正弦定理
- 格式:doc
- 大小:179.50 KB
- 文档页数:10
正弦定理的四种证明方法1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得sin sin abAB =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin abAB=sin cC =.1’用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即:在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b解:过C 作CD ⊥AB 交AB 于D ,则cos AD c A =sin sin cos sin tan sin cos BD c A c A CDC C C C C ===sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c Bb AC AD DCc A C C C+==+=+==ab DABCAB CDba推论:sin sin b cB C= 同理可证:sin sin sin a b cA B C==2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为 D.则Rt △ADB中,ABAD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=•.同理,可证 S △ABC =A bc C ab sin 21sin 21=.∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C .由向量的加法原则可得AB CB AC =+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j •=+•)( 由分配律可得AB j CB j AC •=•+.B∴|j |ACCo s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j∴asinC=csinA.∴CcA a sin sin =. A另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得Bb Cc sin sin =.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j 与AB 的夹角为90°-B )∴CcB b A a sin sin sin ==.DC BA C(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j ,则j与AB 的夹角为A -90°,j 与CB 的夹角为90°-C .由AB CB AC=+,得j ·AC+j ·CB =j ·AB , j 即a·Cos(90°-C)=c·Cos(A-90°),∴asinC=csinA.∴CcA a sin sin =另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 夹角为90°+B .同理,可得CcB b sin sin =.∴CcB b simA a sin sin == 4.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R c B C 2sin sin ='=.∴R Cc2sin =.同理,可得R B b R A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===.这就是说,对于任意的三角形,我们得到等式 CcB b A a sin sin sin ==.ACBA。
三角函数正余弦定理公式大全三角函数是数学中的一项重要内容,其常用到的公式有正弦定理和余弦定理。
这两个定理在解决三角形问题时起着非常关键的作用,可以帮助我们求解三角形的各个边长和角度。
下面将详细介绍三角函数的正弦定理和余弦定理的公式及其应用。
1.正弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:sinA / a = sinB / b = sinC / c其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。
正弦定理可以用来求解三角形的边长或角度,只要已知任意两个角或边长即可。
应用1:已知三角形两边和夹角的情况下,可以利用正弦定理求解第三边的长度。
例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。
解:根据正弦定理可得:sin∠BAC / 5 = sin∠ABC / BC将∠BAC=60°代入,可得:sin60° / 5 = sin∠ABC / BC√3 / 2 / 5 = sin∠ABC / BC√3 / 10 = sin∠ABC / BC再将sin∠ABC的值代入,求得BC的值。
2.余弦定理:在任意三角形ABC中,边长分别为a,b,c,对应的角度为A,B,C,则有以下公式成立:c^2 = a^2 + b^2 - 2ab * cosC其中,a,b,c为三角形ABC的边长,A,B,C为对应的角度。
余弦定理可以用来求解三角形的边长或角度,只要已知任意一个角的两边长度即可。
应用2:已知三角形两边和夹角的情况下,可以利用余弦定理求解第三边的长度。
例如:已知三角形ABC中,边AB = 5 cm,边AC = 7 cm,∠BAC = 60°,求边BC的长度。
解:根据余弦定理可得:BC^2 = AB^2 + AC^2 - 2 * AB * AC * cos∠BAC将已知数值代入,可得:BC^2 = 5^2 + 7^2 - 2 * 5 * 7 * cos60°BC^2=25+49-70*0.5BC^2=25+49-35BC^2=39BC=√39求得边BC的长度。
当谈到三角函数的定理时,正弦定理和余弦定理是高中数学中的重要定理。
以下是它们的公式:
1. 正弦定理(Sine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,正弦定理给出了边长和角度之间的关系:
a/sin(A) = b/sin(B) = c/sin(C)
2. 余弦定理(Cosine Rule):
对于任何三角形ABC,其三个角度分别为A、B、C,对应的边长为a、b、c,余弦定理给出了边长和角度之间的关系:
c² = a² + b² - 2ab·cos(C)
b² = a² + c² - 2ac·cos(B)
a² = b² + c² - 2bc·cos(A)
这些定理在解决三角形中的边长、角度关系问题时非常有用。
通过应用正弦定理和余弦定理,可以计算未知边长或角度,以及解决各种涉及三角形的几何问题。
计算正弦定理正弦定理(又称为正弦规则)是三角形中一个重要的几何定理,用于计算三角形的边长和角度。
在计算正弦定理时,我们需要了解三角形的边长和角度的关系,以便求解未知的边长或角度。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C。
根据正弦定理,我们可以得到如下关系:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c为三角形的边长,A、B、C为对应的角度,sin(A)、sin(B)、sin(C)为三角函数的正弦值。
通过正弦定理,我们可以根据已知条件计算出未知的边长或角度。
下面,我们将讨论一些常见的应用场景。
1. 已知两边和夹角,求解第三边若已知三角形两边a和b,以及它们之间的夹角C,我们可以使用正弦定理来计算第三边c。
我们可以将正弦定理稍作变形:sin(C) = c/sin(A)c = sin(C) * a / sin(A)同理,我们也可以通过已知的边和角来计算其他未知边的长度。
2. 已知三边,求解角度若已知三角形的三条边a、b、c,我们可以使用正弦定理来计算角度。
我们可以将正弦定理稍作变形:sin(A) = a/sin(C)A = arcsin(a * sin(C) / c)同理,我们也可以通过已知的边长来计算其他未知角度的大小。
3. 应用实例假设有一个三角形,其中两边分别为5cm和8cm,夹角为60度。
我们可以使用正弦定理来计算第三边的长度。
根据正弦定理的公式:c = sin(C) * a / sin(A)c = sin(60°) * 5cm / sin(A)我们可以通过正弦函数的计算得到sin(60°) ≈ 0.866。
将已知的数据带入公式,我们可以得到:c = 0.866 * 5cm / sin(A)通过进一步计算,我们可以得到第三边的长度。
类似地,我们也可以通过正弦定理计算其他未知边长或角度的数值。
总结:正弦定理是计算三角形边长和角度的重要工具。
正弦定理的概念与余弦定理的概念正弦定理和余弦定理是在三角形中用于计算边长和角度的重要定理。
1. 正弦定理(Sine Rule):正弦定理是用来计算三角形中的边长和角度的关系。
对于一个三角形ABC,正弦定理可以表述为:
a/sinA = b/sinB = c/sinC
其中a、b、c分别表示三角形的边长,A、B、C分别表示对应边的角度。
2. 余弦定理(Cosine Rule):余弦定理是用来计算三角形中的边长和角度的关系。
对于一个三角形ABC,余弦定理可以表述为:
c^2 = a^2 + b^2 - 2abcosC
其中a、b、c分别表示三角形的边长,C表示对应边的角度。
正弦定理和余弦定理都可以在解决三角形问题时使用,它们提供了计算边长和角度的方法,可以帮助我们求解各种三角形相关的问题。
正弦定理定理公式正弦定理(Sine Law)是三角形中常用的一个定理,它揭示了三角形的边与角之间的关系。
正弦定理可以用来求解未知边长或角度的问题,在实际生活中有着广泛的应用。
正弦定理的表述如下:在任意三角形ABC中,设三边分别为a、b、c,对应的角为A、B、C,则有以下等式成立:a/sinA = b/sinB = c/sinC通过正弦定理我们可以得出以下三个推论:推论1:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:sinA/a = sinB/b = sinC/c推论2:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:a/sinA = b/sinB = c/sinC = 2R(其中R为三角形ABC外接圆的半径)推论3:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:sin(A-B) = sinC正弦定理的应用非常广泛,下面我们来看几个实际问题的例子。
例题1:已知三角形ABC中,角A=60°,角B=45°,边AC=8cm,求边BC的长度。
解:根据正弦定理,我们可以得到以下等式:BC/sinB = AC/sinABC/sin45° = 8cm/sin60°BC/(√2/2) = 8cm/(√3/2)BC = 8cm * (√2/2) * 2/√3BC = 8√2/√3 cm所以边BC的长度约为9.24cm。
例题2:已知三角形ABC中,角A=30°,角B=60°,边AC=10cm,求边BC的长度。
解:同样根据正弦定理,我们可以得到以下等式:BC/sinB = AC/sinABC/sin60° = 10cm/sin30°BC/(√3/2) = 10cm/(1/2)BC = 10cm * (√3/2) * 2BC = 10√3 cm所以边BC的长度约为17.32cm。
第3讲 正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <b a ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ).A .30°B .45°C .60°D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3 解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A=2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B ,代入数据解得a =210. 答案255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. [审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2 A2+cos A =0,得1+cos A +cos A =0, 即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系. 【训练3】 在△ABC 中,若a cos A =b cos B =c cos C;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题. 【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.第7讲 正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B 两点的距离为().A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为().A .α>βB .α=βC .α+β=90°D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =AC sin ∠ABC , 所以AB =AC sin 60°sin 15°=32+620(km), 同理,BD =32+620(km). 故B 、D 的距离为32+620km. 考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系.解如图,设CD =x m ,则AE =x -20 m ,tan 60°=CD BD , ∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CD sin ∠CBD , 所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β). 考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =AC sin ∠ABC, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910, ∠ADB =45°,由正弦定理:AB sin ∠BDA =BD sin ∠BAD, 解得BD =922.故BD 的长为922. 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.。
正弦定理的
正弦定理(Sine Theorem)是一个极其重要的几何定理,它可以用来解决一些具有特殊形状的三角形中的角度和边长之间关系的问题。
正弦定理指出:在∆ABC中,∠A的正弦值等于两个对边的比值。
即,sinA=a/c;sinB=b/c;sinC=c/a。
它的形式可以写成:a/sinA=b/sinB=c/sinC=2R,其中R 代表三角形的外接圆半径。
因为正弦值是以角度和相应三角型两边之间的比值刻画的,所以正弦定理同时也告诉我们如何可以通过一个三角形的边长来推断它的内角。
正弦定理可以用来解答一些非三角形的平面几何问题,在几何求解中也可以很有用。
例如,当想要求一个勾股定理的三边的角度时,可以使用正弦定理等式来求解这个问题。
正弦定理也可以用来计算三角形的轨迹和正多边形的各种几何特性。
使用正弦定理,可以将三角形的顶点的坐标作为变量,然后可以得出这三个点应该形成的几何轨迹。
正弦定理也可以用于计算一个正多边形内所有角度的大小,以及求正多边形的重心和重心距离。
正弦定理是求解有关三角形及正多边形的众多问题时不可缺少的重要定理。
总之,正弦定理具有众多强大的功能,它可以帮助我们更好地解决一些具有特殊形状的几何三角形问题,并可以用于计算正多边形的construction。
正弦定理的公式是什么正弦定理的公式是什么sin^2(α/2)=(1-cosα)/2。
在直角三角形中,∠A(非直角)的对边与斜边的比叫做∠A的正弦,故记作sinA,即sinA=∠A的对边/∠A的斜边古代说法,正弦是股与弦的比例。
古代说的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜边。
股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。
正弦是∠α(非直角)的对边与斜边的比值,余弦是∠A(非直角)的邻边与斜边的比值。
勾股弦放到圆里。
弦是圆周上两点连线。
最大的弦是直径。
把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。
余弦定理是什么余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
高中数学正弦定理公式数学正弦定理公式:a/sinA=b/sinB=c/sinC=2R;余弦定理公式:cosA=(b?+c?-a?)/2bc。
正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
一、正弦定理推论公式1、a=2RsinA;b=2RsinB;c=2RsinC。
2、a:b=sinA:sinB;a:c=sinA:sinC;b:c=sinB:sinC;a:b:c=sinA:sinB:sinC。
二、余弦定理推论公式1、cosA=(b^2+c^2-a^2)/2bc;2、cosB=(a^2+c^2-b^2)/2ac;3、cosC=(a^2+b^2-c^2)/2ab。
正弦定理正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。
定理定义在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。
则有:一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。
[3]验证推导证明一做一个边长为a,b,c的三角形,对应角分别是A,B,C。
从角C向c边做垂线,得到一个长度为h的垂线和两个直角三角形。
很明显:和因此:和同理:证明二:外接圆①锐角三角形中如图,作△ABC的外接圆,O为圆心。
连结BO并延长交圆于D,设BD=2R。
根据直径所对圆周角是直角及同弧所对圆周角相等,可得:∠DAB=90°,∠C=∠D。
∴,∴。
同理可证, 。
∴。
②直角三角形中因为BC =a= 2R,可以得到所以可以证明③钝角三角形中线段BD是圆的直径根据圆内接四边形对角互补的性质所以因为BD为外接圆的直径BD = 2R。
根据正弦定义变形可得根据以上的证明方法可以证明得到得到三角形的一条边与其对角的正弦值的比等于外接圆的直径,即证明三:向量若△ABC为锐角三角形,过点A作单位向量j⊥,则j与的夹角为90°-∠A,j与的夹角为90°-∠C.由向量的加法原则可得为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到∴|j| ||Cos90°+|j| || Cos(90°-C)=|j| ||Cos(90°-A).∴asinC=csinA即同理,过点C作与垂直的单位向量j, 则j与的夹角为90°+∠C, j与的夹角为90°+∠B,可得若△ABC为钝角三角形,不妨设A>90°,过点A作与AB垂直的单位向量j, 则j与AC的夹角为∠A-90°,j与CB的夹角为90°+∠B. 同理a·Cos(90°-B)=b·Cos(A-90°),∴asinB=bsinA 即过点C作与垂直的单位向量j, 则j与的夹角为90°+∠C,j 与的夹角为90°+∠B,可得综上,。
第七节正弦定理和余弦定理[知识能否忆起]1.正弦定理 分类 内容定理a sin A =b sin B =csin C=2R (R 是△ABC 外接圆的半径)变形 公式①a =2R sin_A ,b =2R sin_B ,c =2R sin_C ,②sin A ∶sin B ∶sin C =a ∶b ∶c , ③sin A =a 2R ,sin B =b 2R ,sin C =c2R解决的 问题 ①已知两角和任一边,求其他两边和另一角, ②已知两边和其中一边的对角,求另一边的对角2.余弦定理 分类内容定理在△ABC 中,有a 2=b 2+c 2-2bc cos_A ;b 2=a 2+c 2-2ac cos_B ;c 2=a 2+b 2-2ab cos_C 变形 公式 cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab解决的 问题 ①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).[小题能否全取]1.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.2.在△ABC 中,a =3,b =1,c =2,则A 等于( ) A .30° B .45° C .60°D .75°解析:选C ∵cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,又∵0°<A <180°,∴A =60°.3.(教材习题改编)在△ABC 中,若a =18,b =24,A =45°,则此三角形有( ) A .无解B .两解C .一解D .解的个数不确定解析:选B ∵a sin A =bsin B,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.4.(2012·陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________. 解析:由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2. 答案:25.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:设BC =x ,由余弦定理得49=25+x 2-10x cos 120°, 整理得x 2+5x -24=0,即x =3.因此S △ABC =12AB ×BC ×sin B =12×3×5×32=1534.答案:1534(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .(2)在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sinAb sin A <a <ba ≥ba >b解的个数一解两解 一解 一解利用正弦、余弦定理解三角形典题导入[例1] (2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. [自主解答] (1)由b sin A =3a cos B 及正弦定理 a sin A =bsin B,得sin B =3cos B , 所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac . 所以a =3,c =2 3.在本例(2)的条件下,试求角A 的大小. 解:∵a sin A =bsin B, ∴sin A =a sin Bb =3·sinπ33=12.∴A =π6.由题悟法1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.以题试法1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a . (1)求b a;(2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A = 2sin A ,即 sinB (sin 2A +cos 2A )=2sin A . 故sinB = 2sin A ,所以b a= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a 2c .由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.利用正弦、余弦定理判定三角形的形状典题导入[例2] 在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[自主解答] (1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,∵0<A <180°,∴A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34.又sin B +sin C =1, 解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.由题悟法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.以题试法2.(2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A 2,cos 2A ,且m ·n =72.(1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A2,cos 2A ,∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72,∴-2cos 2A +2cos A +3=72,解得cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.与三角形面积有关的问题典题导入[例3] (2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cosC +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[自主解答] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sinA sin C -sinB -sinC =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.由题悟法1.正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2.在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.以题试法3.(2012·江西重点中学联考)在△ABC 中,12cos 2A =cos 2A -cos A .(1)求角A 的大小;(2)若a =3,sin B =2sin C ,求S △ABC .解:(1)由已知得12(2cos 2A -1)=cos 2A -cos A ,则cos A =12.因为0<A <π,所以A =π3.(2)由b sin B =c sin C ,可得sin B sin C =bc=2,即b =2c .所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,b =23,所以S △ABC =12bc sin A =12×23×3×32=332.1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C a <b ⇔A <B ⇔cos A >cos B .2.(2012·泉州模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若A =π3,b =1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3解析:选D 由已知得12bc sin A =12×1×c ×sin π3=32,解得c =2,则由余弦定理可得a 2=4+1-2×2×1×cos π3=3⇒a = 3.3.(2013·“江南十校”联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan A tan B =2cb,则C =( ) A .30°B .45°C .45°或135°D .60°解析:选B 由1+tan A tan B =2cb 和正弦定理得cos A sin B +sin A cos B =2sin C cos A , 即sin C =2sin C cos A , 所以cos A =12,则A =60°.由正弦定理得23sin A =22sin C ,则sin C =22, 又c <a ,则C <60°,故C =45°.4.(2012·陕西高考)在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12D .-12解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.5.(2012·上海高考)在△ABC 中,若sin 2 A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解析:选C 由正弦定理得a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以C 是钝角,故△ABC 是钝角三角形.6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________.解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0, ∴sin A =12,∴A =30°或A =150°.答案:30°或150°7.在△ABC 中,若a =3,b =3,A =π3,则C 的大小为________.解析:由正弦定理可知sin B =b sin A a =3sinπ33=12,所以B =π6或5π6(舍去),所以C=π-A -B =π-π3-π6=π2.答案:π28.(2012·北京西城期末)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若b =25,B =π4,sin C =55,则c =________;a =________.解析:根据正弦定理得b sin B =c sin C ,则c =b sin C sin B =22,再由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2-4a -12=0,(a +2)(a -6)=0,解得a =6或a =-2(舍去).答案:2 2 69.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:根据余弦定理代入b 2=4+(7-b )2-2×2×(7-b )×⎝ ⎛⎭⎪⎫-14,解得b =4.答案:410.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB .(1)求B ;(2)若A =75°,b =2,求a ,c .解:(1)由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故a =b ×sin A sin B =2+62=1+3,c =b ×sin C sin B =2×sin 60°sin 45°= 6. 11.(2013·北京朝阳统考)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.(1)求角B 的大小;(2)若a +c =5,且a >c ,b =7,求AB u u u r ·AC u u ur 的值.解:(1)因为3a -2b sin A =0, 所以 3sin A -2sin B sin A =0, 因为sin A ≠0,所以sin B =32. 又B 为锐角,所以B =π3.(2)由(1)可知,B =π3.因为b = 7.根据余弦定理,得7=a 2+c 2-2ac cos π3,整理,得(a +c )2-3ac =7. 由已知a +c =5,得ac =6. 又a >c ,故a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB u u u r ·AC u u u r =|AB u u u r|·|AC u u u r |cos A =cb cos A=2×7×714=1. 12.(2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tanA +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C , 所以sin B ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C, 因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 因此sin 2B =sin A sinC . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.(2012·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D 由题意可得a >b >c ,且为连续正整数,设c =n ,b =n +1,a =n +2(n >1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·(n +1)2+n 2-(n +2)22n (n +1),化简得7n 2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.2.(2012·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B2-cos 2C =72,且a +b =5,c =7,则△ABC 的面积为________.解析:因为4sin2A +B2-cos 2C =72, 所以2[1-cos(A +B )]-2cos 2C +1=72,2+2cos C -2cos 2C +1=72,cos 2C -cos C +14=0,解得cos C =12.根据余弦定理有cos C =12=a 2+b 2-72ab,ab =a 2+b 2-7,3ab =a 2+b 2+2ab -7=(a +b )2-7=25-7=18,ab =6,所以△ABC 的面积S △ABC =12ab sin C =12×6×32=332.答案:3323.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得 (2sin B -sin C )cos A -sin A cos C =0, ∴2sin B cos A -sin(A +C )=0, sin B (2cos A -1)=0. ∵0<B <π,∴sin B ≠0, ∴cos A =12.∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3.(2)∵S △ABC =12bc sin A =334,即12bc sin π3=334, ∴bc =3,①∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6,② 由①②得b =c =3, ∴△ABC 为等边三角形.1.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.解析:在△ABC 中,A +C =2B ,∴B =60°.又∵sin A =a sin B b =12,∴A =30°或150°(舍),∴C =90°,∴sin C =1.答案:12.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形解析:选A 法一:(化边为角)由正弦定理知: sin A =2sin B cos C ,又A =π-(B +C ), ∴sin A =sin(B +C )=2sin B cos C . ∴sin B cos C +cos B sin C =2sin B cos C , ∴sin B cos C -cos B sin C =0, ∴sin(B -C )=0.又∵B 、C 为三角形内角,∴B =C .法二:(化角为边)由余弦定理知cos C =a 2+b 2-c 22ab ,∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a,∴a 2=a 2+b 2-c 2,∴b 2=c 2,∴b =c .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知 cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长. 解:(1)因为cos 2C =1-2sin 2C =-14,且0<C <π,所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4.由cos 2C =2cos 2C-1=-14,及0<C <π得cos C =±64.由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或26, 所以⎩⎨⎧b =6,c =4或⎩⎨⎧b =26,c =4.4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c , 且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解:(1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B , 得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.。
正弦角A的对边与斜边的比叫做角A的正弦,记作sinA(由英语sine一词简写得来),即sinA=角A的对边/斜边古代说法,正弦是股与弦的比例。
古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边. 股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正放的直角三角形,应是大腿站直。
正弦是股与弦的比例,余弦是余下的那条直角边与弦的比例。
正弦=股长/弦长勾股弦放到圆里。
弦是圆周上两点连线。
最大的弦是直径。
把直角三角形的弦放在直径上,股就是长的弦,即正弦,勾就是短的弦,即余下的弦——余弦。
按现代说法,正弦是直角三角形的对边与斜边之比。
现代正弦公式是sin = 直角三角形的对边比斜边. 如图,斜边为r,对边为y,邻边为x。
斜边与邻边夹角asin=y/r无论y>x或y≤x无论a多大多小可以任意大小正弦的最大值为1 最小值为-1三角形公式1.已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=sqrt[p(p-a)(p-b)(p-c)]=(1/4)[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]2.已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC,即两夹边之积乘夹角的正弦值。
3.设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/24.设三角形三边分别为a、b、c,外接圆半径为R 则三角形面积=abc/4R5..海伦——秦九韶三角形中线面积公式:S=√[(a+b+c)*(b+c-Ma)*(c+a-b)*(a+b-c)]/3函数函数是数学中的一种对应关系,是从非空数集A到实数集B的对应。
简单地说,甲随着乙变,甲就是乙的函数。
精确地说,设X是一个非空集合,Y是非空数集,f是个对应法则,若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应,就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合{y|y=f(x),x∈R}为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数。
正弦定理、余弦定理及解三角形考纲导学 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题.课前准备区: 知识梳理1.正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容a2=;b2=;c2=常见变形(1)a=,b=,c=;(2)sin A=,sin B=,sin C=;(3)a∶b∶c=;(4)a sin B=,b sin C=,a sin C=cos A=;cos B=;cos C=2.S△ABC====abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.3.在三角形ABC中有:A+B+C= ,sin(A+B)= ,cos(A+B)=4.实际问题中的常用角(1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B 点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.(4)坡度:坡面与水平面所成的二面角的正切值.预习自测区1.判断正误(在括号内打“√”或“×”) 2.(1)在△ABC 中,A >B 必有sin A >sin B .( )(2)在△ABC 中,a =3,b =2,B =45°,则A =60°或120°.( ) (3)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系,其范围均是⎣⎢⎡⎭⎪⎫0,π2.( )2.(2014·江西卷)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .19B .13 C .1D .723.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里4.(2014·福建卷)在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________. 5.(人教A 必修5P10B2改编)在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________.课堂活动区 考点一 正、余弦定理的简单运用 【例1】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =23,b =6,A =45°,则c =________. (2)若(a +b +c )(a -b +c )=ac ,则B =________.【训练1】(1)在△ABC中,内角A,B,C的对边分别为a,b,c,且2c2=2a2+2b2+ab,则△ABC是()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)(2014·绍兴模拟)在△ABC中,A=60°,b=1,S△ABC=3,则a+b+csin A+sin B+sin C=________.考点二正、余弦定理的综合运用【例2】(2014·山东卷)在△ABC中,角A,B,C所对的边分别是a,b,c.已知a=3,cos A=63,B=A+π2. (1)求b的值;(2)求△ABC的面积.规律方法有关三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.【训练2】(2014·重庆卷)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a+b+c=8.(1)若a=2,b=52,求cos C的值;(2)若sin A cos2B2+sin B cos2A2=2sin C,且△ABC的面积S=92sin C,求a和b的值.考点三正、余弦定理在实际问题中的应用【例3】(2014·新课标全国Ⅰ卷)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100 m,则山高MN=________m.微型专题解三角形中的向量法解三角形问题的一般解题策略有:公式法、边角互化法、构造方程法、向量法、分类讨论法等.【例4】已知△ABC顶点的坐标分别为A(3,4),B(0,0),C(5,0),则sin A的值为________.基础巩固题组(建议用时:40分钟)一、选择题1.(2014·北京西城区模拟)在△ABC中,若a=4,b=3,cos A=13,则B=()A.π4B.π3C.π6D.2π32.(2015·合肥模拟)在△ABC中,A=60°,AB=2,且△ABC的面积为3 2,则BC的长为()A.32B.3C.23D.23.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=π6,C=π4,则△ABC的面积为()A.23+2B.3+1 C.23-2D.3-14.(2014·长沙模拟)在△ABC中,角A,B,C的对边分别为a,b,c,则“a =2b cos C”是“△ABC是等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5(2014·四川卷)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m, 则河流的宽度BC等于()A.240(3-1) m B.180(2-1) m C.120(3-1) m D.30(3+1) m二、填空题6.(2014·惠州模拟)在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2-b2)tan B=3ac,则角B的值为________.7.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8b=5c,C=2B,则cos C=________.\8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.三、解答题9.(2015·广州测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =3,b =5,c =7. (1)求角C 的大小; (2)求sin ⎝ ⎛⎭⎪⎫B +π3的值. 10.(2014·杭州检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ac =3,S △ABC =334. (1)求B ; (2)若b =2,求△ABC 的周长.能力提升题组11.(2014·东北三省四市联考)在△ABC 中,角A ,B ,C 的对应边分别为a ,b ,c ,满足b a +c +ca +b≥1,则角A 的范围是( ) A .⎝ ⎛⎦⎥⎤0,π3 B .⎝ ⎛⎦⎥⎤0,π6 C .⎣⎢⎡⎭⎪⎫π3,πD .⎣⎢⎡⎭⎪⎫π6,π12.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1B .2C .3D .313.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________ . 14.已知函数f (x )=3sin x cos x -cos 2x +12. (1)求f (x )的最小正周期及对称轴方程;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=12,bc =6,求a 的最小值.三角函数、解三角形测试姓名 班级 得分 一、选择题1.下列函数中周期为π且为偶函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫2x -π2B .y =cos ⎝ ⎛⎭⎪⎫2x -π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D.y=cos ⎝ ⎛⎭⎪⎫x +π2 2.(2014·包头市测试)已知sin 2α=23,则sin 2⎝ ⎛⎭⎪⎫α+π4=( )A .13B .12C .34D .563.函数f (x )=3sin 2x +cos 2x 图象的一条对称轴方程是( ) A .x =-π12 B .x =π3 C .x =5π12D .x =2π34.已知函数f (x )=cos ωx (x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4的图象,只要将y =f (x )的图象( ) A .向左平移π8个单位长度 B .向右平移π8个单位长度 C .向左平移π4个单位长度 D .向右平移π4个单位长度 5.某登山队在山脚A 处测得山顶B 的仰角为45°,沿倾斜角为30°的斜坡前进1 000 m 后到达D 处,又测得山顶的仰角为60°,则山的高度BC 为( )A .500(3+1)mB .500 mC .500(2+1)mD .1 000 m6.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间 ⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( )A .23B .32 C .2 D .37.将函数g (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6图象上所有点向左平移π6个单位,再将各点横坐标缩短为原来的12,得到函数f (x ),则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4上单调递增8.在△ABC 中,AC ·cos A =3BC ·cos B ,且cos C =55,则A =( ) A .30° B .45° C .60°D .120°9.已知函数f (x )=3sin 2x +cos 2x -m 在⎣⎢⎡⎦⎥⎤0,π2上有两个零点,则m 的取值范围是( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]10.(2014·天津卷)已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A .π2B .2π3 C .π D .2π二、填空题11.(2014·南昌模拟)已知角α(-π<α<0)的终边与单位圆交点的横坐标是13,则cos ⎝ ⎛⎭⎪⎫π2+α的值是________.12.已知sin ⎝ ⎛⎭⎪⎫α+π4=7210,α∈⎝ ⎛⎭⎪⎫π4,π2,则cos α=________.13.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.14.如图所示的是函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2图象的一部分,则其函数解析式是________.15.(2014·江苏卷)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.三、解答题16.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈⎝ ⎛⎭⎪⎫0,π2,f ⎝ ⎛⎭⎪⎫α2=2,求α的值.17.(2014·东北三省四市联考)已知函数f (x )=4cos x ·sin ⎝ ⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期和最大值及取得最大值时自变量x 的集合; (2)求f (x )的单调递增区间.18.(2014·安徽卷)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2,求cos A 与a 的值.19.已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直线x =π3对称,其中ω∈⎝ ⎛⎭⎪⎫-12,52. (1)求函数f (x )的解析式;(2)在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 的对边,锐角B 满足f ⎝ ⎛⎭⎪⎫B 2+π1225=3,b=2,求△ABC面积的最大值.。