对分查找算法及程序实现概要
- 格式:doc
- 大小:177.00 KB
- 文档页数:8
对分查找算法及程序实现一、设计思想对分查找是计算机科学中的一个基础算法。
对于一个基础算法的学习,同样可以让学生在一定的情境下,经历分析问题、确定算法、编程求解等用计算机解决问题的基本过程。
本堂课以一个游戏暖场,同时激活学生的思维,引导学生去探索游戏或生活背后的科学原理。
为了让学生在教师的引导下能自我解析算法的形成过程,本课分解了问题动作,找出问题的全部可能情况,在对全部可能情况总结归纳的情况下,得出对分查找的基础算法,最后在程序中得到实现,从而使学生建立起对分查找算法形成的科学逻辑结构。
二、教材分析本课的课程标准内容:(一)计算机解决问题的基本过程(1)结合实例,经历分析问题、确定算法、编程求解等用计算机解决问题的基本过程,认识算法和程序设计在其中的地位和作用。
(三)算法与问题解决例举 C 查找、排序与问题解决(2)通过实例,掌握使用数据查找算法设计程序解决问题的方法。
本课的《学科教学指导意见》内容:基本要求:1.初步掌握对分查找算法。
2.初步掌握对分查找算法的程序实现。
教材内容:第二章算法实例2.4.3对分查找和第五章5.4查找算法的程序实现,课题定为对分查找算法及程序实现,安排两个课时,第一课时着重是对分查找算法的形成和初步程序实现,第二课时利用对分查找算法解决一些实际问题的程序实现,本教学设计为第一课时。
从《课程标准》和《学科教学指导意见》对本课教学内容的要求来看,要求学生能从问题出发,通过相应的科学步骤形成对分查找的算法。
对学生来说,要求通过这一课时的学习能初步掌握或了解对分查找的前提条件、解决问题的对象,明确对分查找算法结构和对分查找的意义。
三、学情分析学生应该已经掌握程序设计的基本思想,掌握赋值语句、选择语句、循环语句的基本用法和VB基本操作,这节课学生可能会遇到的最大问题是:如何归纳总结对分查找解决不同情况问题的一般规律,鉴于此,在教学中要积极引导学生采取分解动作、比较迁移等学习策略。
五种查找算法总结第一篇:五种查找算法总结五种查找算法总结一、顺序查找条件:无序或有序队列。
原理:按顺序比较每个元素,直到找到关键字为止。
时间复杂度:O(n)二、二分查找(折半查找)条件:有序数组原理:查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
如果在某一步骤数组为空,则代表找不到。
这种搜索算法每一次比较都使搜索范围缩小一半。
时间复杂度:O(logn)三、二叉排序树查找条件:先创建二叉排序树:1.若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;2.若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;3.它的左、右子树也分别为二叉排序树。
原理:在二叉查找树b中查找x的过程为:1.若b是空树,则搜索失败,否则:2.若x等于b的根节点的数据域之值,则查找成功;否则:3.若x小于b的根节点的数据域之值,则搜索左子树;否则:4.查找右子树。
时间复杂度:四、哈希表法(散列表)条件:先创建哈希表(散列表)原理:根据键值方式(Key value)进行查找,通过散列函数,定位数据元素。
时间复杂度:几乎是O(1),取决于产生冲突的多少。
五、分块查找原理:将n个数据元素“按块有序”划分为m块(m ≤ n)。
每一块中的结点不必有序,但块与块之间必须“按块有序”;即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;而第2块中任一元素又都必须小于第3块中的任一元素,……。
然后使用二分查找及顺序查找。
第二篇:数据结构实验报告-查找算法《数据结构》第八次实验报告学生姓名学生班级学生学号指导老师重庆邮电大学计算机学院计算机专业实验中心一、实验内容1)有序表的二分查找建立有序表,然后进行二分查找2)二叉排序树的查找 建立二叉排序树,然后查找二、需求分析二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果xa[n/2],则只要在数组a的右半部搜索x.时间复杂度无非就是while循环的次数!总共有n个元素,渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数由于你n/2^k取整后>=1 即令n/2^k=1 可得k=log2n,(是以2为底,n的对数)所以时间复杂度可以表示O()=O(logn)下面提供一段二分查找实现的伪代码: BinarySearch(max,min,des)mid-<(max+min)/2 while(min<=max)mid=(min+max)/2 if mid=des then return mid elseif mid >des then max=mid-1 else min=mid+1 return max 折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。
查找算法——顺序、对分查找在到学习、工作和生活中我们经常需要在一系列数据中查找出是否有某个特定数据,如在图书馆按书目查找某本书,在运动会上查寻某运动员的比赛成绩,在网上搜索信息、使用QQ查找好友等,这时就会用到查找算法了。
•问题提出一、采用何种方法进行查找?1.顺序查找顺序查找是最容易想到,也是最容易实现的一种查找算法,方法是将要找的数据与数组中的每个数据从第一个开始逐一进行比较,直到找到或者全部找完。
(1)顺序查找算法流程图(3)编写程序代码。
Dim d(1 To 8) As Integer ‘有8个数据Private Sub Command6_Click() '顺序查找Dim i As Integer, key As Integerkey = Val( _______ ) '获取查找的数据For i = 1 To _______ '依次查找If __________ Then '找到了数据Label5.Caption = "在数组的第" + Str(i) + "个位置"Exit For ‘中断当前For循环End IfNextIf i =_______ ThenLabel5.Caption = "在数组中没有找到数据" + Str(key)End Sub如果数组中有n个元素,那么顺序查找的平均查找次数是(n+1)/2次,有没有效率更高的查找算法呢?对分查找2.对分查找算法:首先将查找键与有序数组内处于中间位置的元素进行比较,如果中间位置上的元素内的数值与查找键不同,根据数组元素的有序性,就可确定应该在数组的前半部分还是后半部分继续进行查找;在新确定的范围内,继续按上述方法进行查找,直到获得最终结果。
对分查找的前提条件数组中的数据是已经排序的。
对分查找算法流程图(3)编写程序代码。
Private Sub Command4_Click() '对分查找Dim i As Integer, j As Integer, key As Integer, m As Integer Dim nc,flag As Integerflag=0 ‘flag 用于标志是否找到 key = Val(Text2.Text) '输入查找的数据 i = 1 j = 18nc = 0 '查找次数nc Do While i <= j '对分查找 nc =—————— '查找次数增加1m = __________ ‘求中间下标,若有小数,只保留整数 If __________Then ‘找到了 Label6.Caption = "在数组的第" + Str(m) + "个位置,共查找了" + Str(___) + "次"flag=_____Exit do ‘强制退出循环’End IfIf key < d(m) Then '未找到,继续查找 j=__________ Elsei = __________ End IfLoopIf flag==____ thenLabel6.Caption = "在数组中没有找到数据" + Str(key) + ",共查找了" + Str(nc) + "次"EndifEnd Sub使用对分查找,每次都把规模缩小一半,效率比顺序查找要高,但在进行对分查找前,需要将它排好序。
对分查找算法的程序实现》一、案例主题:浙江教育出版社《算法与程序设计》(选修),《对分查找算法的程序实现》二、背景材料:(一)教学内容分析:1. 对分查找算法是《算法与程序设计》(选修)《5.4 节查找算法的程序实现》中的内容,是结合流程图实现程序的课型。
本课内容是选修教材中对所学语句结构和代码理解的一个总结性应用,具有很强的实用性。
2. 本课内容应用性较强,具有一定的难度,体现在对流程图理解和代码实现的过程中,但应用丰富,拓展性强,有很高的研究价值。
(二)学生分析:通过前面一个月算法的学习,学生已经逐步熟悉visual basic6.0 的编程环境,掌握了顺序结构、分支结构、循环语句的用法,在前期教学中学生已经初步了解算法基础及算法表示,抽象思维相对较好。
对分查找的算法对学生来说比较抽象,学生能否清晰的想象比较关键,所以学习难度比较大,需要教师合理的引导帮助其来解决问题。
本课中学生可能会出现的情况:1. 掌握三种基本结构,但是在综合思想算法上缺乏一定的掌握度。
解决策略:先介绍对分查找思想,然后再引入流程图和程序。
2. 刚学过顺序查找,给他们的感觉是实现简单,容易思想上放松。
解决策略:要让学生从根本上区别顺序查找,以免混淆算法。
3. 因为对分查找比较抽象,如果直接以代码的形式出现,学生会难以理解和接受。
解决策略:以生动形象的例子进行导入然后再进行教学,提高课堂效率。
三、教学设计:(一)教学设计思想:对分查找在整个选修教材中是一个重点和难点,本课以生动的实例做为课堂导入,强调教学重点,以动态的指针演示,让算法思路更具体化,并且逐个击破难点并得以程序实现,以半成品加工策略提高课堂效率。
本课主要通过“思维导图”的形式和任务驱动等教学方式引导学生自主探究探索、解决问题,通过小组同学的探讨实现对本课知识的掌握,教师通过合理的引导帮助学生理解,创设学生自主和互助学习的良好气氛,以达到理解对分查找算法和实现相应程序的目标。
对分查找算法及程序实现一、设计思想对分查找是计算机科学中的一个基础算法。
对于一个基础算法的学习,同样可以让学生在一定的情境下,经历分析问题、确定算法、编程求解等用计算机解决问题的基本过程。
本堂课以一个游戏暖场,同时激活学生的思维,引导学生去探索游戏或生活背后的科学原理。
为了让学生在教师的引导下能自我解析算法的形成过程,本课分解了问题动作,找出问题的全部可能情况,在对全部可能情况总结归纳的情况下,得出对分查找的基础算法,最后在程序中得到实现,从而使学生建立起对分查找算法形成的科学逻辑结构。
二、教材分析本课的课程标准内容:(一)计算机解决问题的基本过程(1)结合实例,经历分析问题、确定算法、编程求解等用计算机解决问题的基本过程,认识算法和程序设计在其中的地位和作用。
(三)算法与问题解决例举 C 查找、排序与问题解决(2)通过实例,掌握使用数据查找算法设计程序解决问题的方法。
本课的《学科教学指导意见》内容:基本要求:1.初步掌握对分查找算法。
2.初步掌握对分查找算法的程序实现。
教材内容:第二章算法实例2.4.3对分查找和第五章5.4查找算法的程序实现,课题定为对分查找算法及程序实现,安排两个课时,第一课时着重是对分查找算法的形成和初步程序实现,第二课时利用对分查找算法解决一些实际问题的程序实现,本教学设计为第一课时。
从《课程标准》和《学科教学指导意见》对本课教学内容的要求来看,要求学生能从问题出发,通过相应的科学步骤形成对分查找的算法。
对学生来说,要求通过这一课时的学习能初步掌握或了解对分查找的前提条件、解决问题的对象,明确对分查找算法结构和对分查找的意义。
三、学情分析学生应该已经掌握程序设计的基本思想,掌握赋值语句、选择语句、循环语句的基本用法和VB基本操作,这节课学生可能会遇到的最大问题是:如何归纳总结对分查找解决不同情况问题的一般规律,鉴于此,在教学中要积极引导学生采取分解动作、比较迁移等学习策略。
四、教学目标知识与技能:理解对分查找的概念和特点,通过分步解析获取对分查找的解题结构,初步掌握对分查找算法的程序实现。
过程与方法:通过分析多种不同的可能情况,逐步归纳对分查找的基本思想和方法,确定解题步骤。
情感态度与价值观:通过实践体验科学解题的重要性,增强效率意识和全局观念,感受对分查找算法的魅力,养成始终坚持、不断积累才能获得成功的意志品质。
五、重点难点教学重点和难点:分解并理解对分查找的过程。
六、教学策略与手段1、教学线索:游戏引领---提出对分查找原理--- 解析对分查找的算法特征---实践解决问题。
2、学习线索:分解问题---归纳问题---实践提升,在三个阶段的不断推进中明确对分查找算法,总结规律。
七、教学过程 1、新课导入(1)热身:游戏(2分钟)教师展示一件特色物品,让一个学生来猜这个物品的价格,其他学生只需要根据这个学生猜出的价格提示“高了”或是“低了”,如果学生能在五次内猜对这个物品的价格,就把这件物品“赠送”给他……。
(2)讨论:你觉得怎么样猜可以猜的快一点呢?有什么技巧吗?你从这个游戏当中得到什么启示?(3分钟)(3)教师引导:这个世界不是缺少问题,而是缺少发现,其实在这个游戏的背后,含有一个非常经典的算法。
引出对分查找的的概念。
2、新课:教学步骤一:分析对分查找的原理和思想。
(3分钟)(1)对分查找是效率很高的查找方法,但被查找的数据必须是有序的。
(2)首先将查找的数与有序数组内处于中间位置的数据比较,如果中间位置上的数与查找的数不同,根据有序性,就可确定应该在数组的前半部分还是后半部分继续查找。
(3)在新确定的范围内,继续按上述方法进行查找,直到获得最终结果。
教学步骤二:分解对分查找算法(5分钟)假设:用一个数组d (1 to 10)来存放升序的元素序列,用i 表示查找范围的起始位置的下标,j 表示终止位置的下标,mid 表示中间位置元素的下标。
(1) 第一种情况:要找的值在后半部分; 以查找键KEY=48为例分析mid(6)d(5) d(4) d(3) d(2) d(1)第一次比较:范围d(1)~d(10),mid= (1+10)\2, d(mid)<Key 所以可以确定接下来要找的范围是后半部分。
比较后i=mid+1第二次比较:范围d(6)~d(10),mid= (6+10)\2,d(mid)<Key 所以可以确定接下来要找的范围是后半部分。
比较后:i=mid+1第三次比较:范围d(9)~d(10),mid= (9+10)\2,d(mid)=Key ,找到了。
思考:如果要找的是52? i,j,mid 分别是多少?这也说明当i=j 的时候是查找的最后可能次数,这也是终止查找的一个关键条件。
教学步骤三:继续分解对分查找算法中包含的其他情况。
画一画:请仿照上面的画法,分别画出key=17和key=20的查找示意图。
(2) 第二种情况:要找的值在前半部分; 以查找键KEY=17为例分析:mi dijd(10)d(9) d(8) d(7)d(6) i mi i jd(10)d(9)d(8)d(7) d(6) d(5) d(4) d(3) d(2) d(1) imij mid(4)d(3) d(2) d(1) d (3) d(4)mi ji结果分析:第一次比较后:j=mid-1第二次比较后:i=mid+1第三次比较后:找到了 (3)第三种情况:要找的值找不到;以查找键KEY=20为例分析:结果分析:第一次比较后:j=mid-1第二次比较后:i=mid+1第三次比较后:i=mid+1第四次比较:i=j 但是d(mid)≠key,所以找不到。
教学步骤四:对各种情况进行归纳总结。
(1)Key 与d(mid)的大小比较影响i,j 的取值的规律: i 的取值规律:if d(mid)<key then i=mid+1 j 的取值规律:if d(mid)>key then j=mid-1 用分支结构实现。
(2)继续进行重复查找的条件: i ≤j ,用循环结构实现。
教学步骤五:构建对分查找的流程图i jmid(4)d(3) d(2)d(1)ijmid d(4)i,j,midd(10d(9) d(8) d(7) d(6) d(5) d(4) d(3) d(2) d(1) ij mi教学步骤六:对分查找算法的初步程序实现。
教师事先设计好Vb窗体,学生只需要在相应的程序体输入代表算法思想的关键语句。
附主要程序体:Private Sub Command2_Click()Dim key As Integer, mid As Integer, i As Integer, j As Integerkey = Val(Text1.Text)i = 1: j = 10Do While i <= jmid = (i + j) \ 2If d(mid) = key ThenText2.Text = "找到了,是第" & mid & "个"Exit SubEnd IfIf d(mid) < key Theni = mid + 1Elsej = mid - 1End IfLoopText2.Text = "找不到"End Sub程序说明:1、获得要查找的数据key的值key = Val(Text1.Text)2、i,j赋初值。
i = 1: j = 103、求mid的值。
mid = (i + j) \ 24、分三种情况,(1)如果key=d(mid),则如果d(mid) = key 那么Text2.Text = "找到了,在第" + Str(mid) + "个"。
(2)如果key>d(mid),那么i=mid+1 否则j=mid+15、重复上述的3,4步,直到i超出j(或者理解为i<=j不成立,所以不能用for next,而要用do while语句)6、如果有找到key,那执行第4步(1)步后应该输出找到的位置后退出程序,如果不退出,说明key没有找到,所以在相应位置要输出“找不到”。
教学步骤七:评价。
评价学生的程序实现情况,并讨论或实践问题:如果是降序序列,该怎么样改动程序?如果序列元素不是10个,而是100个或更多呢?教学步骤八:总结提升。
(1)由于对分查找过程中的每次比较都能使得搜索空间减半,对分查找将不会使用超过log2n次比较来找到目标值。
(2)提升对分查找算法的实际意义:同学们可能还没有意识到二分查找是多么高效,那不妨设想一下在一个包含一百万个人名的电话簿中找一个名字,二分查找可以让你不超过21次就能找到指定的名字。
如果你能够将世界上所有的人按照姓名排序,那么你可以在35步以内找到任何人。
八、作业:1、以下的三组元素序列能采用对分查找法来查找吗?(1) 19,33,35,53,56,67,78,99(2)53,35,67,78,56,99,33,19(3)99,67,56,45,33,10,9,1,0,-92、设计一个能用对分查找算法思想解决的实际问题。
【参考资料】网络文章类/。