低热值气体燃料包括高炉煤气的利用
- 格式:pdf
- 大小:237.53 KB
- 文档页数:3
高炉煤气的热值摘要:一、高炉煤气的概述二、高炉煤气的成分及发热量三、如何计算高炉煤气的发热量四、高炉煤气的热值范围五、结论正文:一、高炉煤气的概述高炉煤气是炼铁过程中产生的副产品,主要成分包括一氧化碳(CO)、二氧化碳(CO2)、氮气(N2)、氢气(H2)、甲烷(CH4)等。
在这些成分中,一氧化碳、氢气和甲烷是可燃的,它们的含量决定了高炉煤气的发热量。
二、高炉煤气的成分及发热量高炉煤气的发热量主要由一氧化碳、氢气和甲烷的含量决定。
其中,一氧化碳的热值为390,000 kJ/m3和9.2 kJ/kg;氢气的热值为142,000 kJ/m3和2.8 kJ/kg;甲烷的热值为55,500 kJ/m3和1.8 kJ/kg。
高炉煤气中还包含其他气体,如氮气、二氧化碳、氧气和硫化氢等,它们的发热量较低。
三、如何计算高炉煤气的发热量要计算高炉煤气的发热量,需要知道煤气中各组分的含量,然后根据各组分的热值和含量计算出发热量。
发热量的计算公式为:发热量= (一氧化碳含量×一氧化碳热值+ 氢气含量×氢气热值+ 甲烷含量×甲烷热值)×1000 -其他气体发热量。
在计算过程中,要注意是将含量换算为重量百分数还是体积百分数,以及是否需要考虑摩尔百分数。
此外,热量单位有千焦尔(kJ)和千卡(kcal),需要进行换算。
四、高炉煤气的热值范围高炉煤气的热值通常较低,一般在2900 kJ/m3到4000 kJ/m3之间。
具体热值会受到生产工艺和原料成分的影响,不同厂家和地区的高炉煤气热值可能会有所差异。
五、结论高炉煤气是一种低热值煤气,其发热量主要由一氧化碳、氢气和甲烷的含量决定。
计算高炉煤气发热量需要知道煤气中各组分的含量,并根据各组分的热值和含量进行计算。
高炉煤气放散简介一、概述在冶金企业钢铁公司炼铁是钢厂生产的第一步,目前,我国有400m³,1000m³,2000m³等炼铁高炉,在炼铁副产品高炉煤气,供给炼铁、炼钢、砸钢、焦化、烧结等使用,当高炉煤气供大于求时,高炉煤气管网压力,会骤然上升,此时必须对高炉煤气管网进行放散,并点燃,所以高炉煤气放散时,煤气系统的重要设施,确保煤气系统压力稳定,安全。
二、高卢煤气放散点火装置工艺简介:①高炉煤气属于低热值煤气,其热值在700-800大卡,直接点火比较困难,一般使用长明灯,点火在放散流量大时,还要进行伴烧,确保放散燃烧的稳定。
②高炉煤气点火方式:a、以高热值燃气如天然气、乙炔气、丙烷气、焦炉煤气等作为点火介质。
b、为节约高热值煤气的使用西安嘉华热工设备有限公司开发研制了等离子点火器进行点火。
c、使用催化剂降低高炉煤气反应的活化能激发可燃气体分子的碰撞,促进氧化反应进行,使用高炉煤气进行催化点火伴烧。
③高炉煤气点火过程:在高炉煤气放散管顶部的火炬燃烧器,均匀布置量至4个长明灯点火器,无论风向如何,均能有效点燃放散的高炉煤气,其组成为高能点火器、高温高压点火电缆,感热式热电偶、火焰探测器、动态阻火器、防风罩等组成的高炉煤气放散点火燃烧器,既能有效的点燃高炉煤气,又能保证其在大风及雨雪等恶劣天气情况下稳定燃烧,又能将点火成败反馈至地面就地控制柜及中控室DCS上位机系统使火炬运行情况一目了然。
三、高炉煤气放散防回火装置:当放散接近预设值压力下线时,放散气体流速减慢及管网压力下降时,易发生回火现象,西安嘉华热工设备有限公司开发研制了一套PLC控制软件,通过压力及火焰监测系统准确的开启氮气吹扫功能并且在火炬燃烧器内部设有动态流体阻火器双重保护,有效的阻止了回火现象的产生。
西安嘉华热工设备有限公司在多年的实践中总结并开发出适合不同工况条件下的高炉煤气放散自动点火装置。
高炉煤气发电技术发表时间:2019-01-16T14:36:47.303Z 来源:《电力设备》2018年第26期作者:郭振华[导读] 摘要:节能减排是钢铁工业发展过程中面临的重大战略性任务。
(河南济源钢铁集团有限公司河南省济源市 459000)摘要:节能减排是钢铁工业发展过程中面临的重大战略性任务。
“十二五”期间,钢铁工业面临节能减排任务更加艰巨,法律法规要求更加严格,钢铁生产的环保成本将进一步加大,钢铁生产低碳化趋势不可逆转。
如何挖掘节能潜力、降低能耗和产品成本、取得较好的经济效益,已成为各钢铁企业的当务之急。
为此,某钢铁企业把节能减排作为调整优化结构、转变钢铁生产发展方式的突破口,大力采用节能减排先进工艺技术和节能措施,提出建设本工程,用以降低吨钢成本,节约能源和保护环境,增强企业的市场竞争力,为企业的可持续发展注入新的活力,使企业的发展建立在节约能源和保护环境的基础上,真正实现协调和可持续发展。
关键词:高炉煤气;钢铁厂;发电;节能减排1高温超高压煤气发电技术钢铁企业生产过程中会产生大量废烟气、废气(汽)、废液、废渣,这些都是重要的二次能源,可以再次被利用。
煤气发电技术可以充分利用富余的煤气发电使其变废为宝,化害为利,既获得了经济效益,又减少煤气放散造成的环境污染,符合国家节能减排的产业政策。
煤气发电技术主要是通过燃气锅炉燃烧厂区富余的煤气产生蒸汽,通过对蒸汽参数进行调节优化,将蒸汽供入蒸汽轮机发电。
目前,高温超高压煤气发电是一种效率高、技术成熟的钢厂余能利用方式,通过进一步提高蒸汽初参数和增加一次中间再热,尽可能提高机组的热效率。
2工艺系统2.1煤气系统煤气系统分高炉煤气输、配送系统。
转炉煤气经加压机加压后在高炉煤气总管道上配送进入高炉煤气管母管,混合煤气由总母管送至锅炉尾部,通过两条分支母管输送到锅炉炉膛两侧,再由设在锅炉四角的4根分支总管,分别配送给8个燃烧喷嘴,供入炉膛燃烧。
煤气总母管设有煤气专用液动式眼镜阀、电动硬密封蝶阀和电动快速切断阀,以保证锅炉在检修或事故时煤气的完全隔断和快速隔离,另外管道阀门后设有手孔、放散管、氮气吹扫接口管及流量装置;在分支总管上设有电动硬密封蝶阀和电动快速切断阀;在进燃烧器前的配送管上设调节阀和手动蝶阀,以调整煤气给量;在分支总管、分支母管最高点处设放散管和取样管;在锅炉两侧分支母管最低点处设凝水管,将收集的煤气凝水分别引至高炉煤气凝水缸。
钢铁联合企业副产煤气如何科学利用钢铁联合企业(有焦化工序)所用的煤炭在生产过程中会有30%~34%的能量转换为副产煤气,这其中包括高炉煤气、转炉煤气和焦炉煤气。
副产煤气的合理和高效利用,对于企业的节能减排、降低生产成本、改善环境有重大影响。
目前,我国钢铁企业在合理和高效利用副产煤气方面尚有一定的潜力,需要进行科学分析,通过精细化管理,优化回收利用,这样可以提升企业的市场竞争力,实现绿色生产。
钢铁工业副产煤气一览高炉煤气。
高炉煤气是高炉炼铁生产过程的副产品,其产量很大,同时产量波动也大,一般吨铁高炉煤气产量为1400m3~2000m3,高炉煤气产量主要与高炉炼铁的燃料比有关,燃料比越高,产生的高炉煤气量亦越大。
虽然高炉煤气产量大,但是其热值较低,一般为3340kJ/m3~4180kJ/m3,这是由于高炉煤气中N2含量很高,而CO的含量仅占到24%~30%,因此高炉煤气很难充分利用。
随着节能减排工作的进展,高炉炼铁要求尽可能降低燃料比,减少高炉煤气的产量。
高炉煤气除了高炉自身烧热风炉使用一部分外(30%~45%,有自预热小热风炉的消耗煤气多),其余的净煤气经管道输送给钢铁厂其他用户使用,一般用于焦炉加热,烧结机点火,炼钢的在线、离线烤包器,轧钢的加热炉或均热炉等。
由于高炉煤气热值较低,一般企业在使用高炉煤气时,要采用双预热的燃烧技术,这样扩大了高炉煤气使用范围,提高了高炉煤气的使用效果。
焦炉煤气。
焦炉煤气是焦炉炼焦生产过程的副产品,焦炉煤气的产量与配煤和结焦时间有关,一般气煤配比越高,焦炉煤气的产量就越高,生产1t焦炭大约可产焦炉煤气350m3~430m3。
焦炉煤气中H2含量很高,达到55%~60%,因此其热值很高,大约为16000kJ/m3~19000kJ/m3,焦炉煤气是很有经济价值的能源。
焦炉煤气的使用范围比较广泛,主要供焦炉自身加热炼焦煤使用(约20%),轧钢生产高级品种的加热炉、高炉出铁口烘烤、烧结点火、连铸切割、轧钢加热炉等也使用焦炉煤气作燃料,同时焦炉煤气也可以用于提取纯氢、合成甲醇、直接还原炼铁、喷入高炉等。
高炉煤气七大高值利用方法!你知道多少?高炉煤气是钢铁工业中高炉炼铁过程中副产的一种低热值气体燃料,与转炉煤气、焦炉煤气相比,高炉煤气热值低,应用范围小,许多钢铁厂并没有充分利用,甚至大量放散,既浪费了能源,又污染了环境。
本文介绍了7种高炉煤气高值利用的技术方法,以供大家参考!高炉煤气的产生量约为高炉鼓风风量的1.2~1.40倍。
冶炼1吨生铁可产生高炉煤气1500~2000Nm³左右。
高炉煤气发生量主要与鼓风量有关,与富氧和冶炼生铁品种也有关系,喷吹煤粉和烧结矿中的残碳量也会对高炉煤气的产生量有较大影响。
表1、高炉煤气的典型组成因高炉煤气中含CO量在30%以下,造成燃烧速度低、火焰长,因此高炉煤气的理论燃烧温度为1400~1500℃。
高炉煤气中有大量N2和CO2,其主要可燃的成份为CO、H2和CH4(含量很少),故其发热值较低。
一般冶炼制钢铁时,发热值为2850 kJ/m³~3220kJ/m³;冶炼铸造铁时,发热值为3550kJ/m³~4200kJ/m³。
在钢铁工业用能结构中,煤炭约占70%左右,在煤炭的热能转换中有65.88%是以焦炭和煤粉形式参与冶炼生产的,另有34.12%的热能是以可燃气体(包括高炉煤气、转炉煤气、焦炉煤气)形式出现。
可燃气体的热能数值大,合理、科学、充分地利用对钢铁工业节能工作具有积极的作用。
与转炉煤气、焦炉煤气相比,高炉煤气热值低,应用范围小,许多钢铁厂还没有充分利用,甚至大量放散,既浪费了能源,又污染了环境。
为了充分利用富余的高炉煤气,一般情况是在燃煤动力锅炉中掺烧一部分或供小型混合煤气锅炉混烧,回收量都不是很大。
对其进行综合利用,将成为一个重要发展趋势。
下面介绍几种常见且实用的高炉煤气利用技术。
1、高炉热风炉高炉热风炉是目前单一使用高炉煤气应用最广泛的工业炉,高炉热风炉凭借炉内耐火砖砌体热容量大所形成的高温环境,使单一高炉煤气能够稳定燃烧。
钢厂煤气基本知识1、高炉煤气高压鼓风机鼓风,并且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,产生的是二氧化碳和一氧化碳,二氧化碳又和炙热的焦炭产生一氧化碳,一氧化碳在上升的过程中,还原了铁矿石中的铁元素,使之成为生铁,这就是炼铁化学过程。
铁水在炉底暂时存留,定时放出用于直接炼钢或铸锭。
这时候在高炉的炉气中,还有大量的过剩的一氧化碳,这种混和气体,就是高炉煤气。
每炼一吨铁可产生2100-2200m3的高炉煤气。
这种含有可燃一氧化碳的气体,是一种低热值的气体燃料,可以用于冶金企业的自用燃气,如加热热轧的钢锭、预热钢水包等。
也可以供给民用,如果能够加入焦炉煤气,就叫做“混和煤气”,这样就提高了热值。
高炉煤气为炼铁过程中产生的副产品,主要成分为:CO, C02, N2、H2、CH4等,其中可燃成分CO含量约占25%左右,H2、CH4的含量很少,CO2, N2的含量分别占15%,55%,热值仅为3500KJ/ m3左右。
高炉煤气的成分和热值与高炉所用的燃料、所炼生铁的品种及冶炼工艺有关,现代的炼铁生产普遍采用大容积、高风温、高冶炼强度、高喷煤粉量的生产工艺,采用这些先进的生产工艺提高了劳动生产率并降低能耗,但所产的高炉煤气热值更低,增加了利用难度。
高炉煤气中的CO2, N2既不参与燃烧产生热量,也不能助燃,相反,还吸收大量的燃烧过程中产生的热量,导致高炉煤气的理论燃烧温度偏低。
高炉煤气的着火点并不高,似乎不存在着火的障碍,但在实际燃烧过程中,受各种因素的影响,混合气体的温度必须远大于着火点,才能确保燃烧的稳定性。
高炉煤气的理论燃烧温度低,参与燃烧的高炉煤气的量很大,导致混合气体的升温速度很慢,温度不高,燃烧稳定性不好。
燃烧反应能够发生的另一条件是气体分子间能够发生有效碰撞,即拥有足够能量的相互之间能够发生氧化反应的分子间发生的碰撞,大量的C02,N2的存在,减少了分子间发生有效碰撞的几率,宏观上表现为燃烧速度慢,燃烧不稳定。
燃气蒸汽联合循环发电技术的研究与应用摘要:本文以燃气蒸汽联合循环发电机组为例进行介绍,通过企业生产过程中产生的富余焦炉煤气和高炉煤气为燃料,采用先进技术、效率高,实现了将放散的煤气全部回收进行发电,解决了能源浪费和环境污染问题。
关键词:燃气轮机;蒸汽轮机;联合循环;发电技术引言随着能源发电技术的不断发展,人们环保意识的日益增强,燃气发电技术得到了快速的发展。
常规简单循环的燃气发电系统主要是通过空气经过压气机压缩到一定的气压后,然后进入燃烧室与喷入的燃料混合燃烧,形成高温燃气后进入透平膨胀机做功,推动透平转子带着压气机一起旋转,并带动发电机做功,输出电能。
因此当燃气机温度较高时,就会导致热能损失,降低循环的热效率。
一、燃气蒸汽联合循环的意义根据我国当前的用电情况,为了满足社会用电需求及能源消耗增多等情况,对于对节能发电模式的期望越来越高。
为了能同时满足这两方面的需求,热电厂在制定电能生产工艺时,需对传统发电模式进行改造,采用先进的电力生产技术,合理利用煤燃料燃烧生产热能、电能。
联合循环技术的运用对热电厂发电发热有着重要的意义。
1、解决能源问题能源作为社会经济的发展的主要因素,热电厂采用传统发电模式不仅无法获得理想的生产效率,也导致煤燃料资源的浪费。
联合循环技术用于热电厂发电,既能实现“煤的洁净燃烧”,也能提高热电厂的发电效率。
联合循环技术对燃气轮机循环、蒸汽轮机循环进行优化改进,把两者组合到一起构成综合性的热力循环。
不仅科学利用煤燃料发电,也促进了机组运行效率、机组功率的提高。
2、合理利用燃气煤燃料燃烧后产生燃气,若发电厂能充分利用燃气也可将其作为发电的燃料。
对煤燃烧产生的燃气利用率较低,降低了电能生产的产量。
联合循环技术对燃烧锅炉、汽轮机组等设备的连接进行改进,设置了循环控制系统以及时集中燃气加以燃烧,提高了热电厂发电的效率。
如联合循环技术里燃气轮机能充分燃烧气化炉产生的中、低热值煤气,保证了燃气的合理运用。
1、燃料燃烧过程中生产的NOx,按其形成可分为三种:热力型NOx、快速型NOx和燃料型NOx。
2、气体燃料燃烧过程主要生成的是热力型NOx。
3、传统的抑制热力型NOx的燃烧技术有:低氧燃烧法、分段燃烧法、烟气再循环法等。
这三种方法均可理解为偏离化学当量燃烧法,即在局部的燃烧区域中化学当量比不在燃烧反应化学当量比范围,从而抑制NOx的生成。
4、低氧燃烧在工业应用中5种有效的途径:(1)有效地组织炉膛内的气流。
选取合适的助燃空气与燃料气流的喷射速度,合理布局炉膛尺寸与内部结构及合理布置烧嘴位置、数目及燃料喷口与助燃空气喷口距离、喷射角度等。
依靠助燃空气及燃料气高速射流的卷吸效应,使炉内大量燃烧产物回流,稀释燃烧区的含氧体积浓度。
这是实现低氧燃烧的根本途径。
(2)燃料分级燃烧是实现炉内低氧燃烧的辅助措施,也是降低NOx的措施。
先将一小部分燃料(一次燃料)与预热后的高温空气在烧嘴通道内燃烧,消耗掉一部分氧量。
然后,将燃烧后的混合气流高速喷入炉内,卷吸炉内燃烧产物,稀释助燃空气的含氧体积浓度。
值得注意的是,一次燃料所占比例越低,排烟中的NOx浓度越低。
(3)燃用低热值燃料。
低热值气体燃料,如高炉煤气、发生炉煤气、转炉煤气等,发热量低于8360KJ/m3,利用率往往不高。
若采用高效蓄热式换热技术,将助燃空气与低热值气体燃料双预热到高温,仅利用燃料中CO2、N2等气体的稀释作用,就可以实现炉内高温低氧燃烧。
(4)炉外排烟再循环,利用炉外排烟作稀释剂,将引风机输出管与送风机吸入管连接,通过阀门调节吸入烟气量,实现排烟再循环,也是获得低氧燃烧的一条途径。
(5)尽可能采用较低的过剩空气系数。
在保证完全燃烧的前提下,尽可能采用较低的过剩空气系数,就可适当地降低助燃空气的喷射流速,减少炉内燃烧产物的回流比率,减少一次燃料量或减少炉外排烟再循环率等。
5、蓄热室不变情况下,换向周期越短,温度效率和热效率越高。
6、论文研究,排烟温度在120~180间,换向时间10s~30s最佳。
高压鼓风机(罗茨风机)鼓风,并且通过热风炉加热后进入了高炉,这种热风和焦炭助燃,产生的是二氧化碳和一氧化碳,二氧化碳又和炙热的焦炭产生一氧化碳,一氧化碳在上升的过程中,还原了铁矿石中的铁元素,使之成为生铁,这就是炼铁的化学过程。
铁水在炉底暂时存留,定时放出用于直接炼钢或铸锭。
这时候在高炉的炉气中,还有大量的过剩的一氧化碳,这种混和气体,就是“高炉煤气”。
这种含有可燃一氧化碳的气体,是一种低热值的气体燃料,可以用于冶金企业的自用燃气,如加热热轧的钢锭、预热钢水包等。
也可以供给民用,如果能够加入焦炉煤气,就叫做“混和煤气”,这样就提高了热值。
高炉煤气为炼铁过程中产生的副产品,主要成分为:CO, CO2, N2、H2、CH4等,其中可燃成分CO含量约占25%左右,H2、CH4的含量很少,CO2, N2的含量分别占15%,55 %,热值仅为3500KJ/m3左右。
高炉煤气的成分和热值与高炉所用的燃料、所炼生铁的品种及冶炼工艺有关,现代的炼铁生产普遍采用大容积、高风温、高冶炼强度、高喷煤粉量的生产工艺,采用这些先进的生产工艺提高了劳动生产率并降低能耗,但所产的高炉煤气热值更低,增加了利用难度。
高炉煤气中的CO2, N2既不参与燃烧产生热量,也不能助燃,相反,还吸收大量的燃烧过程中产生的热量,导致高炉煤气的理论燃烧温度偏低。
高炉煤气的着火点并不高,似乎不存在着火的障碍,但在实际燃烧过程中,受各种因素的影响,混合气体的温度必须远大于着火点,才能确保燃烧的稳定性。
高炉煤气的理论燃烧温度低,参与燃烧的高炉煤气的量很大,导致混合气体的升温速度很慢,温度不高,燃烧稳定性不好。
燃烧反应能够发生的另一条件是气体分子间能够发生有效碰撞,即拥有足够能量的相互之间能够发生氧化反应的分子间发生的碰撞,大量的CO2,N2的存在,减少了分子间发生有效碰撞的几率,宏观上表现为燃烧速度慢,燃烧不稳定。
高炉煤气中存在大量的CO2, N2,燃烧过程中基本不参与化学反应,几乎等量转移到燃烧产生的烟气中,燃高炉煤气产生的烟气量远多于燃煤。