自动控制第5章3
- 格式:ppt
- 大小:1.71 MB
- 文档页数:35
自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。
在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。
本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。
1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。
在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。
频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。
2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。
频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。
对数坐标图上,增益通常以分贝(dB)为单位表示。
3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。
相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。
在相频特性图上,频率通常是以对数坐标表示的。
4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。
它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。
5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。
在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。
对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。
6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。
工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。
常见的设计方法包括校正器设计、分频补偿、频率域设计等。
总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。
频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。
第5章频率特性法教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。
求放大系数K 及时间常数T 。
解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。
(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。
自动控制原理第五章1. 频率特性:在正弦信号作用下,系统输出稳态分量与输入复数的比值;其中,比(W)的振幅输出的稳态分量的振幅输入称为振幅频率特性,和φ的差异之间的相位角(W)输出稳态组件和输入相角称为相位频率特性,即(公式)。
2. 频率特性的几何表示幅相频率特性曲线(简称幅相曲线或奈奎斯特曲线或极坐标图):w从0到∞变化时,G (JW)在复平面上的轨迹。
绘制方法:方法1:计算每个W值的幅值A (W)和相位角(W),然后跟踪点并将其连接成光滑曲线;方法二:对每个W值计算U (W)和V (W),然后跟踪点线。
对数频率特性曲线:(简称对数坐标图或伯德图)①对数幅频特性:[公式]②对数相频特性:[公式]③横坐标是频率w,采用对数分度,单位是rad/s;对数幅频特性曲线的纵坐标为对数幅频特性的函数值,采用均匀分度,单位是dB;对数相频特性曲线的纵坐标为相频特性的函数值,采用均匀分度,单位是(°)。
注:采用对数显著优点是将频率特性的幅值乘除变为相加减,简化作图。
3、典型环节的频率特性①比例环节G(s)=K幅相频率特性:G(jw)=K,幅频特性A(w)=K;相频特性φ(w)=0°;曲线为实轴上一点。
对数频率特性:L(w)=20lgK;φ(w)=0°改变K:幅频曲线升高或降低;相频曲线不变②积分环节G(S)= [公式]幅相频率特性:G(jw)= [公式];幅频特性:A(w)= [公式] ;相频特性:-90°对数频率特性:L(w)=20lg [公式] =-20lgw;φ(w)=-90°③微分环节G(S)=S(纯微分)幅相频率特性:G(jw)=jw;幅频特性:A(w)=w;相频特性:φ(w)=90°对数频率特性:L(w)=20lgw;φ(w)=90°④惯性环节G(S)= [公式]幅相频率特性:G(jw)= [公式];A(w)= [公式] ;φ(w)=-arctanTw 【当w=0时,A(0)=1,φ(0)=0°;当w=1/T时,A(1/T)= [公式] ,φ(1/T)=-45°;当w=∞时,A(∞)=0,φ(∞)=-90°】对数频率特性:L(w)=20lg[公式],φ(w)=-arctanTw【[公式]时,L(w)≈20lg1=0,[公式]时,L(w)≈20lg [公式]】⑤振荡环节G(s)=[公式](式中T= [公式] , 0<ζ<1);G(jw)= [公式] 幅相频率特性:A(jw)= [公式];φ(w)=-arctan [公式]【当w=0时,A(0)=1,φ(0)=0°;当w=1/T=wn时,A(1/T)= 1/2ζ,φ(1/T)=-90°;当w=∞时,A(∞)=0,φ(∞)=-180°】【令[公式] =0,有谐振频率[公式] = [公式] ,谐振峰值:[公式]=A( [公式] )= [公式]当[公式]固定,[公式] 越小,[公式]越接近[公式],[公式]越大;当ζ大于[公式] 时,将不发生谐振,即A(w)随着w增大而单调减小】⑥延时环节G(S)= [公式]幅相频率特性:G(jw)=[公式];幅频特性:A(w)=1;相频特性:φ(w)=-57.3τw对数频率特性:L(w)=0;φ(w)=-57.3w4、绘图奈氏曲线制图方法:[公式]①起点:令w→0,则[公式]= [公式]0型系统:始于实轴(K,j0)的点Ⅰ型系统:始于相角为-90°的无穷远处;当w趋于0+时,曲线与虚轴平行Ⅱ型系统:始于相角为-180°的无穷远处;当w趋于0+时,曲线渐进与负实轴平行②终点: [公式] ,n>m。
第五章§5-1 引言§5-2频率特性§5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法§5-5 系统稳定性分析§5-6控制系统的相对稳定性分析第五章 控制系统的频率响应分析[教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。
掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。
本章的难点是Nyquist 稳定性分析。
[主要容]:一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标[重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。
[难点]:时域性能指标与频域性能指标之间的相互转换。
闭环频域性能指标的理解与应用[讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。
准确理解概念,把握各种图形表示法的相互联系。
与时域法进行对比,以加深理解。
§5-1 引言1.时域分析法(特点)1)以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。
它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。
2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。
3) 对工程中普遍存在的高频噪声干扰的研究无能为力。
4) 在定性分析上存在明显的不足。
5) 属于以“点”为工作方式的分析方法。
2.根轨迹法(特点)1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用;2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式;4)为定性分析提供了一种非常好的想象空间和辅助思维界面。
第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。