自动控制第5章3
- 格式:ppt
- 大小:1.71 MB
- 文档页数:35
自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。
在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。
本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。
1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。
在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。
频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。
2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。
频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。
对数坐标图上,增益通常以分贝(dB)为单位表示。
3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。
相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。
在相频特性图上,频率通常是以对数坐标表示的。
4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。
它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。
5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。
在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。
对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。
6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。
工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。
常见的设计方法包括校正器设计、分频补偿、频率域设计等。
总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。
频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。
第5章频率特性法教材习题同步解析一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。
求放大系数K 及时间常数T 。
解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。
(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出537()sin(20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有10()A ω=,()18.43ϕω︒=- 系统的稳态输出10()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下5371()sin( 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为102()cos(263.43)ss c t t ︒=-- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss绘出下列各传递函数对应的幅相频率特性与对数频率特性。
自动控制原理第五章1. 频率特性:在正弦信号作用下,系统输出稳态分量与输入复数的比值;其中,比(W)的振幅输出的稳态分量的振幅输入称为振幅频率特性,和φ的差异之间的相位角(W)输出稳态组件和输入相角称为相位频率特性,即(公式)。
2. 频率特性的几何表示幅相频率特性曲线(简称幅相曲线或奈奎斯特曲线或极坐标图):w从0到∞变化时,G (JW)在复平面上的轨迹。
绘制方法:方法1:计算每个W值的幅值A (W)和相位角(W),然后跟踪点并将其连接成光滑曲线;方法二:对每个W值计算U (W)和V (W),然后跟踪点线。
对数频率特性曲线:(简称对数坐标图或伯德图)①对数幅频特性:[公式]②对数相频特性:[公式]③横坐标是频率w,采用对数分度,单位是rad/s;对数幅频特性曲线的纵坐标为对数幅频特性的函数值,采用均匀分度,单位是dB;对数相频特性曲线的纵坐标为相频特性的函数值,采用均匀分度,单位是(°)。
注:采用对数显著优点是将频率特性的幅值乘除变为相加减,简化作图。
3、典型环节的频率特性①比例环节G(s)=K幅相频率特性:G(jw)=K,幅频特性A(w)=K;相频特性φ(w)=0°;曲线为实轴上一点。
对数频率特性:L(w)=20lgK;φ(w)=0°改变K:幅频曲线升高或降低;相频曲线不变②积分环节G(S)= [公式]幅相频率特性:G(jw)= [公式];幅频特性:A(w)= [公式] ;相频特性:-90°对数频率特性:L(w)=20lg [公式] =-20lgw;φ(w)=-90°③微分环节G(S)=S(纯微分)幅相频率特性:G(jw)=jw;幅频特性:A(w)=w;相频特性:φ(w)=90°对数频率特性:L(w)=20lgw;φ(w)=90°④惯性环节G(S)= [公式]幅相频率特性:G(jw)= [公式];A(w)= [公式] ;φ(w)=-arctanTw 【当w=0时,A(0)=1,φ(0)=0°;当w=1/T时,A(1/T)= [公式] ,φ(1/T)=-45°;当w=∞时,A(∞)=0,φ(∞)=-90°】对数频率特性:L(w)=20lg[公式],φ(w)=-arctanTw【[公式]时,L(w)≈20lg1=0,[公式]时,L(w)≈20lg [公式]】⑤振荡环节G(s)=[公式](式中T= [公式] , 0<ζ<1);G(jw)= [公式] 幅相频率特性:A(jw)= [公式];φ(w)=-arctan [公式]【当w=0时,A(0)=1,φ(0)=0°;当w=1/T=wn时,A(1/T)= 1/2ζ,φ(1/T)=-90°;当w=∞时,A(∞)=0,φ(∞)=-180°】【令[公式] =0,有谐振频率[公式] = [公式] ,谐振峰值:[公式]=A( [公式] )= [公式]当[公式]固定,[公式] 越小,[公式]越接近[公式],[公式]越大;当ζ大于[公式] 时,将不发生谐振,即A(w)随着w增大而单调减小】⑥延时环节G(S)= [公式]幅相频率特性:G(jw)=[公式];幅频特性:A(w)=1;相频特性:φ(w)=-57.3τw对数频率特性:L(w)=0;φ(w)=-57.3w4、绘图奈氏曲线制图方法:[公式]①起点:令w→0,则[公式]= [公式]0型系统:始于实轴(K,j0)的点Ⅰ型系统:始于相角为-90°的无穷远处;当w趋于0+时,曲线与虚轴平行Ⅱ型系统:始于相角为-180°的无穷远处;当w趋于0+时,曲线渐进与负实轴平行②终点: [公式] ,n>m。
第五章§5-1 引言§5-2频率特性§5-3 开环系统的典型环节分解和开环频率特性曲线的绘制§5-4开环和闭环系统Bode图的绘制方法§5-5 系统稳定性分析§5-6控制系统的相对稳定性分析第五章 控制系统的频率响应分析[教学目的]:掌握利用频域法进行系统分析的一般方法 ,为后面的校正及信号与系统分析打下基础。
掌握系统频率特性分析与系统幅角之间的关系,掌握Nyquist 图和Bode 图的绘制方法,根据系统的Nyquist 图和Bode 图分析系统的性质。
本章的难点是Nyquist 稳定性分析。
[主要容]:一、引言 二、 频率特性 三、 开环系统的典型环节分解和开环频率特性曲线的绘制 四、 频率域稳定判据 五、 稳定裕度 六、 闭环系统的频域性能指标[重点]: 频率特性的基本概念,各种频域特性曲线的绘制,Nyquist 稳定判据的应用,及相对稳定裕度的分析,理解三频段的概念与作用。
[难点]:时域性能指标与频域性能指标之间的相互转换。
闭环频域性能指标的理解与应用[讲授方法及技巧]:联系传递函数,微分方程等数学模型,将频率法和时域分析法、根轨迹法相比较,理解和掌握古典控制系统的完整体系。
准确理解概念,把握各种图形表示法的相互联系。
与时域法进行对比,以加深理解。
§5-1 引言1.时域分析法(特点)1)以传递函数和单位阶跃响应为分析基础构成的一整套解析法为主响应曲线图形分析法为辅的分析方法。
它具有直观、明确的物理意义,但就是运算工作量较大,参数的全局特征不明显。
2) 原始依据--数学模型,得来不易,也同实际系统得真实情况有差异,存在较多的近似、假设和忽略,有时对于未知对象,还可能要用经验法估计。
3) 对工程中普遍存在的高频噪声干扰的研究无能为力。
4) 在定性分析上存在明显的不足。
5) 属于以“点”为工作方式的分析方法。
2.根轨迹法(特点)1)根轨迹法弥补了时域分析法中参数全局变化时特征不明显的不足,在研究单一指定参数对整个系统的影响时很有用;2)增加零极点(增加补偿器)时,是一种很好的辅助设计工具; 3)以“线”和“面”为工作方式;4)为定性分析提供了一种非常好的想象空间和辅助思维界面。
第五章 频域分析法目的:①直观,对高频干扰的抑制能力。
对快(高频)、慢(低频)信号的跟踪能力。
②便于系统的分析与设计。
③易于用实验法定传函。
§5.1 频率特性一. 定义)()()()(1n p s p s s s G +⋅⋅⋅+=θ在系统输入端加一个正弦信号:t R t r m ωsin )(⋅=))(()(22ωωωωωj s j s R s R s R m m -+⋅=+⋅=↔ 系统输出:))(()()()()(1ωωωθj s j s R p s p s s s Y m n-+⋅⋅+⋅⋅⋅+=t j t j e A e A t y t y ωω⋅+⋅+=↔-瞬态响应)()(1若系统稳定,即)(s G 的极点全位于s 左半平面,则 0)(l i m 1=∞→t y t稳态响应为:tj tj ss eA eA t y ωω⋅+⋅=-)(而)(21)()(22ωωωωωj G R jj s s R s G A m j s m -⋅-=+⋅+⋅⋅=-=)(21)()(22ωωωωωj G R jj s s R s G A m j s m ⋅=-⋅+⋅⋅== ∴t j m tj m ss e j G R je j G R j t y ωωωω⋅⋅+⋅-⋅-=-)(21)(21)( =])()([21t j t j m e j G e j G R jωωωω-⋅--⋅⋅ 又)(s G 为s 的有理函数,故)()(*ωωj G j G -=,即φωωj e j G j G )()(= φωωj e j G j G -=-)()(∴][)(21)()()(φωφωω+-+--⋅=t j t j mss e e j G R jt y =)sin()(φωω+⋅⋅t j G R m =)sin(φω+⋅t Y m可见:对稳定的线性定常系统,加入一个正弦信号,其稳态响应也是一个同频率的正弦信号。
其幅值是输入正弦信号幅值的)(ωj G 倍,其相移为)(ωφj G ∠=。
3利用传感器制作简单的自动控制装置[学习目标] 1.进一步理解常用传感器的工作原理及应用.2.学会利用传感器制作简单的自动控制装置.一、实验1门窗防盗报警装置1.实验器材和装置干簧管作为传感器,用于感知磁体磁场是否存在.继电器(虚线框部分)作为执行装置.发光二极管LED作为电路正常工作提示,R为发光二极管的限流电阻,起保护作用.蜂鸣器H 作为报警提醒.电路设计如图1.图12.电路工作原理当门窗紧闭时,磁体M靠近干簧管SA,干簧管两簧片被磁化相吸,继电器接通而工作.当门窗开启时,磁体离开干簧管,干簧管失磁断开,继电器被断电,动触点c与常闭触点b接通,蜂鸣器H发声报警.3.实验操作(1)检查干簧管.用磁体直接靠近干簧管,观察干簧管簧片能否正常动作.(2)连接电路.连接电路前,要检查其他元件是否也能正常工作.(3)接通电源后,将磁体靠近和离开干簧管,分别观察实验现象.二、实验2光控开关1.实验器材和装置光敏电阻完成光信号向电信号的转变.晶体三极管将电流进行放大,同时具有完成断路和接通的开关作用.发光二极管LED模仿路灯.电路设计如图2甲.图2为了能够驱动更大功率的负载,需用继电器来启、闭另外的供电电路,如图乙所示.2.电路工作原理(1)光较强时,光敏电阻阻值小,三极管不导通,继电器断路,处于常开状态,小灯泡L不亮.(2)光较弱时,光敏电阻阻值变大,三极管导通,产生较大的集电极电流,点亮发光二极管或驱动继电器吸合,点亮小灯泡L.3.实验操作(1)连接电路,检查无误后,接通电源.(2)用白光照射光敏电阻,调节R1,使发光二极管LED或小灯泡L刚好不发光.(3)减弱光敏电阻的光照强度,当光减弱到某种程度时,发光二极管LED或小灯泡L发光.(4)让光照加强,当光增强到某种程度时,发光二极管LED或小灯泡L熄灭.一、光控开关的应用把蜂鸣器、光敏电阻、干簧管继电器开关、电源连成电路如图3所示,制成光电报警装置.当报警器有光照射时,峰鸣器发声,当没有光照或者光照很弱时,蜂鸣器不发声.①光敏电阻:光敏电阻受光照后,阻值会变小.②干簧管继电器开关:由干簧管和绕在干簧管外的线圈组成.当线圈中有一定的电流时,线圈产生的磁场使密封在干簧管内的两个铁质簧片磁化,两个簧片在磁力作用下由原来的分离状态变成闭合状态.当线圈中没有电流或者电流很微弱时,磁场消失,簧片在弹力的作用下恢复到分离状态.电路已经连接一部分,请将电路完整连接好.图3答案见解析解析电池、光敏电阻与开关及干簧管继电器开关外面接线构成一个回路;而另一组电池、蜂鸣器与干簧管继电器开关里面的两个接线构成又一个回路.当有光照时,光敏电阻阻值变小,使得干簧管继电器开关存在磁场,导致开关接通,最终使得蜂鸣器发声,电路如图所示.二、热敏电阻的应用(2016·全国卷Ⅰ)现要组装一个由热敏电阻控制的报警系统,要求当热敏电阻的温度达到或超过60 ℃时,系统报警.提供的器材有:热敏电阻,报警器(内阻很小,流过的电流超过I c时就会报警),电阻箱(最大阻值为999.9 Ω),直流电源(输出电压为U,内阻不计),滑动变阻器R1(最大阻值为1 000 Ω),滑动变阻器R2(最大阻值为2 000 Ω),单刀双掷开关一个,导线若干.在室温下对系统进行调节,已知U约为18 V,I c约为10 mA;流过报警器的电流超过20 mA 时,报警器可能损坏;该热敏电阻的阻值随温度升高而减小,在60 ℃时阻值为650.0 Ω. (1)完成如图4所示待调节的报警系统原理电路图的连线.图4(2)电路中应选用滑动变阻器________(填“R1”或“R2”).(3)按照下列步骤调节此报警系统:①电路接通前,需将电阻箱调到一固定的阻值,根据实验要求,这一阻值为________Ω;滑动变阻器的滑片应置于________(填“a”或“b”)端附近,不能置于另一端的原因是_____________________________________________________________________________.②将开关向________(填“c”或“d”)端闭合,缓慢移动滑动变阻器的滑片,直至____________________________________________________________________________.(4)保持滑动变阻器滑片的位置不变,将开关向另一端闭合,报警系统即可正常使用.答案(1)见解析图(2)R2(3)①650.0b接通电源后,流过报警器的电流会超过20 mA,报警器可能损坏②c报警器开始报警解析(1)热敏电阻工作温度达到60 ℃时,报警器报警,故需通过调节电阻箱使其电阻为60 ℃时的热敏电阻的阻值,即调节到阻值650.0 Ω,使报警器能正常报警,电路图如图所示.(2)U =18 V ,当通过报警器的电流10 mA ≤I c ≤20 mA ,故电路中总电阻R =U I c,即900 Ω≤R ≤ 1 800 Ω,故滑动变阻器选R 2.(3)热敏电阻阻值为650.0 Ω时,报警器开始报警,模拟热敏电阻的电阻箱阻值也应为650.0 Ω,实验调试时,将开关置于c 端,缓慢调节滑动变阻器,直到报警器开始报警.为防止通过报警器电流过大,造成报警器烧坏,应使滑动变阻器的滑片置于b 端.1.光敏电阻在各种自动化装置中有很多应用.街道路灯自动控制就是应用之一,如图5所示电路为模拟电路,其中A 为一光敏电阻,B 为电磁继电器,C 为电流信号放大器,D 为路灯.请连成正确的电路,达到日出路灯熄、日落路灯亮的效果.图5答案 见解析图解析 当有光照射时,电流经过放大器输出一个较大的电流,驱动电磁继电器吸合,使两个触点断开;当无光照时,电流减小,放大器输出电流减小,电磁继电器释放衔铁,使两个触点闭合,控制路灯电路接通,路灯开始工作,电路如图所示.2.如图6甲所示为一热敏电阻的R-t图像,图乙为用此热敏电阻R和继电器组成的一个简单恒温箱温控电路,继电器线圈的电阻为200 Ω.当线圈中的电流大于或等于20 mA时,继电器的衔铁被吸合.为继电器线圈供电电池的电动势E=8 V,内阻可以不计.图中的“电源”是恒温箱加热电源.图6(1)图甲说明热敏电阻的阻值随着温度的升高而________(选填“增大”“减小”或“不变”).(2)应该把恒温箱内加热器接________(选填“AB”或“CD”)端.(3)如果要使恒温箱内的温度保持100 ℃,滑动变阻器R1接入电路的电阻值为________ Ω.答案(1)减小(2)AB(3)150解析(1)由题图甲可知热敏电阻的阻值随着温度的升高而减小;(2)当温度较低的时候,热敏电阻的阻值较大,电路中的电流较小,此时继电器的衔铁与AB 部分连接,此时是需要加热的,恒温箱内的加热器要工作,所以应该把恒温箱内的加热器接在AB端.(3)当温度达到100 ℃时,加热电路就要断开,此时继电器的衔铁要被吸合,即控制电路的电,解得:R1=150 Ω.流要达到20 mA=0.02 A,根据闭合电路欧姆定律可得:I=ER+R1+R01.测定压力变化的电容式传感器如图1所示,A为固定电极,B为可动电极,组成一个电容大小可变的电容器.可动电极两端固定,当待测压力施加在可动电极上时,可动电极发生形变,从而改变了电容器的电容.现将此电容式传感器连接到如图所示的电路中,当待测压力增大时()图1A.电容器的电容将减小B.电阻R中没有电流C.电阻R中有从a流向b的电流D.电阻R中有从b流向a的电流答案D解析当待测压力增大时,电容器板间距离减小,根据电容的决定式C=εr S4πkd得知,电容C增大,故A错误.电容器板间电压U不变,电容器所带电荷量为Q=CU,C增大,则Q增大,电容器处于充电状态,电路中形成逆时针方向的充电电流,电阻R中有从b流向a的电流,故B、C错误,D正确.2.(多选)电熨斗已经走进千家万户,特别是服装店更离不开它,现在的电熨斗具有自动控制温度功能,可以通过双金属片来控制电路的通断.如图2为电熨斗的结构示意图,下列关于电熨斗的控制电路的说法正确的是()图2A.常温下,电熨斗的上下触点应该是分离的B.图中双金属片上层的膨胀系数大于下层金属片的膨胀系数C.熨烫棉麻衣物时需要设定较高的温度,应旋转调温旋钮,使升降螺钉上升D.熨烫丝绸衣物时需要设定较低的温度,应旋转调温旋钮,使升降螺钉上升答案BD解析常温时,电熨斗的上下触点接触,这样电熨斗接通电源后能进行加热.当温度过高时双金属片膨胀,因上层的热膨胀系数较大,故上层膨胀得厉害,双金属片向下弯曲,弯曲到一定程度后,两触点分离,电路断开,电热丝停止加热;当温度降低后,双金属片恢复原状,重新接通电路加热,故A错误,B正确.熨烫棉麻衣物需要设定较高的温度,也就是要求双金属片弯曲程度较大时,两触点分离,所以应使升降螺钉下降;熨烫丝绸衣物需要设定较低的温度,应使升降螺钉上升,故C错误,D正确.3.(多选)如图3所示是某小区门口利用光敏电阻设计的行人监控装置,R1为光敏电阻、R2为定值电阻,A、B接监控装置.则()图3A.当有人通过而遮住光线时,A、B之间电压升高B.当有人通过而遮住光线时,A、B之间电压降低C.当仅增大R2的阻值时,可增大A、B之间的电压D.当仅减小R2的阻值时,可增大A、B之间的电压答案BC解析R1是光敏电阻,有光照射时,电阻变小,当有人通过而遮住光线时,R1的阻值变大,回路中的电流I减小,A、B间的电压U=IR2减小,故A项错误,B项正确;由闭合电路欧姆定律得:U=E-I(R1+r),当仅增大R2的阻值时,电路中的电流减小,A、B间的电压U 增大,故C项正确;当减小R2的阻值时,电路中的电流增大,A、B间的电压U减小,故D 项错误.4.如图4所示为一温度自动报警器的原理图,在水银温度计的顶端封入一段金属丝,下列说法正确的是()图4A.温度升高至74 ℃时,灯L1亮报警B.温度升高至74 ℃时,灯L2亮报警C.温度升高至78 ℃时,灯L1亮报警D.温度升高至78 ℃时,灯L2亮报警答案D解析当温度低于78 ℃时,线圈中没有电流,此时仅灯L1亮,并不报警;当温度升高到78 ℃时,线圈中有电流,磁体吸引衔铁,灯L2被接通,所以灯L2亮报警.5.(2020·太原市模拟)如图5是磁报警装置中的一部分电路示意图,其中电源电动势为E,内阻为r,R1、R2是定值电阻.R B是磁敏传感器,它的电阻阻值随磁体的出现而减小,c、d接报警器.电路闭合后,当传感器R B所在处出现磁体时,则通过电流表的电流I,c、d两端的电压U将()图5A.I变大,U变小B.I变小,U变大C.I变大,U变大D.I变小,U变小答案A解析由“串反并同”知当传感器处出现磁体,R B减小时,干路电流变大,U变小,电流表示数变大,即I变大,故A对,B、C、D错.6.温度传感器广泛应用于家用电器中,它是利用热敏电阻的阻值随温度变化的特性来工作的.如图6甲所示为某装置中的传感器工作原理图,已知电源的电动势E=9.0 V,内电阻不计;G为灵敏电流表,其电阻R g保持不变,R为热敏电阻,其阻值随温度的变化关系如图乙所示.闭合开关S,当R的温度等于20 ℃时,电流表示数I1=2 mA;当电流表的示数I2=3.6 mA时,热敏电阻的温度是()图6 A.60 ℃B.80 ℃C.100 ℃D.120 ℃答案D解析由题图乙可知,当R的温度等于20 ℃时,热敏电阻的阻值R1=4 kΩ,则由I1=ER1+R g 可得R g=0.5 kΩ;当电流I2=3.6 mA时,由I2=ER2+R g可得R2=2 kΩ,由题图乙可知,此时热敏电阻的温度为120 ℃,故选D.7.(多选)(2019·大庆市实验中学月考)如图7所示的火灾报警装置,R1为热敏电阻,若温度升高,则R1的阻值会急剧减小,从而引起电铃两端电压增加,当电铃两端电压达到一定值时,电铃会响.下列说法正确的是()图7A.要使报警的临界温度升高,可以适当增大电源的电动势B.要使报警的临界温度升高,可以把R2的滑片P适当向下移C.要使报警的临界温度降低,可以适当增大电源的电动势D.要使报警的临界温度降低,可以把R2的滑片P适当向下移答案CD解析要使报警的临界温度升高,R1对应的阻值减小,电路中电流会增大,电铃两端的电压会增大,而当电铃两端电压达到一定值时,电铃会响,要使电铃的电压仍为原来的值,可以适当减小电源的电动势,相反,要使报警的临界温度降低,可以适当增大电源的电动势,故A错误,C正确;要使报警的临界温度升高,根据串联电路的特点可知,可以把R2的滑片P 适当向上移,以减小R2接入电路的阻值,相反,要使报警的临界温度降低,可以把R2的滑片P适当向下移,故B错误,D正确.8.如图8是某研究学习小组模拟街道路灯自动控制电路的电路图,光控开关可采用光敏电阻来控制,光敏电阻的阻值随着光照强度增强而减小,利用直流电源为电磁铁供电,利用照明电源为路灯供电.为达到天亮灯熄、天暗灯亮的效果,路灯应接在________(选填“AB”或“BC”)之间,请用笔画线代替导线,正确连接部分电路元件.图8答案AB见解析图解析该模拟电路原理是:由光敏电阻感知光照强度变化,调节电磁铁中电流的大小,即可调节电磁铁的磁性强弱,吸引或者释放衔铁,从而断开或接通路灯,达到天亮灯熄、天暗灯亮的效果.因为天亮时光照强度大,光敏电阻阻值较小,电路的电流较大,电磁的磁性强,可将衔铁吸下,接通BC,断开AB;又因为天亮需要断开路灯,所以路灯应接在AB之间.电路连线直接将DE两端口与光敏电阻、滑动变阻器、开关以及电源串联即可.电路如图所示.9.传感器担负着信息采集的任务,在自动控制中发挥着重要作用,传感器能够将感受到的物理量(如温度、光、声等)转换成便于测量的量(电学量),例如热敏传感器.某热敏电阻R T阻值随温度变化的图线如图9甲所示,图乙是由该热敏电阻R T作为传感器制作的简单自动报警器线路图.问:图9(1)为了使温度过高时报警器响铃,c应接在__________(选填“a”或“b”)处.(2)若要使启动报警的温度提高些,应将滑动变阻器的滑片P向________(选填“左”或“右”)移动.(3)如果在调试报警器达到最低报警温度时,无论如何调节滑动变阻器的滑片P都不能使报警器工作,且电路连接完好,各电路元件都能处于工作状态,则造成工作电路不能正常工作的原因可能是_____________________________________________________________.答案(1)a(2)左(3)电源提供的电压太小以至于电磁铁磁性太弱或弹簧劲度系数太大,电磁铁的吸引力小于弹力解析(1)由题图甲可知,热敏电阻R T在温度升高时阻值变小,电路中电流变大,电磁铁磁性增强,把右侧衔铁吸引过来,与a接触,故c应接在a处.(2)若要使启动报警的温度提高,则应使电路中电阻更大,滑动变阻器的滑片P向左移动.(3)电源提供的电压太小以至于电磁铁磁性太弱或弹簧劲度系数太大,电磁铁的吸引力小于弹力.10.(2020·梅河口市第五中学高二月考)电饭煲的工作原理如图10所示,可分为两部分,即控制部分:由S1、S2、定值电阻R1和黄灯组成;工作(加热)部分:由发热电阻R3、定值电阻R2和红灯组成.S1是一个磁钢限温开关,手动闭合,当此开关的温度达到居里点(103 ℃)时,自动断开,且不能自动复位,S2是一个金属片自动开关,当温度达到70~80 ℃时,自动断开,低于70 ℃时,自动闭合,红灯、黄灯是指示灯,通过其电流必须较小,所以R1、R2起________作用.R3是发热电阻,接通电源并闭合S1后,黄灯熄而红灯亮,R3发热,当温度达到70~80 ℃时,S2断开,当温度达到103 ℃时饭熟,S1断开,当温度降到70 ℃以下时,S2闭合,电饭煲处于保温状态,由以上描述可知R2________R3(选填“<”“=”或“>”),若用电饭煲烧水时,S1________(选填“会”或“不会”)自动断开.图10答案限流>不会解析通过红灯、黄灯的电流必须较小,根据欧姆定律可知R1、R2起限流作用;R3是发热电阻,要产生很大的热量,所以电流要大一点,而通过R2的电流要小一点,且并联电路电压相等,根据欧姆定律可知R2>R3;若用电饭煲烧水时,温度达不到居里点(103 ℃),S1不会自动断开.。