。
1.2 鼓泡塔的结构图1.2 简单鼓泡塔气体分布器:使气体分布均匀,强化传热、传质。
是气液相鼓泡塔的关键设备之一,型式:多孔板,喷嘴,多孔等,为鼓泡塔主要结构之一,另一主要结构为塔体。
换热装置: 1、夹套式:热效应不大时。
2、蛇管式:热效应较大时。
3、外循环换热式:热效应较大时塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔内液体层中可放置填料;塔内可安置水平多孔隔板以提高气体分散程度和减少液体返混。
1.3 鼓泡塔类型1.3.1空心式图1.3.1 空心式鼓泡塔图1.3.2 多段式鼓泡塔空心式鼓泡塔如图1.3.1所示,塔内不含塔板和液体分布器,最适用于缓慢化学反应系统或伴有大量热效应的的反应系统。
目录1 鼓泡塔反应器简介 (1)1.1 鼓泡塔的概念 (1)1.2 鼓泡塔的结构 (2)1.3 鼓泡塔类型 (2)1.3.1空心式 (3)1.3.2 多段式 (3)1.3.3 循环式 (3)1.4 鼓泡塔反应器的操作状态 (5)2 鼓泡塔反应器的流体力学特性 (7)2.1气泡直径 (8)2.2含气率 (8)2.3气液比相界面积 (10)2.4鼓泡塔内的气体阻力ΔP (10)2.5返混 (10)3 鼓泡塔反应器的传质、传热特性 (11)3.1鼓泡塔的传质 (11)3.2鼓泡塔的传热 (12)4 鼓泡塔反应器的数学模型 (14)4.1 双流体模型 (14)4.2 湍流模型 (14)5 鼓泡塔反应器的工业应用实例 (16)1 鼓泡塔反应器简介1.1 鼓泡塔的概念鼓泡塔是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。
优点:气相高度分散于液相中,具有大的液体持有量和相界接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况;结构简单,操作稳定,投资和维修费用低,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化等工业过程。
缺点:液相有较大的返混,气相有较大的压降。
当高径比大时,气泡合并速度增加,使相际接触面积减小。
1.2 鼓泡塔的结构图1.2 简单鼓泡塔气体分布器:使气体分布均匀,强化传热、传质。
是气液相鼓泡塔的关键设备之一,型式:多孔板,喷嘴,多孔等,为鼓泡塔主要结构之一,另一主要结构为塔体。
换热装置:1、夹套式:热效应不大时。
2、蛇管式:热效应较大时。
3、外循环换热式:热效应较大时塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔内液体层中可放置填料;塔内可安置水平多孔隔板以提高气体分散程度和减少液体返混。
1.3 鼓泡塔类型1.3.1空心式图1.3.1 空心式鼓泡塔图1.3.2 多段式鼓泡塔空心式鼓泡塔如图1.3.1所示,塔内不含塔板和液体分布器,最适用于缓慢化学反应系统或伴有大量热效应的的反应系统。
关于鼓泡塔反应器的研究报告1、鼓泡塔反应器的概念鼓泡塔(Bubble Column Reactor)是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。
以其结构简单、无机械传动部件、易密封、传热效率高、操作稳定、操作费用低等优点,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化、费-托合成、废气和废水处理、煤的液化及菌种培养等工业过程。
特点:气相高度分散于液相中,具有大的液体持有量和相际接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况;结构简单,操作稳定,投资和维修费用低缺点:液相有较大的返混,气相有较大的压降。
2、鼓泡塔反应器的起源与演变20世纪70年代以后,有关鼓泡塔的研究日益活跃,除标准型鼓泡塔外,又开发了各种各样的改型鼓泡塔(射流喷射型、气液下流型、双管式、多段式、填充式等)和悬浊鼓泡塔等。
图1是各种鼓泡塔的示意图,从图中可见,在鼓泡塔中,气液两相基本呈并流和逆流两种。
3、鼓泡塔反应器的结构3.1简单鼓泡塔的基本结构图2简单鼓泡塔1-塔体;2-夹套;3-气体分布器;4-塔体;5-挡板;6-塔外换热器;7-液体捕集器;8-扩大段主要由塔体和气体分布器组成。
塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔内液体层中可放置填料;塔内可安置水平多孔隔板以提高气体分散程度和减少液体返混。
简单鼓泡塔内液相可近似视为理想混合流型,气相可近似视为理想置换流型。
最佳空塔气速应满足两个条件:(1)保证反应过程的最佳选择性;(2)保证反应器体积最小。
影响传质的因素:当气体空塔气速低于0.05m/s时,气体分布器的结构就决定了气体的分散状况、气泡的大小,进而决定了气含率和液相传质系数的大小。
当气体空塔气速大于0.1m/s时,气体分布器的结构无关紧要。
此时的气泡是靠气流与液体间的冲击和摩擦而形成,气泡大小及其分布状况主要取决于气体空塔气速。
3.2气体升液式鼓泡塔图3 气体升液式鼓泡塔1-筒体;2-气升管;3-气体分布器塔内装有气升管,引起液体形成有规则的循环流动,可以强化反应器传质效果,并有利于固体催化剂的悬浮。
目录一、项目简介 (1)二、反应器选择 (1)2.1 工艺流程 (1)2.2 鼓泡塔介绍 (2)2.2.1 鼓泡塔反应器的分类 (2)2.2.2 鼓泡塔反应器的特点与结构 (4)2.2.3 鼓泡塔中的传质 (6)2.2.4 鼓泡塔中的传热 (6)三、初步设计 (6)3.1 PX氧化宏观动力学 (6)3.1.1宏观反应动力学 (6)3.1.2 PX氧化反应宏观动力学 (7)3.1.3 氧化反应机理 (8)3.2反应段模型的建立[7] (11)3.2.1 模型作如下假设: (11)3.2.2模型方程 (11)3.2.4 质量衡算 (13)3.2.5 热量衡算 (14)3.2.6 参数估算 (14)3.2.7 模型的求解 (17)3.3 影响PX氧化反应的工艺条件 (18)四、总结 (19)五、参考文献 (20)对二甲苯氧化过程中的鼓泡塔设计一、项目简介精对苯二甲酸(PTA)是生产聚酯的主要原料,PTA生产历史可以一直追溯到上世纪二十年代,继英国帝国化学工业公司(ICI)和美国杜邦公司(Dupont)开始生产高性能聚酯纤维开始,聚酯工业的发展极大的刺激了主要原料PTA生产技术的变革。
PTA合成方法曾先后采用:硝酸氯化法,Dupont公司开发的以钴为催化剂的空气氧化法,Witten公司开发的酯化氧化法(DMT),以及具有划时代意义的1958年由Mid-Century公司发的MC氧化工艺。
如今,工业上主要采用Co-Mn-Br为催化剂由对二甲苯(PX)经空气氧化制得[1]。
主要工艺有Amoco、三井和Dupont三大公司的专利技术。
三种工艺的基本流程大致相同,均采用Amoco-MC高温氧化法[2]。
对二甲苯(PX)氧化制对苯二甲酸(TA)是聚酯工业的一个重要生产过程,同时也是一个液相催化氧化过程。
工业氧化反应在185 ~ 224 ℃、1 ~2 MPa 下进行,采用Co-Mn-Br 三元复合催化剂,醋酸为溶剂,空气为氧化剂,反应物PX 经过一系列自由基反应步骤顺序生成醇、醛、酸,并最终转化为固体产物TA。
目录一、项目简介 (1)二、反应器选择 (1)2.1 工艺流程 (1)2.2 鼓泡塔介绍 (2)2.2.1 鼓泡塔反应器的分类 (2)2.2.2 鼓泡塔反应器的特点与结构 (4)2.2.3 鼓泡塔中的传质 (6)2.2.4 鼓泡塔中的传热 (6)三、初步设计 (6)3.1 PX氧化宏观动力学 (6)3.1.1宏观反应动力学 (6)3.1.2 PX氧化反应宏观动力学 (7)3.1.3 氧化反应机理 (8)3.2反应段模型的建立[7] (11)3.2.1 模型作如下假设: (11)3.2.2模型方程 (11)3.2.4 质量衡算 (13)3.2.5 热量衡算 (14)3.2.6 参数估算 (14)3.2.7 模型的求解 (17)3.3 影响PX氧化反应的工艺条件 (18)四、总结 (19)五、参考文献 (20)对二甲苯氧化过程中的鼓泡塔设计一、项目简介精对苯二甲酸(PTA)是生产聚酯的主要原料,PTA生产历史可以一直追溯到上世纪二十年代,继英国帝国化学工业公司(ICI)和美国杜邦公司(Dupont)开始生产高性能聚酯纤维开始,聚酯工业的发展极大的刺激了主要原料PTA生产技术的变革。
PTA合成方法曾先后采用:硝酸氯化法,Dupont公司开发的以钴为催化剂的空气氧化法,Witten公司开发的酯化氧化法(DMT),以及具有划时代意义的1958年由Mid-Century公司发的MC氧化工艺。
如今,工业上主要采用Co-Mn-Br为催化剂由对二甲苯(PX)经空气氧化制得[1]。
主要工艺有Amoco、三井和Dupont三大公司的专利技术。
三种工艺的基本流程大致相同,均采用Amoco-MC高温氧化法[2]。
对二甲苯(PX)氧化制对苯二甲酸(TA)是聚酯工业的一个重要生产过程,同时也是一个液相催化氧化过程。
工业氧化反应在185 ~ 224 ℃、1 ~2 MPa 下进行,采用Co-Mn-Br 三元复合催化剂,醋酸为溶剂,空气为氧化剂,反应物PX 经过一系列自由基反应步骤顺序生成醇、醛、酸,并最终转化为固体产物TA。
塔式反应器结构及原理
塔式反应器主要分为以下几种:
1、鼓泡塔反应器
塔内充满液体,气体从反应器底部通入,分散成气泡沿着液体上升,既与液相接触进行反应同时搅动液体以增加传质速率。
这类反应器适用于液体相也参与反应的中速、慢速反应和放热量大的反应。
优点:鼓泡塔反应器结构简单、造价低、易控制、易维修、防腐问题易解决,用于高压时也无困难。
缺点:鼓泡塔内液体返混严重,气泡易产生聚并,故效率较低。
2、填料塔反应器
填料塔是以塔内的填料作为气液两相间接触构件的传质设备。
液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。
填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。
3、板式塔反应器
液体横向流过塔板经溢流堰溢流进入降液管,液体在降液管内释放夹带的气体,从降液管底隙流至下一层塔板。
塔板下方的气体穿过塔板上气相通道,如筛孔、浮阀等,进入塔板上的液层鼓泡,气、液接触进行传质。
气相离开液层而奔向上一层塔板,进行多级的接触传质。
4、喷淋塔反应器
喷淋塔反应器结构较为简单,液体以细小液滴的形式分散于气体中,气体为连续相,液体为分散相。
喷淋塔是气膜控制的反应系统,适于瞬间、界面和快速反应过程。
塔内中空,特别适用于有污泥、沉淀和生成固体产物的体系。
目录1 鼓泡塔反应器简介 (1)1.1 鼓泡塔的概念 (1)1.2 鼓泡塔的结构 (1)1.3 鼓泡塔类型 (2)1.3.1空心式 (2)1.3.2 多段式 (3)1.3.3 循环式 (3)1.4 鼓泡塔反应器的操作状态 (4)2 鼓泡塔反应器的流体力学特性 (6)2.1气泡直径 (6)2.2含气率 (6)2.3气液比相界面积 (7)2.4鼓泡塔的气体阻力ΔP (7)2.5返混 (8)3 鼓泡塔反应器的传质、传热特性 (9)3.1鼓泡塔的传质 (9)3.2鼓泡塔的传热 (9)4 鼓泡塔反应器的数学模型 (11)4.1 双流体模型 (11)4.2 湍流模型 (11)5 鼓泡塔反应器的工业应用实例 (13)1 鼓泡塔反应器简介1.1 鼓泡塔的概念鼓泡塔是在塔体下部装上分布器,将气体分散在液体中进行传质、传热的一种塔式反应器。
优点:气相高度分散于液相中,具有大的液体持有量和相界接触面,传质和传热效率高,适用于缓慢化学反应和高度放热的情况;结构简单,操作稳定,投资和维修费用低,被广泛应用于加氢、脱硫、烃类氧化、烃类卤化等工业过程。
缺点:液相有较大的返混,气相有较大的压降。
当高径比大时,气泡合并速度增加,使相际接触面积减小。
1.2 鼓泡塔的结构图1.2 简单鼓泡塔气体分布器:使气体分布均匀,强化传热、传质。
是气液相鼓泡塔的关键设备之一,型式:多孔板,喷嘴,多孔等,为鼓泡塔主要结构之一,另一主要结构为塔体。
换热装置: 1、夹套式:热效应不大时。
2、蛇管式:热效应较大时。
3、外循环换热式:热效应较大时塔体可安装夹套或其它型式换热器或设有扩大段、液滴捕集器等;塔液体层中可放置填料;塔可安置水平多孔隔板以提高气体分散程度和减少液体返混。
1.3 鼓泡塔类型1.3.1空心式图1.3.1 空心式鼓泡塔图1.3.2 多段式鼓泡塔空心式鼓泡塔如图1.3.1所示,塔不含塔板和液体分布器,最适用于缓慢化学反应系统或伴有大量热效应的的反应系统。
目录一、项目简介错误!未定义书签。
二、反应器选择错误!未定义书签。
工艺流程错误!未定义书签。
鼓泡塔介绍错误!未定义书签。
鼓泡塔反应器的分类错误!未定义书签。
鼓泡塔反应器的特点与结构错误!未定义书签。
鼓泡塔中的传质错误!未定义书签。
鼓泡塔中的传热错误!未定义书签。
三、初步设计错误!未定义书签。
PX氧化宏观动力学错误!未定义书签。
宏观反应动力学错误!未定义书签。
PX氧化反应宏观动力学错误!未定义书签。
氧化反应机理错误!未定义书签。
反应段模型的建立[7] 错误!未定义书签。
模型作如下假设:错误!未定义书签。
模型方程错误!未定义书签。
质量衡算错误!未定义书签。
热量衡算错误!未定义书签。
参数估算错误!未定义书签。
模型的求解错误!未定义书签。
影响PX氧化反应的工艺条件错误!未定义书签。
四、总结错误!未定义书签。
五、参考文献错误!未定义书签。
对二甲苯氧化过程中的鼓泡塔设计一、项目简介精对苯二甲酸(PTA)是生产聚酯的主要原料,PTA生产历史可以一直追溯到上世纪二十年代,继英国帝国化学工业公司(ICI)和美国杜邦公司(Dupont)开始生产高性能聚酯纤维开始,聚酯工业的发展极大的刺激了主要原料PTA生产技术的变革。
PTA合成方法曾先后采用:硝酸氯化法,Dupont公司开发的以钴为催化剂的空气氧化法,Witten公司开发的酯化氧化法(DMT),以及具有划时代意义的1958年由Mid-Century公司发的MC氧化工艺。
如今,工业上主要采用Co-Mn-Br 为催化剂由对二甲苯(PX)经空气氧化制得[1]。
主要工艺有Amoco、三井和Dupont 三大公司的专利技术。
三种工艺的基本流程大致相同,均采用Amoco-MC高温氧化法[2]。
对二甲苯(PX)氧化制对苯二甲酸(TA)是聚酯工业的一个重要生产过程,同时也是一个液相催化氧化过程。
工业氧化反应在185 ~ 224 ℃、1 ~2 MPa 下进行,采用Co-Mn-Br 三元复合催化剂,醋酸为溶剂,空气为氧化剂,反应物PX 经过一系列自由基反应步骤顺序生成醇、醛、酸,并最终转化为固体产物TA。