5.4.2一元一次方程的应用
- 格式:doc
- 大小:41.00 KB
- 文档页数:4
5.4《一元一次方程的应用》高频考题训练(3)---方案选择及配套问题配套问题1.某车间有28名工人生产螺丝和螺母,每人每天生产1200个螺丝或1800个螺母,现有x个工人生产螺丝,恰好每天生产的螺母和螺丝按2:1配套.为求x,可列方程()A.1200x=1800(28﹣x)B.2×1200x=1800(28﹣x)C.2×1800=1200(28﹣x)D.1800x=1200(28﹣x)2.某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,根据题意可列方程为()A.800x=2×1000(26﹣x)B.2×800x=1000(26﹣x)C.2×800(26﹣x)=1000x D.800(26﹣x)=2×1000x3.现用90立方米木料制作桌子和椅子,已知一张桌子配4张椅子,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套.设用x立方米的木料做桌子,则依题意可列方程为()A.4x=5(90﹣x)B.5x=4(90﹣x)C.x=4(90﹣x)×5D.4x×5=90﹣x4.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x5.20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.1506.某工厂有技术工20人,平均每天每人可加工甲种零件12个或乙种零件10个,已知2个甲种零件和5个乙种零件可以配成一套,若每天生产的甲乙零件刚好配套,则安排生产甲种零件的技术人员人数是()A.4B.5C.6D.37.用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有100张铁皮,用张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.8.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x只鸽子,则可列方程.9.为保障一线医护人员的健康安全,某防护服厂加班生产防护服和防护面罩.已知工厂共54人,每人每天可加工防护服80件或防护面罩100个,已知一套防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排人生产防护服.10.某厂生产一批纸盒,2米硬纸板可以做3个盒盖或者4个盒身,现有硬纸板140米,为了使盒盖和盒身正好配套,制作盒盖需要米硬纸板.11.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,4个甲种部件和6个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?12.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?13.某车间共有36名工人生产桌子和椅子,每人每天平均可生产桌子20张或椅子50把,一张桌子要配两把椅子.已知车间每天安排x名工人生产桌子.(1)车间每天生产桌子张,生产椅子把.(用含x的代数式表示)(2)问如何安排可使每天生产的桌子和椅子刚好配套?14.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?方案选择问题15.某书城开展学生优惠购书活动,凡一次性购书不超200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款为()A.204 元B.230元C.256元D.264元16.某校七年级三个班级联合开展户外研学活动,此次活动由一班班长负责购买车票,票价每张20元.有如图两种优惠方案:班长思考一会儿说,无论选择哪种方案所要付的车费是一样的,则七年级三个班级共有()A.60人B.61人C.62人D.63人17.七年级某班准备组织同学们观看电影,由班长负责买票,已知电影票价每张50元,对观影人数超过40人的团体票有两个优惠方案可选择:方案一:全体人员可打8折;方案二:若有5人免票,则其他人可以打9折.班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的.若这个班级观影人数超过40人,则该班共有___________人观看电影.18.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠;②一次性购书超过200元但不超过400元一律打九折;③一次性购书400元以上一律打八折.如果小聪同学一次性购书共付款324元,那么小聪所购书的原价是.19.在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?20.某公园门票规定如下:若办金卡,需200元,则全年进入公园无需再付钱;若办银卡,需100元,进入公园每次还需付5元;若不办卡,则每次进入公园需购票12元.(1)若小东每年去公园15次,那么应选择哪一种购票方式较为优惠?请说明理由;(2)若小明进入公园的全年预算门票费用为150元,按公园门票规定,求小明全年进入公园次数n的最大值.21.2021年“双十一”期间,很多国货品牌受到人们的青睐,销量大幅增长.某平台的体育用品旗舰店实行优惠销售,规定如下:对原价160元/件的某款运动速干衣和20元/双的某款运动棉袜开展促销活动,活动期间向客户提供两种优惠方案.方案A:买一件运动速干衣送一双运动棉袜;方案B:运动速干衣和运动棉袜均按9折付款.某户外俱乐部准备购买运动速干衣30件,运动棉袜x双(x≥30).(1)若该户外俱乐部按方案A购买,需付款元(用含x的式子表示);若该户外俱乐部按方案B购买,需付款元(用含x的式子表示);(2)若x=40,通过计算说明此时按哪种方案购买较为合算;(3)当购买运动棉袜多少双时两种方案付款相同.22.某市两超市在元旦期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过300元,不给与优惠;超过300元而不超过600元一律打九折;超过600元时,其中的600元优惠10%,超过的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是500元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客购物总额相同,其在乙超市实付款584元,问其在甲超市需实付款多少元?23.随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择.某市有出租车、滴滴快车和神州专车三种网约年,收费标准见图(该市规定网约车行驶的平均速度为40公里/时).TAXI起步价:14元超公里费:超过3公里2.4元/公里滴滴快车起步价:12元里程费:2.5元/公里时长费:0.4元/分钟神州专车起步价:10元里程安:2.8元/公里时长要:0.5元/分钟不足1公里按1公里计(1)如果里程为10公里,出租车的费用为元;(2)已知甲,乙两地的路程超过3公里,从甲地到乙地,乘坐出租车比滴滴快车节省17.8元,求甲、乙两地间的里程数;(3)神州专车和滴滴快车对第一次下单的乘客有如下优惠活动:神州专车收费打八折,另外加5.3元的空车费;滴滴快车超过10公里总费用立减9.1元.如果两位顾容,都是第一次下单且乘车里程数相同,他们分别乘坐神州专车、滴滴快车且收费相同,求这两位顾客乘车的里程数.参考答案配套问题1.【解答】解:∵该车间有28名工人生产螺丝和螺母,且有x个工人生产螺丝,∴有(28﹣x)个工人生产螺母,又∵每人每天生产1200个螺丝或1800个螺母,且恰好每天生产的螺母和螺丝按2:1配套,∴2×1200x=1800(28﹣x).故选:B.2.【解答】解:设安排x名工人生产口罩面,则(26﹣x)人生产耳绳,由题意得2×800x=1000(26﹣x).故选:B.3.【解答】解:设用x立方米的木料做桌子,则用(90﹣x)立方米的木料做椅子,依题意,得:4x=5(90﹣x).故选:A.4.【解答】解:设安排x名工人生产镜片,由题意得,90x=2×60(28﹣x).故选:C.5.【解答】解:设x名学生组装A部件,则(20﹣x)名学生组装B部件,则=.解得x=15.在规定的时间内,最多可以组装出实验仪器的套数为=50(套).故选:A.6.【解答】解:设安排x名技术人员生产甲种零件,则安排(20﹣x)名技术人员生产乙种零件,依题意得:=,解得:x=5,即安排生产甲种零件的技术人员人数是5.故选:B.7.【解答】解:设用x张铁皮制作盒身,则用(100﹣x)铁皮制作盒底,依题意得:2×16x=48(100﹣x),解得:x=60,∴用60张铁皮制作盒身,正好使得这100张铁皮制作出来的盒身和盒底全部配套.故答案为:60.8.【解答】解:设原有x只鸽子,则可列方程:=.故答案为:=.9.【解答】解:设需要安排x人生产防护服,则安排(54﹣x)人生产防护面罩,依题意得:80x=100(54﹣x),解得:x=30.故答案为:30.10.【解答】解:设制作盒盖需要x米硬纸板,则制作盒身需要(140﹣x)米硬纸板,根据题意得:×3=×4,解得:x=80,故答案为:80.11.【解答】解:设安排x人加工甲种部件,则安排(85﹣x)人加工乙种部件,依题意得:=,解得:x=25,∴85﹣x=85﹣25=60.答:安排25人加工甲种部件,60人加工乙种部件,才能使每天加工的甲、乙两种部件刚好配套.12.【解答】解:设分配x个工人生产塑料棒,则分配(34﹣x)个工人生产金属球,依题意得:=,解得:x=18,∴34﹣x=34﹣18=16.答:应分配18个工人生产塑料棒,16个工人生产金属球.13.【解答】解:(1)∵该车间共有36名工人生产桌子和椅子,且车间每天安排x名工人生产桌子,∴车间每天安排(36﹣x)名工人生产椅子.又∵每人每天平均可生产桌子20张或椅子50把,∴车间每天生产桌子20x张,椅子50(36﹣x)把.故答案为:20x;50(36﹣x).(2)依题意得:2×20x=50(36﹣x),解得:x=20,∴36﹣x=36﹣20=16.答:车间每天安排20名工人生产桌子、16名工人生产椅子刚好配套.14.【解答】解:(1)设蓝布料买了x米,则黑布料买了(136﹣x)米.根据题意,得30x+50(136﹣x)=5400.解这个方程,得x=70.∴136﹣x=66.答:蓝布料买了70米,黑布料买了66米;(2)设蓝布料买了y米,则黑布料买了(162﹣y)米.根据题意,得=.解这个方程,得y=90.∴30×90+50(162﹣90)=6300.答:购买这162米布料花了6300元.方案选择问题15.【解答】解:∵第一次购书付款72元,享受了九折优惠,∴实际定价为72÷0.9=80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x元.由题意得(x﹣200)×0.8+200×0.9=x﹣26,解得x=230.故第二次购书实际付款为:230﹣26=204(元).故选:A.16.【解答】解:设七年级三个班级共有x人,根据题意得:20×0.8x=20×0.9(x﹣7),解得:x=63,∴七年级三个班级共有63人.故选:D.17.【解答】解:设该班共有x人观看电影,根据题意,得x×50×0.8=(x﹣5)×0.9×50,解得x=45,即该班共有45人观看电影.故答案是:45.18.【解答】解:设黄聪购书的原价是x元,当200<x≤400元时,0.9x=324,解得x=360,当x>400时,0.8x=324,解得,x=405,由上可得,小聪所购书的原价是360元或405元,故答案是:360元或405元.19.【解答】解:设小冯班人数为x人,根据题意列方程得:2x+2x×+x+1=100,2x+x=99,x=99,x=36,答:小冯班上有学生36人.20.【解答】解:(1)若办金卡则需200元;若办银卡则需100+15×5=175(元);若不办卡则需12×15=180(元);故办银卡较为优惠;(2)若办银卡:100+5n=150,解得n=10,若不办卡:12n=150,解得n=12.5,∵n为正整数,∴n取最大值为12.21.【解答】解:(1)按方案A购买,需付款:30×1600+20(x﹣30)=20x+4200,即需要付款(20x+4200)元;按方案B购买,需付款:30×160×0.9+20×0.9x=18x+4320,即需要付款(18x+4320)元.故答案是:(20x+4200),(18x+4320);(2)当x=40时,方案A:20×40+4200=5000(元).方案B:18×40+4320=5040(元).因为5000<5040,所以按方案A购买较为合算;(3)根据题意,得20x+4200=18x+4320.解得x=60.答:当购买运动棉袜60双时,两种方案付款相同.22.【解答】解:(1)在甲超市实付款为:500×0.88=440(元);在乙超市实付款为:500×0.9=450(元).∴在甲超市购买实付款为440元,在乙超市购买实付款为450元;(2)设当购物总额为x元时,两家超市实付款相同,根据题意得:0.88x=600×0.9+0.8(x﹣600),解之得,x=750.∴当购物总额为750元时,两家超市实付款相同.(3)设该顾客购物总额为y元,根据题意得:600×0.9+0.8(y﹣600)=584,解之得,y=655;∴0.88y=0.88×655=576.4(元),∴其在甲超市需实付款576.4元.23.【解答】解:(1)14+2.4×(10﹣3)=30.8(元),答:出租车的费用为30.8元.故答案为:30.8;(2)设甲、乙两地间的里程数是x公里,由题意得,14+2.4(x﹣3)+17.8=12+2.5x+×60×0.4,解得x=18.答:甲、乙两地间的里程数是18公里;(3)设这两位顾客乘车的里程数是y公里,当0<y≤10时,12+2.5y+×60×0.4=0.8(10+2.8y+×60×0.5)+5.3,解得y=5,当>10时,12+2.5y+×60×0.4﹣9.1=0.8(10+2.8y+×60×0.5)+5.3,解得y=40,答:这两位顾客乘车的里程数是5公里或40公里.。
5.4一元一次方程的应用——和差倍分问题教学实录石家庄市第四十九中学薛晓丽一、教学目标:(一)知识目标:根据实际问题中数量关系列方程解决问题。
掌握列方程解决实际问题的一般步骤.(二)能力目标:培养学生数学建模能力,发现和提出问题、分析和解决问题的能力.(三)情感目标:增强数学的应用意识和学习数学的兴趣,积累数学活动经验.二、教学重点和难点重点:寻找实际问题中的等量关系,建立数学模型;培养学生发现、解决问题的能力。
难点:根据实际问题分析数量关系列出方程.三、教学方法:自主学习与小组合作相结合四、教学过程:教学环节教学设计设计意图创设情境提出问题师:前面学习了那些用代数式表示的实际问题?生:增长率、工作量、行程问题……师:展示图片,生活很多问题都可以用方程来解决,今天我们一起来学习一元一次方程的应用。
(板书课题)激发学生的学习兴趣。
教学过程自主探究活动1:学生植树的图片引出问题某校七年级同学参加这一次公益活动,其中15%的同学去作保护环境的宣传,剩下的170名同学去植树、种草。
七年级共有多少名同学参加这次公益活动?师:4、5、6组同学板演,分工如下:1.探究:8号:①七年级同学参加公益活动做了件事:分别是,15%的同学去作,170名同学作,7号:②设七年级共有名同学参加公益活动。
x6号:③请用文字叙述等量关系并列出方程:5号:④写出本题的规范过程:作环保宣传的同学/名植树种草的同学/名参加公益活动的同学/名x让学生充分发挥主体作用,自己去观察、探究,解决问题。
师:1、2号组长纠错后,5组5-8号同学讲解。
(边讲解边说明注意的问题)解得: 6x =2113x +=答:小拖拉机一天耕地6公顷,大拖拉机一天耕地13公顷。
解法二:设大拖拉机一天耕地公顷,x 解得: 2(19)1x x =-+13x =196x -=答:小拖拉机一天耕地6公顷,大拖拉机一天耕地13公顷。
解法三:设小拖拉机一天耕地公顷,大拖拉机一天耕地公顷,x x 1921x y y x +=⎧⎨=+⎩613x y =⎧⎨=⎩答:小拖拉机一天耕地6公顷,大拖拉机一天耕地13公顷。
学案 5.3一元一次方程的应用(2)班级姓名【我们要掌握的】1.在应用方程解决有关实际问题时,清楚地分辨量之间的关系,尤其是关系是建立方程的关键.2.解题中的对确保答案的正确和合理含有帮助,但具体过程可以不写.3.在解决实际问题时,一般可通过分析实际问题,抽象出数学问题,然后用数学思想方法解决问题.用分析数量关系是常用的方法.4.将一个细长的圆柱体铁块锻压成一个矮胖的圆柱体铁块,在这个过程中,圆柱体中的发生了变化,没有变化.5.一天,小聪去买铅笔,买3支还剩下3角钱,买4支还差2角钱,问铅笔每支的单价是多少?在这个问题中,不变的量是.6.甲乙两班共有学生92名,甲班的人数比乙班多2人,那么乙班有人.【我们要完成的】例1、甲乙两水桶内共有水48kg,如果从甲桶中取出一定量的水加入乙桶中,使乙桶中的水量增加一倍,然后又从乙桶中取出一些水加入甲桶中,使甲桶中的水量为第一次取水后所剩水的2倍,此时两桶内的水量相等.问原来甲乙两桶内各有多少千克水?强化训练1、某车间有22名工人生产螺母和螺钉,每人每天平均生产螺钉l200个或螺母2000个.已知一个螺钉要配2个螺母,为了使每天生产的螺母和螺钉刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?例2、用内径为90毫米的圆柱体玻璃梦(已装满水)向一个内底面积为l31×131平方毫米,内高为81毫米的长方形铁盒中倒水,当铁盒装满水时,玻璃杯中水下降的高度是多少?(结果保留π)强化训练2、一个长方形养鸡场的长边靠墙,墙长为14m,其他三边用竹篱笆围成.现有长为35m的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5m;小赵也打算用它围成一个养鸡场,其中长比宽多2m,你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?随堂自测一、选择题1.甲仓库原存有钢材100吨,每月用去l5吨;乙仓库原存有钢材82吨,每月用去9吨,经过( )个月后,甲仓库剩下的钢材与乙仓库剩下的钢材相等( )A.2B.3C.4D.52.内径为l20毫米的圆柱体玻璃杯和内径为300毫米,内高为32毫米的圆柱体玻璃盘,可以盛同样多的水,玻璃杯的内高为( )A.160毫米B.150毫米C.200毫米D.180毫米3.某一个长方形的周长为30cm,如果把这个长方形的长减少3cm,而宽增加2cm,就变成了一个正方形,那么这个长方形的长为( )A.10B.9C.8D.7.54.如图,用七个完全相同的长方形拼成了图中的阴影部分,则图中的空白部分面积为( )A.121cm2B.128cm2C.134cm2D.169cm2二、填空题5.用一根长为l0米的铁丝围成一个长方形,使得该长方形的长比宽多l.4米,则此长方形的长为,宽为.6.有两桶水,甲桶中有水180升,乙桶中有水150升,要使甲桶水的体积是乙桶水的体积的2倍,则应从乙桶向甲桶倒升水.7.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加,已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,l人掌舵,其余的人同时划浆.设每条船上划浆的有x人,那么可列出一元一次方程为三、解答题8.某中学参加社区义务劳动,第一大组有63人,第二大组有39人,现又调来30人,根据任务量要求第二大组的人数是第一大组人数的一半,问应该怎样分配这30人?9.如图所示,正方形ABCD的边长AD=2厘米,图中的长方形ABEF的面积比正方形的面积多3平方厘米,那么长方形ABEF的长比宽多多少?10.小王买了一套经济适用房,他准备将地面铺上地砖,房子结构如图所示(图中的数据单位:m).地面总面积是卫生间面积的15倍,如果铺lm2地砖的平均费用为80元,那么铺地砖的总费用为多少元?。
5.4 一元一次方程的应用(第1课时)一、教学目标:知识目标:会列一元一次方程解决实际问题.能力目标:会将实际问题转化成数学问题,学习分析实际问题的方法,提高分析能力。
情感目标:通过学习,增强用数学的意识,激发学习数学的热情.二、教学重难点:重点:掌握列方程解应用题的一般步骤难点:准确理解题意,找出相等关系,列出一元一次方程.三、教学过程:(一)导入新课:2010年广州亚运会上,我国获得奖牌416枚,其中银牌119枚,金牌数是铜牌数的2倍还多3枚。
请你算一算,其中金牌有多少枚?请讨论和解答下面的问题:(1) 能直接列出算式求2010年亚运会我国获得的金牌数吗?(2) 如果用列方程的方法求解,设哪个未知数为x ?(3) 根据怎样的相等来列方程?方程的解是多少?经过分析可知用算术方法解决此问题比较繁琐。
用列方程的方法:设获得x 枚金牌,根据题意,得31194162x x -++=. 解这个方程,得x =199.当数量关系比较复杂时,列方程解应用题要比直接列算式解容易.适当地运用一元一次方程的知识,可以解决许多现实生活中遇到的有关实际问题.(二)探究新知:1.知识讲解通过上面的讨论,可知用列方程方法解比较方便.列出综合算式直接求未知量.列方程的方法是通过用字母表示未知量,并把这个未知量当作已知量,找出与题中的其他已知量形成的相等关系列出方程求解。
师生共同总结出运用方程解决实际问题的一般过程:(1)审题:分析题意,找出题中的数量及其关系。
(2)设元:选择一个适当的未知数用字母表示(例如x ).(3)列方程:根据相等关系列出方程。
(4)解方程:求出未知数的值。
(5)检验:检查求得的值是否正确和符合实际情形,并写出答案。
2.例题讲解例1 某文艺团体为“希望工程”募捐义演,全价票为每张18元,学生享受半价。
某场演出共售出966张票,收入15480元,问这场演出共售出学生票多少张?分析:题中涉及的数量有票数、票价、总价等,它们之间的相等关系有:票数×票价=总票价;学生的票价=1/2×全价票的票价;全价票张数+学生票张数=966;全价票的总票价+学生票的总票价=15480.x=15480.解这个方程,得x=212.检验:x=212满足方程,且符合题意.答:这场演出共售出学生票212张.从上面的例子我们可以看到,运用方程解决实际问题的一般过程是:1.审题:分析题意,找出题中的数量关系及其关系;2.设元:选择一个适当的未知数用字母表示(例如x);3.列方程:根据相等关系列出方程;4.解方程:求出未知数的值;5.检验:检验求得的值是否正确和符合实际情形,并写出答案.(三)课内小结:教师指导学生共同归纳本节的知识。
苍南县树人学校七年级数学--第五章《一元一次方程》导学案
课题:5.4 一元一次方程的应用(2)
--行程问题
班级姓名第组第号评价:
课型:新授主备人:袁文平审核:数学备集组上课时间:2015年11月日学习目标:1.掌握列方程解应用题的一般步骤;
2.会利用一元一次方程解决简单的实际问题;
3.体验方程式刻画现实世界的有效的数学模型。
学习重点:利用一元一次方程解决实际问题
学习难点:找等量关系;
【学法指导】:先在上面的表格中,用笔勾画出学习目标,明确本节课的学习目标。
带着学习目标,结合课本,按照导学案的设计思路,按顺序完成导学案。
第一部分:课前预习导学
一、行程问题概述
(1)行程问题中的三个基本量及其关系:
路程=速度×时间时间=路程÷速度速度=路程÷时间
(2)基本类型
①相遇问题:快行距+慢行距=原距
②追及问题:快行距-慢行距=原距
③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
顺速–逆速 = 2水速;顺速 + 逆速 = 2船速
顺水的路程 = 逆水的路程
注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。
常见的还有:相背而行;环形跑道问题。
二、经典问题:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
分析:此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
苍南县树人学校七年级数学--第五章《一元一次方程》导学案
(1)分析:相遇问题,画图表示为: 等量关系是:慢车走的路程+快车走的路程=480公里。
(2)分析:相背而行,画图表示为: 等量关系是:两车所走的路程和+480公里=600公里。
(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
(4)分析:追及问题,画图表示为:
等量关系为:快车的路程=慢车走的路程+480公里。
(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
甲 乙
600
甲 乙
甲 乙
例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
分析:这属于行船问题,这类问题中要弄清:
(1)顺水速度=船在静水中的速度+水流速度;
(2)逆水速度=船在静水中的速度-水流速度。
相等关系为:顺流航行的时间+逆流航行的时间=7小时。
【您课前预习部分就做到这里】
第二部分:专项训练
一、行程(相遇)问题
1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每
分走90米,几分钟后两人相遇?
2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每
分走80米,小明每分走多少米?
3.建朋和建博两人骑自行车同时从相距65千米的两地相向而行,经过两小时相遇,已知建朋比建博每小时多走2.5千米,问建博每小时走多少千米?
二、行程(追击)问题
1. 姐姐步行速度是75米/分,妹妹步行速度是45米/分。
在妹妹出发20分钟后,姐姐
出发去追妹妹。
问:多少分钟后能追上?
2. 甲、乙两人从同地出发前往某地。
甲步行,每小时走4公里,甲走了16公里后,
乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?
三、行程(行船、飞行)问题
1. 一艘轮船航行于两地之间,顺水要用3小时,逆水要用4小时,已知船在静水中的速
度是50千米/小时,求水流的速度.
四、行程(跑道)问题
1. 乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而
行,甲的速度为100米/分,乙的速度是甲速度的2
3
倍,问(1)经过多少时间后两人首次相遇(2)第二次相遇呢?
2. 一条环形的跑道长800米,甲练习骑自行车平均每分钟行500米,乙练习赛跑,平
均每分钟跑200米,两人同时同地出发。
(1)若两人背向而行,则他们经过多少时间首次相遇? (2)若两人同向而行,则他们经过多少时间首次相遇。