集成电路芯片引脚图
- 格式:doc
- 大小:782.50 KB
- 文档页数:11
CD4017引脚图:CD4017 是5 位Johnson 计数器,具有10 个译码输出端,14(CL)、15(CR)、13(INH 或EN)输入端。
时钟输入端的斯密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制。
INH 为低电平时,计数器在时钟上升沿计数;反之,计数功能无效。
CR 为高电平时,计数器清零。
Johnson 计数器,提供了快速操作、2 输入译码选通和无毛刺译码输出。
防锁选通,保证了正确的计数顺序。
译码输出一般为低电平,只有在对应时钟周期内保持高电平。
在每10 个时钟输入周期CO 信号完成一次进位,并用作多级计数链的下级脉动时钟。
引出端功能符号:CO(12):进位脉冲输渊;CL:时钟输入端;(RESEST)CR:清除端;INH(EN):禁止端;Q0-Q9 计数脉冲输出端;VDD:正电源;VSS:地。
CD40110的引脚:Ya~Yg:七段码,高电平有效;CPD(CP-):第七脚,减一、脉冲上升沿有效;CPU(CP+):第九脚,加一、脉冲上升沿有效;LE:第六脚,高电平有效,锁存数据;CT(TE):第四脚,高电平有效,禁止计数;CR(R):第五脚,高电平有效,清除计数显示。
数字式频率计LM317:输出电压连续可调的集成稳压电源,输出电压在1.25-37V之间连续可调,输出最大电流可达1.5A。
工作原理:电路原理图见图1。
LM317输出电流为1.5A,输出电压可在1.25-37V之间连续调节,其输出电压由两只外接电阻R1、RP1决定,输出端和调整端之间的电压差为1.25V,这个电压将产生几毫安的电流,经R1、RP1到地,在RP1上分得的电压加到调整端,通过改变RP1就能改变输出电压。
注意,为了得到稳定的输出电压,流经R1的电流小于3.5mA。
LM317在不加散热器时最大功耗为2W,加上200×200×4mm3散热板时其最大功耗可达15W。
VD1为保护二极管,防止稳压器输出端短路而损坏IC,VD2用于防止输入短路而损坏集成电路。
附录B 常用集成电路外部引脚图Z^LSOO 料丽 Wc 聘 t* » ia JI 而冋网KH 丽R1 m74LS(52 z 吃Xkn 4V 4fl 4A n JQ U冋冋丽冋冋〒面和畀1 Wi r?ibL I Q L TT 阡LU I2J L2J LU LU lAJ LZJ 1 1A -Ifl tV 詁 aflJVI“1 21 ® Ml 4J Jj |引IVIB 2Y lA 2B GhO四2输入正“或非”门⑵ 74LS02⑴74LS00四2输入正“与非”门 ⑶74LS04六反相器⑷ 74LS08 四2输入正“与”门74LS04Mtoc fl* S T SArniiiai nil iVJi4A回 rri堆 Pl Pl2 b 1 ALU lU LU Ld 国回 LUUIf JAivikiY&泌⑸74LS10三3输入正“与非”门⑹ 74LS14六反相施密特触发器 丫 A74LS10 T.sec1C IT- K JB W 3T 而 丽 [iJI liil 岡面IT IMOf回 PlUl |Z|口 .4 丨国□ |T.g IB ZAK 2V SMT⑺74LS20双4输入正“与非”门(8) 74LS3274LS20杠呢 )L- T1 M區」LJ LzJ LiJ N lAl bJIT 2a !1fSAav四2输入或门4 lA IT Ifi M冋冋 rni n^i m <30!R1 74LS08 VEADVbr d臼 M 廿 9 H 押 而河豆同而jj .3| J. 1*1 hl in W IB EM *zv cw» K NC a 2A 丹 而57ny 丽両 回 m2 I 」.Jj 丨列回巴316 MC 1C 1O IV G*®wc ri iiLiJ LU Ld LUu u lY u zb A dU2AB CDE FGH IJFl 帀LL UJ _U [± L£J LJTAIB lY2A3fl7T fiNt(9) 74LS47 BCD 到七段译码器/驱动器(有效低、0C 门、15V )(10) 74LS48 BCD (内有上拉电阻)到七段码译码/驱动器7^LS47 ULr.ljfflWHWc I f 0• c d H1门二3IJGur ;) .忙七V :-..----------- w -----------.F yf r n n Pl ' 1(11) 74LS51 2-3 输入“与或非”门(12) 74LS54与或非门(13) 74LS74 双 D 型触发器(带预置和清除、正沿触(14) 74LS76Vae 2Qfl » ICX Jl*B Xi »[i? 哩 iil 卫呼 IT74LS74 ■h -Jri ?訂 g*B7415716J 匸. 5 1 £1(15) 74LS86四2输入异或门四总线缓冲门Y A(16) 74LS125 (带三态输出、C 高时输出关断,即禁VHD阪74LSe646 4Y R A 砂曲3a u avJig. [VI74LS125 v~AVtc < 4A J* X 3* Jlf冋冋.同而帀瓦風引 ⑺ |叫6 C LT HmSCWII & A <ihDLJ LJ LJ kJ kJ LJ LJ LiJ ci.f HbVHt ml b JI atafiJ JJ H. IN .'I I^J .^J 10( IH lOA ij心K PA XLR双JK 触发器(带预置和清除、负沿触发)1* 1Q 1O GhP » M 203」(17) 74LS138 3 线-8线译码器(多路转换器)(18) 74LS148 8线-3线八进制编码器阿T S7冋T1 TJ M 面洞[i?rfi IQ rftH.J5J■J ij :J.■74LS13e)■1n"1*S l<Jl >. [«.T■T■c OZA ^ZB Gl tT□TOVB eo C5 3 7 \ 0 M叵西I有回匝问74LS14S出a -込.序”q-F ,咅许S0丨引1= Ml ElH At 0X3(19) 74LS151 8 选1数据选择器(多路转换器)(20) 74LS153 4(多路转换器)选1数据选择器(21) 74LS160 同步4位计数器(十进制,直接清除)(22) 74LS161 4位计数器(二进制,直接清除)同步ViJU co OA « oc flO FTJwlFS [171 ;ia [ijl (1? [wlID叵、74LS160/ 卫乍KfhF臨K I 亠Tib, . i 'S rFJf ]LIJ PfOJ? cutLil lU' LU ir LU LtA & c a Efr(23) 74LS194 4 位双向通用移位寄存器(24) CD4060B 二进制计数器和振荡器(分频器,14级进位)oc CD cu< £1 別両冋阪同而冋m«:« QI Qt KSFT er nu fBT冋岡冋向冋冋冋R174LSW4H.理 3 Ltl ⑸ LU 回aR SR A B C 0 a ONO oil QU 414 qe 05 (F CK I»(11VP ■»Y£ U) lA d « V iri IStIf 同同冋同冋rmnnrri(29)七段显示数码管(示意图)(25) NE555多谐振荡器(26)A741运算放大器TED HR mr cn冋m n R]H ; ™ (JtT HL2 Rirn Ri R]NE555TH Uf kJ L JtMl CLI tttLJ U U bJULl 止-祐i(27) ADC0804 八位模/数转换器 (28) DAC0832八位数/模转换器m CLU nm w bu n nn* ns同冋PI 冋岡同冋両IU 回na丽 u pa u pT rnmi T *诣 何同冋丽 网网网 mLJbJkJHkJtdliJkJkJH ?! E Iff cuiiK TH! uiEt IHL tana itnf/a HHLJLiJUJLiJUIIiJLJLLfMl^ 縣 Wi 4ew n K n »He "xm附录C常用门逻辑符号对照表。
74LS192引脚图引言在数字电子技术中,集成电路(IC)扮演着至关重要的角色。
它们通过集成了许多电子元件来实现各种电子功能。
其中,74LS192是一款常用的集成电路,广泛应用于数码逻辑设计中。
本文档将介绍74LS192集成电路的引脚图及其功能。
74LS192简介74LS192是一款四位可编程二进制同步计数器,它可以在特定时钟脉冲的控制下进行计数。
具体来说,它可以以二进制(BCD)或二进制(Binary)模式计数。
该芯片还具有清零、预设、加载和递增/递减计数的能力。
通过正确配置其引脚连接,我们可以实现各种计数需求。
74LS192引脚图下面是74LS192集成电路的引脚图:Vcc ─┐│┌────────┐ ┌────────┐ ┌────────┐ ┌─┴─┐│ CP │ │ MR │ │ PL │ │ PE ││ (6) │ │ (7) │ │ (8) │ │ (10)│└──┬─────┘ └──┬─────┘ └──┬─────┘ └──┬──┘│ │ │ ││ │ │ │┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ▼ ▲│ D │ │ C │ │ B │ ▼ ▲│ (5) │ │ (4) │ │ (3) │ │ │└───┬┘ └───┬┘ └───┬─┘ ┌───┘ └───┐│ BI/RBO │ BCD1 │ │ BCD0 ││ (9) │ (14) │ │ (13) ││ │ │ │ │┌───┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐│ G │ │ F │ │ E │ │ D │ │ C ││ (16) │ │ (15) │ │ (1) │ │ (2) │ │ (12)│└─┬───┘ └─┬───┘ └─┬─┘ └───┬─┘ └───┬─┘│ Vdd │ CARRY/BORROW │ LATCH CLOCK└───────────────┴──────────────┴───────────┘ CLOCK上述引脚图基于74LS192的DIP(双行直插式)封装。
TL082是一通用的J-FET双运算放大器。
其特点是:●较低的办入偏置电压和偏置电流;●输出设有短路保护电路;●输入级具有较高的输入阻抗;●内建频率补偿电路;●较高的压摆率:16V/us(典型值);●最大工作电压:Vccmax=+/-18V.TL082典型应用电路LM324LM324引脚图简介:LM324系列器件为价格便宜的带有真差动输入的四运算放大器。
与单电源应用场合的标准运算放大器相比,它们有一些显著优点。
该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。
共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2。
参数描述:运放类型:低功率放大器数目:4 带宽:1.2MHz 针脚数:14 工作温度范围:0°C to +70°C 封装类型:SOIC 3dB带宽增益乘积:1.2MHz 变化斜率:0.5V/μs 器件标号:324 器件标记:LM324AD 增益带宽:1.2MHz 工作温度最低:0°C 工作温度最高:70°C 放大器类型:低功耗温度范围:商用电源电压最大:32V 电源电压最小:3V 芯片标号:324 表面安装器件:表面安装输入偏移电压最大:7mV 运放特点:高增益频率补偿运算逻辑功能号:324 额定电源电压, +:15V LM324的特点: 1.短路保护输出 2.真差动输入级 3.可单电源工作:3V-32V 4.低偏置电流:最大100nA 5.每封装含四个运算放大器。
74LS192引脚图管脚及功能表在74LS192引脚图中,该集成电路具有16个引脚,每个引脚都具有独特的功能和作用。
下面将逐一介绍每个引脚的功能及表达方式。
引脚1:CPD(Clock Disable)该引脚用于时钟禁用。
当CPD引脚被拉低时,时钟信号将被禁用,进而停止计数操作。
引脚2和3:D0和D1(Data Inputs)这两个引脚是数据输入引脚,用于输入要被计数的二进制数值。
它们连接到外部电路或其他集成电路以提供输入数据。
引脚4:D2(Data Input)D2引脚也是一个数据输入引脚,用于输入二进制数的第三位。
同样,它连接到外部电路或其他集成电路以提供输入数据。
引脚5:D3(Data Input)D3引脚是数据的第四位输入引脚,用于输入要被计数的二进制数值。
引脚6:RCOA(Ripple Carry Output A)该引脚是一个进位输出引脚,用于在级联连接的多个计数器之间传递进位信号。
引脚7:RCOB(Ripple Carry Output B)RCOB引脚是另一个进位输出引脚,同样用于级联连接的计数器中传递进位信号。
引脚8:RCI(Ripple Carry Input)RCI引脚是一个进位输入引脚,用于接收来自上一个计数器的进位信号。
引脚9:QA(Output A)QA引脚是一个二进制输出引脚,用于输出计数器的第一位二进制数据。
引脚10:QB(Output B)QB引脚是输出引脚,用于输出计数器的第二位二进制数据。
引脚11:QC(Output C)QC引脚是输出引脚,用于输出计数器的第三位二进制数据。
引脚12:QD(Output D)QD引脚是输出引脚,用于输出计数器的第四位二进制数据。
引脚13:GND(Ground)GND引脚是电路接地引脚,用于提供电路的零电位。
引脚14:VCC(Positive Power Supply)VCC引脚是正电源引脚,用于提供集成电路所需的正电压。
引脚15:CP1(Clock Pulse 1)CP1引脚是时钟脉冲1引脚,用于控制计数器的时钟信号。
ICL7107电路图ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。
1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。
也可以把芯片的缺口朝左放置,左下角也就是第一脚了。
许多厂家会在第一脚旁边打上一个小圆点作为标记。
知道了第一脚之后,按照反时针方向去走,依次是第 2 至第40 引脚。
(1 脚与40 脚遥遥相对)。
2.牢记关键点的电压:芯片第一脚是供电,正确电压是DC5V 。
第36 脚是基准电压,正确数值是100mV,第26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。
芯片第31 引脚是信号输入引脚,可以输入±199.9mV 的电压。
在一开始,可以把它接地,造成“0”信号输入,以方便测试。
3.注意芯片27,28,29 引脚的元件数值,它们是0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。
芯片的33 和34 脚接的104 电容也不能使用磁片电容。
4.注意接地引脚:芯片的电源地是21 脚,模拟地是32 脚,信号地是30 脚,基准地是35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或35 脚就可能不接地而是按照需要接到其他电压上。
--本文不讨论特殊要求应用。
5.负电压产生电路:负电压电源可以从电路外部直接使用7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个+5V 供电就可以解决问题。
比较常用的方法是利用ICL7660 或者NE555 等电路来得到,这样需要增加硬件成本。
我们常用一只NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片38 脚的振荡信号串接一个20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。
555芯片引脚图及引脚描述555的8脚是集成电路工作电压输入端,电压为5〜18V ,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。
1脚为地。
2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。
当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平;2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc∕3 , 此时3脚输出高电平。
6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3 ,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc∕3时才有效。
3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。
4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。
5脚是控制端。
7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。
NE555V CCφ8TRIGGERCOMP⅞ R =6K5KCONTROLVOLTAGETHRESHOLDo—6 IDISCHARGE IO=7CoMRRESET 4555集成电路管脚,工作原理,特点及典型应用电路介绍1 555集成电路的框图及工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
怎样判断l7805cv引脚各端口与引脚是否烧坏
三端稳压集成电路lm7805。
电子产品中,常见的三端稳压集成电路有正电压输出的lm78 ***系列和负电压输出的lm79***系列。
顾名思义,三端IC是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端。
它的样子象是普通的三极管,TO- 220 的标准封装,也有lm9013样子的TO-92封装。
l7805 引脚图
l7805 是我们最常用到的稳压芯片了,他的使用方便,用很简单的电路即可以输入一个直流稳压电源,他的输出电压恰好为5v,刚好是51系列单片机运行所需的电压,他有很多的系列如ka7805,ads7805,cw7805 等,性能有微小的差别,用的最多的还是Im7805,下面我简单的介绍一下他的3 个引脚以及用它来构成的稳压电路的资料。
7805 引脚图。
TL494引脚功能图及参数TL494工作原理简述TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。
死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。
当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。
脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。
两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。
误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。
当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。
若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。
如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。
输出变压器一个反馈绕组及二极管提供反馈电压。
在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。
这种状态下,输出的脉冲频率将等于振荡器的频率。
TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。
TL494内部电路方框图。
7555芯⽚图⽚⾸先明确你是要找元理图符号库还是元件封装库!下⾯是封装库的载⼊⽅法:1.在PCB编辑器管理窗⼝点击Browse栏下拉菜单中选择Libraries选项!2.在点击ADD/Remove...载⼊原理图封装库!3.找到安装⽬录...\Design Explorer 99 SE\Library\PCB\Generic Footprints\...实验9 555定时器⼀、实验⽬的1. 熟悉 555 定时器的组成和⼯作原理。
2. 掌握 555 定时器产⽣脉冲和对脉冲进⾏整形的电路。
⼆、实验原理1. 555 定时器555 定时器是⼀种模拟和数字功能相结合的中规模集成器件。
⼀般⽤双极性⼯艺制作的称为 555,⽤ CMOS ⼯艺制作的称为7555,除单定时器外,还有对应的双定时器 556/7556。
555 定时器的电源电压范围宽,可在 4.5V~16V ⼯作,7555 可在3~18V ⼯作,输出驱动电流约为 200mA,因⽽其输出可与 TTL、CMOS 或者模拟电路电平兼容。
555 定时器成本低,性能可靠,只需要外接⼏个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产⽣与变换电路。
它也常作为定时器⼴泛应⽤于仪器仪表、家⽤电器、电⼦测量及⾃动控制等⽅⾯。
555 定时器的内部电路框图和外引脚排列图分别如图 2.9.1 和图 2.9.2 所⽰。
它内部包括两个电压⽐较器,三个等值串联电阻,⼀个 RS 触发器,⼀个放电管 T 及功率输出级。
它提供两个基准电压VCC /3 和2VCC /3,它的功能表如表 2.9.1 所⽰。
555 定时器的功能主要由两个⽐较器决定。
两个⽐较器的输出电压控制 RS 触发器和放电管的状态。
在电源与地之间加上电压,当 5 脚悬空时,则电压⽐较器 A1 的反相输⼊端的电压为2VCC /3,A2 的同相输⼊端的电压为VCC /3。
若触发输⼊端 TR 的电压⼩于VCC /3,则⽐较器 A2 的输出为 1,可使 RS 触发器置 1,使输出端 OUT=1。
集成电路课程设计----含2个2-4线译码器的74HC139芯片一.目的与任务本课程设计是《集成电路分析与设计》的实践课程,其主要目的是为了在了解了集成电路的基本结构的基础上进一步的学习集成电路的设计,本次设计通过对TANNER TOOLS PRO工具的使用让我们能够从简单入手到能设计一个完整的芯片,。
并进行电路仿真对比。
二.课程设计题目、内容及要求2.1 设计题目1.器件名称:一个3-8译码器的74HC138芯片;2.要求的电路性能指标:(1)可驱动10个LSTTL电路(相当于15pF电容负载);(2)输出高电平时,︱IoH︱≤20uA,Voh,min=4.4V;(3)输出低电平时,︱IoL︱≤4mA,Vol,max=0.4V;(4)输出级充放电时间tr = tf,tpd<25ns;(5)工作电源5V,常温工作,工作频率fwork =30MHz,总功耗Pmax=150mW。
2.2 设计内容(1)功能分析及逻辑设计(2)电路设计(3)估算功耗与延时(4)电路模拟与仿真(5)版图设计(全手工、层次化设计)(6)版图检查:DRC与LVS(7)后仿真(选做)(8)版图数据提交2.3 设计要求(1)独立完成设计74HC138 芯片的全过程;(2)设计时使用的工艺及设计规则:MOSIS:mamin08;(3)根据所用的工艺,选取合理的模型库;(4)选用以lambda(λ)为单位的设计规则;(5)全手工、层次化设计版图;(6)达到指导书提出的设计指标要求。
三、74HC139电路简介3.1 通用74HC139芯片的引脚图74HC139芯片包含两个2-4译码器,它的通用引脚图入图1其中,(1A0、1A1)和(2A0、2A1)分别为两个译码器的地址输入端,而1E (以下取名为Csa )和2E (以下取名为Csb )分别为两个译码器的使能端(低电平有效),1Y0~1Y7和2Y0~2Y7为译码器的数据输出端。
3.2通用74HC139的真值表 通用74HC139的真值表如表一3.3通用74HC139的逻辑表达式根据表一,我们可以很容易得到一下的逻辑表达式 Y0=E+A1+A0=01A A E ∙∙ Y1=E+A1+0A =01A A E ∙∙ Y2=E+1A +A0=01A A E ∙∙ Y3=E+1A +0A =01A A E ∙∙3.4通用74HC139的逻辑图,如图2所示图二所示为通用74HC139芯片的其中一个译码器的逻辑图。
芯片引脚图及引脚描述文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]555芯片引脚图及引脚描述555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。
1脚为地。
2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。
当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平;2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。
6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。
3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。
4脚是复位端,当4脚电位小于时,不管2、6脚状态如何,输出端3脚都输出低电平。
5脚是控制端。
7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。
555集成电路管脚,工作原理,特点及典型应用电路介绍.1 555集成电路的框图及工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。
第2章紧凑型荧光灯控制驱动ICP=C5×V DC2×f0/2(W) 假如C5=1nF、V DC=310V、f0=50kHz,可以算出P≈2.4W。
对于FAN7710来说,这样大的功耗,如果不采取预防措施,IC有可能损坏,而且在容性负载下的硬开关状态,还会引起较大的电磁干扰。
FAN7710遇到这种情况会减小C PH上的电压,以增加死区时间。
如果V CPH电压降到2.6V以下,仍达不到ZVS要求,FAN7710将自动关断,以免IC损坏。
要重新启动IC,必须将V DD电压降到关闭门限以下,使内部的锁存器复位,然后再提高V DD电压才行。
另外,FAN7710能检测IC的结温,如其温度超过160˚C,FAN7710内部的热关断线路会自动让IC停止工作。
通过上述分析可以看出,FAN7710比UBA2024的保护功能更多、更强,驱动能力更大,可以用来做20W以下的荧光灯,而无须外接半桥功率管。
如采用贴片元件,并用贴片机、回流焊等工艺,可以大大简化紧凑型荧光灯的装配工艺,并提高紧凑型荧光灯的质量水平。
在下一节将要介绍IR2520D,它的驱动功率较大,可以用在25~30W的节能灯或电子镇流器中,不过它需要外接半桥功率开关管,这是它不及FAN7710的地方。
2.4 自振荡镇流器控制器IR2520D美国国际整流器公司(IR公司)新近推出了一种适用于电子镇流器的控制器芯片IR2520D。
它可以装在紧凑型荧光灯中,也可以装在小型电子镇流器里,用来驱动管形荧光灯或紧凑型荧光灯。
它集中了预热、触发、驱动灯管,并使之正常工作所必需的一切功能。
另外,它还有异常状态保护功能,如灯管异常、灯管故障保护、电源电压低保护等。
其电路结构紧凑,所用外围元器件数目不多,IC仅有8脚,占面积小,有双列直插及表面贴装2种封装形式。
它比前面介绍的UBA2024、FAN7710的驱动能力和保护能力更强。
这种产品主要用来驱动18~30W的荧光灯管,管形可以是直管、环形、螺旋形或紧凑型。