初二数学 设计中心对称图案
- 格式:doc
- 大小:1.37 MB
- 文档页数:10
2.3 设计中心对称图案一、填空题1.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有__________2.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有______种.二、解答题3.如图,每个小方格都是边长为1个单位长度的正方形,△ABC和△A1B1C1在平面直角坐标系中位置如图所示.(1)△ABC与△A1B1C1关于某条直线m对称,画出对称轴m.(2)画出△A1B1C1绕原点O顺时针旋转90°所得的△A2B2C2.此时点A2的坐标为______.求出点A1旋转到点A2的路径长.(结果保留根号)4.在平面直角坐标系中,△ABC 的位置如图,网格中小正方形的边长为1,请解答下列问题:(1)将△ABC 向下平移3个单位得到△A 1B 1C 1,作出平移后的△A 1B 1C 1;(2)作出△ABC 关于点O 的中心对称图形△A 2B 2C 2,并写出点A 2的坐标.5.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.6.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为(0,﹣4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.7.如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.8.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣4,3)、B (﹣3,1)、C (﹣1,3).(1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1; ②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2.(2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.9.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.10.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1 B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)11.如图,已知△ABC 和点O .(1)把△ABC 绕点O 顺时针旋转90°得到△A 1B 1C 1,在网格中画出△A 1B 1C 1;(2)用直尺和圆规作△ABC 的边AB ,AC 的垂直平分线,并标出两条垂直平分线的交点P (要求保留作图痕迹,不写作法);指出点P 是△ABC 的内心,外心,还是重心?12.如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A 、B 、C 的坐标分别是A (﹣2,3)、B (﹣1,2)、C (﹣3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径的长度为______;(结果保留π)(3)在y 轴上找一点D ,使DB+DB 1的值最小,并求出D 点坐标.13.如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向上平移3个单位后,得到△A 1B 1C 1,请画出△A 1B 1C 1,并直接写出点A 1的坐标.(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的△A 2B 2C 2,并求点B 所经过的路径长(结果保留x )14.如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.15.如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.16.如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.17.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).(1)把△ABC向右平移2个单位得△A1B1C1,请画出△A1B1C1,并写出点A1的坐标;(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.18.阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).2.3 设计中心对称图案参考答案与试题解析一、填空题1.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有_______种。
增强审美意识。
、在观察、欣赏图案的基础上,会用所学知识分析它们的形成过程。
情境三:利用
造成视觉冲击,提高学生的兴奋点,激发学生的学习欲望,本设计符合配备
、欣赏用圆和线段构造的具有某种含义
对称图案形成的理解。
例:为了美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案。
并且使整个圆形场地是一个中心对称图形。
请画出你的设计方案。
计说明:由圆和线段设计中心对称图案过渡到由圆和等边三等形组成的
、如图是我们熟悉的“七巧板”
的数学,不
)经历对生活中中心对称图案的欣赏、观察、分析过程,加深对中心对称。
3.3设计中心对称图案教案班级姓名学号学习目标:通过中心对称图形的识别和理解,进一步理解中心对称图形的性质,进而设计构画出中心对称图案。
学习难点:中心对称图案的设计教学过程图案欣赏生活中,我们经常见到一些美丽的图案,下列图案有什么特点?生活中,你还见过哪些中心对称图案?举例说明.合作探索交流活动一1. 用6个全等的正方形组成中心对称图案2. 你能用6个全等的正方形再设计几个中心对称图案但不是轴对称图案吗?3.你能用6个全等的正方形设计既是中心对称,又是轴对称的图案吗?合作探索交流1.在计算器上按出两位数“69”,这个电子数字可以组成一个中心对称图案。
你还能写出几个能组成中心对称图案的两位数或三位数?两位数:11,88,96等;三位数:101,111,609,808,888,906等2、如图所示是一个中心对称图形的一半,你能补出另一半吗?3.如果把26个英文大写字母看成图案,那么哪些英文大写字母是中心对称图案有5×5的小正方形组成的图形,去掉中心的一个方格,余下24 格,要求把它分成大小相等、形状相同的四块,请设计一种分法.如图是两张全等的图案,它们完全重合地叠放在一起,现将上面的图案绕点O 顺时针旋转,至少旋转____度后,两张图案可以互相重合?A B C D E F G I J K L M P Q R S T U V W Y Z H N O X如图是两张全等的图案,它们完全重合地叠放在一起,现将上面的图案绕点O顺时针旋转,至少旋转度后,两张图案可以构成中心对称图形?从中你有什么发现?某地板厂要制作一批正六边形的地板砖,要求在地板砖上设计的图案能够把正六边形6等分(例如下图),你能设计出几种方案?在一个3m×4m的长方形地块上,欲开出一部分作花坛,其图案要为中心对称图形,且花坛的面积为长方形面积的一半,图示是两种设计方案,你还能提供两种不同的设计方案吗?活动二“数学实验室”1. 用圆和线段可以构造许多具有鲜明含义的中心对称图案。
初二数学设计中心对称图案试题1.国旗上每个五角星( ).A.是中心对称图形而不是轴对形;B.是轴对称图形而不是中心对称图形;C.既是中心对称图形又是轴对称图形;D.既不是中心对称图形又不是轴对称图形【答案】B【解析】根据中心对称图形与轴对称图形的概念分析即可。
国旗上每个五角星是轴对称图形而不是中心对称图形,故选B.【考点】本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.下列图形中,属于中心对称图形的共有 ( )A.1个B.2个C.3个D.4个【答案】C【解析】根据中心对称图形与轴对称图形的概念依次分析即可。
第一个只是轴对称图形,其它三个既是轴对称图形又是中心对称图形,故选C.【考点】本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.如图,下列分子结构模型平面图中,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个【答案】C【解析】根据中心对称图形与轴对称图形的概念依次分析即可。
第一个只是轴对称图形,其它三个既是轴对称图形又是中心对称图形,故选C.【考点】本题考查的是中心对称图形与轴对称图形点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4.下列各图中,不是中心对称图形的是( )【答案】B【解析】根据中心对称图形与轴对称图形的概念依次分析即可。
3.3设计中心对称图案
班级姓名学号
学习目标:通过中心对称图形的识别和理解,进一步理解中心对称图形的性质,进而设计构画出中心对称图案。
学习难点:中心对称图案的设计
教学过程
图案欣赏
生活中,我们经常见到一些美丽的图案,下列图案有什么特点?
生活中,你还见过哪些中心对称图案?举例说明.
合作探索交流
活动一
1. 用6个全等的正方形组成中心对称图案
2. 你能用6个全等的正方形再设计几个中心对称图案但不是轴对称图案吗?
3.你能用6个全等的正方形设计既是中心对称,又是轴对称的图案吗?
合作探索交流
1.在计算器上按出两位数“69”,这个电子数字可以组成一个中心对称图案。
你还能写出几个能组成中心对称图案的两位数或三位数?
两位数:11,88,96等;三位数:101,111,609,808,888,906等
2、如图所示是一个中心对称图形的一半, 你能补出另一半吗?
3.如果把26个英文大写字母看成图案,那么哪些英文大写字母是中心对称图案
有5×5的小正方形组成的图形,去掉中心的一个方格,余下24 格,要求把它分成大小相等、形状相同的四块,请设计一种分法.
如图是两张全等的图案,它们完全重合地叠放在一起,现将上面的图案绕点O 顺时针旋转,至少旋转____度后,两张图案可以互相重合?
A B C D E F G I J K L M P Q R S T U V W Y Z H N O X
如图是两张全等的图案,它们完全重合地叠放在一起,现将上面的图案绕点O顺时针旋转,至少旋转度后,两张图案可以构成中心对称图形?
从中你有什么发现?
某地板厂要制作一批正六边形的地板砖,要求在地板砖上设计的图案能够把正六边形6等分(例如下图),你能设计出几种方案?
在一个3m×4m的长方形地块上,欲开出一部分作花坛,其图案要为中心对称图形,且花坛的面积为长方形面积的一半,图示是两种设计方案,你还能提供两种不同的设计方案吗?
活动二
“数学实验室”
1. 用圆和线段可以构造许多具有鲜明含义的中心对称图案。
如:
2. 请你也用圆和线段设计一些中心对称图案
请把你的设计的含义与同学交流
大显身手
某居民小区搞绿化,小区的居民们把一块长方形垃圾地清理后,准备建几个花坛。
老张说:花坛应该既有圆的造型又有方的造型;老李说:整个花坛应该既是轴对称图案又是中心对称图案。
你能设计一个让大家都满意的方案吗?试试看:将你设计
的方案画在右面的长方形方框中
如图,是由5个边长为1的小正方形组成的图形,你能剪2刀后,将它拼成一个大正方形吗?请说明理由.
如果一个图形绕着一个定点旋转一个角度能够与原来的图形重合,那么这个图形就叫做旋转对称图形,例如等边三角形,绕着它的中心旋转1200能够与原来图形重合,因而等边三角形是旋转对称图形.
想一想,中心对称图形与旋转对称图形有何关系?
如图所示,旋转对称图形是______,中心对称图形是______.
请你设计一个旋转对称图形,要求旋转300后与自身重合.
小结与思考
设计中心对称图案的关键点:(1)整体构思;(2)具体作图
方法技巧:利用图形的变换设计图案(通过平移,旋转或对称变换)
【课后作业】
班级姓名学号
一、选择题
1 .国旗上每个五角星( ).
A.是中心对称图形而不是轴对形; B.是轴对称图形而不是中心对称图形;
C.既是中心对称图形又是轴对称图形; D.既不是中心对称图形,又不是轴对称图形
2 .下列图形中,属于中心对称图形的共有 ( )
A.1个
B.2个
C.3个
D.4个
3 .如图,下列分子结构模型平面图中,既是轴对称图形又是中心对称图形的个数是
( )
A.1个
B.2个
C.3个
D.4个
4 .如图所示的图形中,既是轴对称图形,又是中心对称图形的是
( ).
5 .下列各图中,不是中心对称图形的是( )
A. B. C. D.
6 .下列图形绕某点旋转后,不能与原来图形重合的是(旋转度数不超过
180°)( ) A.X B.V C.Z D.H
7 .下列图形中,既是轴对称图形,又是中心对称图形的是( )
8 .下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )
A B C D
9 .在设计课上,老师要求同学设计一幅既是轴对称又是中心对称的图案,
下面是四
图
1
(A )
(B ) (C ) (D )
位同学的设计作品,其中不符合...要求的是 ( )
10.某校计划修建一座既是中心对称图形,又是轴对称图形的花坛,•从学生中征集到
的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是
A.正三角形
B.正五边形
C.等腰梯形
D.菱形
二、填空题 11.在你所学过图形中,既是轴对称图形又是中心对称图形的图形为___________(填
一个即可).
12.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处
填上恰当的图形(草图
):
三、解答题
13.如图2,作△ABC 关于点O 的中心对称图形△DEF(可不写作法,但必须保留画图痕
迹).
A
·O
A
B
C
图2
14.下面是三个圆。请按要求在各图中分别添加4个点。使之满足各自要求.
(1)既是中心对称图形。 (2)只是中心对称图形。 (3)只是轴对称图形。 又是轴对称图形. 不是轴对称图形. 不是中心对称图形
.
15.有些图形既是轴对称图形又是中心对称图形,比如正方形.请你画出另外三种有
这些性质的图形(画图工具不根,不写画法). 图一: 图二: 图三:
16.图案设计
认真观察图1的4个图中阴影部分构成的图案,回答下列问题:
(1)请写出这四个图案都具有的两个共同特征.
特征1:_________________________________________________; 特征2:_________________________________________________。
(2)请在图2中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.
图1
图
2
17.在下面的格点图中,每个小正方形的边长均为1个单位,请按下列要求画出图形:
(1)画出图①中阴影部分关于O点的中心对称图形;
(2)画出图②中阴影部分向右平移9个单位后的图形;
.
(3)画出图③中阴影部分关于直线AB的轴对称图形
(图①)(图②)(图③)
18.为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.
提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图
②只能算一种.
①②③④⑤。