简述生态系统的能量流动过程
- 格式:docx
- 大小:18.81 KB
- 文档页数:1
第2节生态系统的能量流动学习目标核心素养1.识记能量流动的概念2.理解能量流动在生态系统中的流动过程3.掌握能量流动的特点及意义4.尝试调查农田生态系统中的能量流动情况1.通过分析生态系统的能量流动的过程,建立生命系统的物质和能量观2.分析能量流动过程,归纳总结能量流动特点,形成科学思维的习惯3.通过总结研究能量流动的实践意义,形成学以致用,关注生产生活的态度一、能量流动的过程1.概念:生态系统中能量的输入、传递、转化和散失的过程。
2.能量流经第一营养级的过程(1)输入:生产者通过光合作用把太阳能转化为化学能,固定在有机物中。
(2)能量去向①在生产者的呼吸作用中以热能形式散失。
②随着残枝败叶等被分解者分解而释放出来。
③被初级消费者摄食同化,流入第二营养级。
3.能量流经第二营养级的过程(1)输入:通过摄食生产者获得。
(2)去向①通过呼吸作用以热能形式散失。
②随尸体、排泄物流向分解者。
③被次级消费者摄食同化,流入下一营养级。
4.能量流动过程图解(1)补充图中标号代表的内容甲:生产者;乙:初级消费者;丙:次级消费者;丁:呼吸作用;戊:分解者。
(2)据图总结流入每一营养级的能量最终去向:①通过自身呼吸作用以热能形式散失。
②被下一营养级同化。
③被分解者分解利用。
二、能量流动的特点1.特点(1)单向流动:沿食物链由低营养级流向高营养级,不可逆转,也不能循环流动。
(2)逐级递减:①能量在沿食物链流动的过程中逐级减少。
②营养级越多,在能量流动过程中消耗的能量就越多,生态系统中的能量流动一般不超过4~5个营养级。
2.能量传递效率(1)能量在相邻两个营养级间的传递效率一般只有10~20%,也就是说,在输入某一营养级的能量中,只有10~20%能够流入下一营养级。
(2)计算公式相邻两个营养级间的能量传递效率=下一营养级同化量上一营养级同化量×100%3.能量金字塔将单位时间内各个营养级所得到的能量数值,由低到高绘制成图,可以形成一个金字塔图形。
生态系统的能量流动在我们生活的这个地球上,存在着各种各样复杂而又神奇的生态系统。
从广袤无垠的森林到波澜壮阔的海洋,从干旱的沙漠到湿润的湿地,每一个生态系统都有着自己独特的生命形式和运行规律。
而在这些生态系统中,能量流动是一个至关重要的过程,它就像是生命的引擎,驱动着整个生态系统的运转。
那么,什么是生态系统的能量流动呢?简单来说,能量流动就是指生态系统中能量的输入、传递、转化和散失的过程。
能量在生态系统中的流动是单向的,而且是逐级递减的。
这意味着能量一旦进入一个生态系统,就会沿着特定的食物链和食物网流动,并且在流动的过程中,不断地被消耗和转化,最终散失到环境中去。
让我们以一个草原生态系统为例来具体了解一下能量流动的过程。
阳光是这个生态系统能量的主要来源,绿色植物通过光合作用将太阳能转化为化学能,储存在有机物中。
这些有机物就是草食动物的食物来源,当草食动物吃草时,它们就获得了植物中储存的能量。
而肉食动物又以草食动物为食,从而获得能量。
在这个过程中,能量从一个营养级传递到另一个营养级,但是每传递一次,只有大约 10% 20% 的能量能够被下一个营养级所利用,其余的大部分能量都在呼吸作用中以热能的形式散失掉了。
为什么能量在生态系统中的流动是逐级递减的呢?这主要是因为在能量传递的过程中,存在着许多能量的损失。
首先,每一个生物在进行生命活动时,如呼吸、运动、生长、繁殖等,都需要消耗大量的能量。
其次,生物在摄取食物时,并不能完全消化和吸收其中的能量,总有一部分会以粪便等形式排出体外。
此外,在生态系统中,还有很多能量被分解者分解利用,最终也以热能的形式散失。
生态系统的能量流动对于维持生态平衡和生态系统的稳定具有极其重要的意义。
首先,能量流动决定了生态系统中生物的种类和数量。
在一个生态系统中,能量的输入量和传递效率决定了能够支持多少生物生存。
如果能量输入不足或者能量传递效率过低,那么生态系统中的生物数量就会减少,甚至可能导致某些物种的灭绝。
二、能量流动的过程1、能量流动的起点:除极少特殊的空间以外,地球上所有的生态系统所需要的能量都来自太阳。
生态系统的生产者主要是绿色植物,绿色植物通过光合作用,把太阳能固定在它们所制造的有机物中,这样,太阳能就转变成化学能,输入生态系统的第一营养级。
除绿色植物外,能够进行光合作用的细菌、能够进行化能合成作用的细菌等也是生产者。
能量流动的起点是从生产者固定太阳能开始的。
2、输入系统的总能量:生态系统的能量来自太阳能,即生态系统能量的源头是太阳能。
但并不是所有的太阳能都参与了生态系统中的能量流动。
在到达地面的总辐射能中,大约有55%是红外线和紫外线等不可见光,它们无法被植物利用。
剩下那45%的辐射能虽然能被植物的色素吸收,但由于植物表面的反射、非活性吸收和蒸腾作用都消耗能量,因此,真正用于构成光合作用产物的能量,在最适应的条件下,也只占太阳总辐射能的3.6%。
然而,植物自身的细胞呼吸还可消耗其中的1/3,因此最多只有2.4%的太阳能可转变成化学能而贮存在植物体内。
一般来说,植物只能利用1%左右的太阳辐射能。
参与生态系统能量流动的“能量”是通过植物的光合作用把光能转变为化学能贮存在植物体的有机物中的。
即:植物作为生产者所固定的太阳能就是流经这个生态系统的总能量。
3、能量流动的过程:输入第一营养级的能量,一部分在生产者的呼吸作用中以热能的形式散失了,一部分则用于生产者的生长、发育和繁殖,也就是储存在构成植物体的有机物中。
在后一部分能量中,一部分随着植物遗体和残枝败叶等被分解者分解而释放出来,还有一部分则被初级消费者——植食性动物摄入体内。
被植食性动物摄入体内的能量,有一小部分存在于动物排出的粪便中,其余大部分则被动物体所同化。
这样,能量就从第一营养级流入第二营养级(如上图)。
能量流入第二营养级后,将发生上图中所示的变化。
能量在第三、第四等营养级的变化,与第二营养级的情况大致相同。
生态系统中的能量流动过程,可以概括为下图。
生态系统的能量流动一、生态系统能量流动的概念和过程1.能量流动的概念生态系统中能量的输入、传递、转化和散失的过程。
2.能量流动的过程地球上几乎所有的生态系统所需要的能量都来自太阳能。
(1)能量流经第一营养级的过程①能量输入:生产者通过光合作用把太阳能转化为化学能,固定在它们所制造的有机物中。
②能量去向(2)能量流经第二营养级的过程①初级消费者摄入量=初级消费者同化量+初级消费者粪便量。
②初级消费者同化能量=呼吸作用散失的能量+用于生长、发育和繁殖的能量。
③生长、发育和繁殖的能量=通过遗体残骸被分解者利用的能量+被下一营养级摄入的能量。
(3)能量流动图解易错提示:初级消费者粪便中的能量属于箭头①,而不属于箭头②,如兔子吃草,兔子的粪便相当于草的遗体残骸,应该属于草流向分解者的能量。
同理,次级消费者粪便中的能量属于箭头②,而不属于箭头③。
(4)能量流动过程总结3种能量流动过程图比较图1:每一环节能量去向有2个,图中出现粪便量,由于同化量=摄入量-粪便量,所以A为摄入量,B为同化量;由图可知B同化量总体有2个去向,即D为呼吸散失,C为用于生长、发育和繁殖;C用于生长、发育和繁殖量有2个去向,即E为流入分解者的能量,F为下一营养级摄入量。
图2:每一营养级能量去向有3个(除最高营养级)即:一个营养级同化的能量(A)=自身呼吸消耗(E)+流入下一营养级(被下一营养级同化B)+被分解者分解利用。
图3:每一营养级能量去向有4个(研究某一时间段)(除最高营养级)即:一个营养级同化的能量(A)=自身呼吸消耗(D)+流入下一营养级(被下一营养级同化B)+被分解者分解利用+未被利用。
“未利用”是指未被自身呼吸作用消耗,也未被后一个营养级和分解者利用的能量。
重点中的重点各营养级同化量来源和去向注意:最高营养级的能量去路缺少下一营养级同化。
二、能量流动的特点1.能量流动的特点及原因分析 特点 原因分析单向流动 ①能量流动是沿食物链进行的,食物链中各营养级之间的捕食关系是长期自然选择的结果,是不可逆转的。
第五章生态系统专题第二节生态系统的功能(能量流动)生态系统的功能——能量流动、物质循环、信息传递一、能量流动——生态系统中能量的输入、传递、转化、散失(1)起点:生产者固定的太阳能生产者固定的能量主要是光合作用利用的光能,也包括化能合成作用利用的化学能(2)自然生态系统总能量:生产者所固定的太阳能人工生态系统总能量:生产者所固定的太阳能+人工喂食的饲料(有机物)(3)能量流动过程:①输入一个营养级的能量:该营养级同化的能量,不是摄入②摄入=同化+粪便,同化=储存 +呼吸③某营养级“粪便”中能量应属其上一营养级的同化量或上一营养级被分解者分解的能量的一部分,如兔粪便中的能量不属于兔的同化量,而是草同化量的一部分或草被分解者分解的能量的一部分。
④未被利用的能量:包括生物每年的积累量和动植物残体以化石燃料形式被储存起来的能量。
(4)能量流动的特点及原因能量传递效率=后一个营养级的同化量/前一个营养级的同化量,一般为10%~20%。
A单向流动∵①捕食关系不可逆转,是自然选择的结果②散失的热能不能被再利用B逐级递减∵①各营养级均有呼吸作用散失;②各营养级均有部分能量未被下一营养级利用;③各营养级均有部分能量流向分解者一条食物链一般只有4--5个营养级∵能量流动逐级递减(项目能量金字塔数量金字塔生物量金字塔形状每一阶含义各个营养级所含能量的多少各个营养级生物数量的多少各个营养级生物量(有机物)的多少特点正金字塔一般正金字塔一般正金字塔分析各个营养级都有呼吸作用散失能量,还有一部分被分解者利用,而流入下一营养级的能量仅占该营养级同化量的10%~20%成千上万只昆虫生活在一株大树上时,该数量金字塔的塔形也会发生变化:浮游植物的个体小,寿命短,又不断被浮游动物吃掉,所以某一时间浮游植物的生物量可能低于浮游动物的生物量:摄入=同化=粪便储存:用于生长发育和繁殖=散失:以呼吸作用的方式,热能的形式流向下一营养级流向分解者(6)研究能量流动意义①使能量得到最有效的利用(对能量的多级利用,提高了能量的利用率)桑基鱼塘:桑叶喂蚕,蚕沙(蚕粪)养鱼,鱼塘泥肥桑农作物秸秆:做饲料喂牲畜、牲畜粪便发酵产沼气、沼渣做肥料能量传递效率≠能量利用率。
生态系统的能量流动:食物网中的传递
生态系统中的能量流动是生命在生态系统中维持正常运作的基础。
食物网反映了不同生物之间能量的传递和转化。
以下是食物网中能量流动的一般模式:
制造者(生产者):生态系统中的能量流动始于生产者,通常是植物或藻类。
它们通过光合作用从太阳能中获取能量,并将其转化为化学能。
光合作用是将二氧化碳和水转化为葡萄糖(或其他有机物)和释放氧气的过程。
消费者:消费者包括食草动物、食肉动物和杂食动物。
它们通过摄取其他生物体来获取能量。
一级消费者是食草动物,它们通过摄取植物来获取能量。
二级消费者是食肉动物,它们以食草动物为食。
三级及更高级的消费者也存在,它们以二级消费者为食。
衰退者(分解者):衰退者是食物网中的关键角色,它们包括细菌和真菌等微生物。
衰退者在分解死亡生物体和有机废弃物的过程中将有机物质分解为无机物质,并将能量释放回环境。
通过食物网中的传递,能量从一个生物转移到另一个生物。
当食物被消费者摄取时,其中的能量被转化为其组织和器官的生长和维持所需的能量。
然后,当这些消费者被其他消费者摄取时,能量继续传递。
需要注意的是,能量在传递过程中不是百分百的转移。
在每个传递级别,只有大约10%的能量被转移给下一级消费者。
这是由于许多能量损失的原因,例如生物体死亡后的分解、能量的热失散和无法被消化吸收的部分。
总之,食物网中的能量流动是一个复杂的过程,它维持着生态系统中不同生物之间的相互依存关系。
这种能量传递对于维持生态平衡和生物多样性至关重要。
简述生态系统的能量流动过程
答:简述生态系统的能量流动过程是指能量输入、能量传递、能量散失的过程。
具体如下:
1、能量输入:生态系统中能量流动的起点是生产者(主要是植物)通过光合作用固定的太阳能开始的。
能量流动的渠道是食物链和食物网。
2、能量传递:生态系统能量流动中,能量以太阳光能→生物体内有机物中的化学能→热能散失的形式变化。
能量在食物链的各营养级中以有机物(食物)中化学能的形式流动。
3、能量散失:生态系统能量流动中能量散失的主要途径是通过食物链中各营养级生物本身的细胞呼吸及分解者的细胞呼吸,主要以热量的形式散失。