六年级下册数学思维培优训练及答案
- 格式:doc
- 大小:637.50 KB
- 文档页数:7
2020年六年级下册数学思维培优训练及答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
六年级下册数学思维培优训练及答案含答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.【答案】(1)解:如图所示:(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宫与商场之间的距离是500 m【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.3.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.4.甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为的硫酸溶液600千克,乙容器中装有浓度为的硫酸溶液400千克.各取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样?【答案】解:甲容器硫酸:600×8%=48(千克),乙容器硫酸:400×40%=160(千克),混合后浓度:(48+160)÷(600+400)=20.8%,应交换溶液的量:600×(20.8%-8%)÷(40%-85)=600×0.128÷0.32=240(千克)答:各取240千克放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样。
2020年六年级下册数学思维培优训练及答案(1)一、培优题易错题1.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.4.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?【答案】解:B盐水浓度:(14%×6-13%×3)÷(4-1)=(0.84-0.39)÷3=0.45÷3=15%A盐水浓度:14%×3-15×2=12%C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3=(0.51-0.27)÷3=0.24÷3=8%答:盐水C的浓度为8%。
最新六年级下册数学思维培优训练及答案含详细答案(1)一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.3.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.4.炒股员小李上星期日买进某公司股票1000股,每股28元,下表为本周内该股票的涨跌情况(单位:元)(2)本周内最高价和最低价各是多少钱?(3)已知小李买进股票时付了1.5‰的手续费(a‰表示千分之a),卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:由上表可得:28+4-6-1-2.5=22.5元∴星期四收盘时,每股是22.5元(2)解:由题意得:星期一股价最高,为28+4=32元星期四股价最低,由(1)知22.5元∴本周内股价最高为32元,最低为22.5元(3)解:由题意得:买入时交易额为 28×1000=28000元买入手续费为 28000×1.5‰=42元卖出时交易额为29×1000=29000元卖出手续费和交易税共29000×(1.5‰+1‰)=72.5元总收益=29000-28000-(42+72.5)=885.5元因此,如果小李在周六收盘前将全部股票卖出,他将收益885.5元【解析】【分析】(1)由表格可知星期四收盘价格=28+4-6-1-2.5,计算可求得;(2)分别算出这几天的股市价格,比较可得答案;(3)分别算出买入时交易额、买入手续费、卖出时交易额、卖出手续费和交易税,则总收益=卖出时交易额-买入时交易额-买入手续费-卖出手续费和交易税,代入计算可得.5.学校举行“创客节”,明明的创客作品模型中需要用到一种花瓣图案(如下图),花瓣图案的各个小圆半径都是1cm。
等积变形(思维拓展提高卷)一.选择题(共9小题)1我国古代数学家刘徽利用“出入相补”原理计算平面图形的面积,其原理是:把一个图形分割、移补,而面积保持不变。
下面没有用到这个原理的是()A. B. C. D.2把割补成后,面积()A.不变B.变大了C.变小了D.无法判断3一个圆柱形橡皮泥,底面积是12.56cm2,高是6cm,如果把它捏成同样底面积大小的圆锥,这个圆锥的高是( )cm.A.2B.3C.18D.364如图,长方形的面积与圆的面积相等,已知阴影部分的面积是84.78cm2,圆的周长是( )cm.A.18.84B.75.36C.37.685如果图中每个小方格代表1cm2,那么大长方形的面积是( )cm2.A.56B.60C.58D.666轧钢厂要把一种底面直径6厘米,长1米的圆柱形钢锭,轧制成内径(内侧直径)为10厘米,外径(外侧直径)为30厘米的无缝钢管,如果不计加工过程中的损耗,则这种无缝钢管的长是()A.4.25厘米B.5厘米C.4厘米D.4.5厘米7把圆柱的底面平均分成若干等份,切开后,拼成一个长方体,这个长方体与圆柱相比()A.体积不变,表面积也不变B.体积不变,表面积变大C.体积变大,面积不变8以下是四位同学运用转化的策略将左边的图形转化成右边的图形解决问题,其中做对的有( )位.A.1B.2C.3D.49如图的等腰梯形中,甲三角形的面积( )乙三角形的面积。
A.大于B.等于C.小于D.无法判断二.填空题(共25小题)10(如图)运用了数学思想方法是,你还知道哪些数学思想方法?再列举一个。
11如图,大正方形ABCD的边长是10cm,小正方形CGFE的边长是6cm,那么图中阴影部分的面积是cm2。
12将一底面半径为2分米的圆柱的底面平均分成若干个扇形,截开拼成一个和它等底等高的长方体后,表面积增加16平方分米,圆柱的体积是.13把一个底面半径2厘米、高1.5厘米的圆柱形钢锭,铸成底面积大小不变的圆锥形钢锭,圆柱的高和圆锥的高的比是.14有一种饮料瓶的容积是50立方厘米,瓶身呈圆柱形(不包括瓶颈).现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米.瓶内现有饮料立方厘米.15如图,外侧大正方形的边长是10厘米,图中阴影部分的面积是27.5平方厘米,那么圆内的大正方形面积是小正方形面积的倍.16用6米、8米、10米、16米、20米、28米分别作为如图的6条边的边长,当这个图形的面积最大时,过A点画一条直线把图形分成面积相等的两部分,这条直线与边界的交点为K,从A点沿边界走到K点,较短的路线是米.17如图所示,梯形下底是上底的1.5倍,梯形中阴影面积等于空白面积,三角形OBC的面积是12,那么三角形AOD的面积是.18如图,ABCDEF为正六边形,P为其内部任意一点,若△PBC、△PEF的面积分别为3和12,则正六边形ABCDEF的面积是.19每块砖0.6元,修补好下图中的墙体上的漏洞需要砖钱元.20图中阴影部分的面积是.(图中的三角形是等腰直角三角形,π=3.14)21如图,E,F,G,H是边长为2的正方形ABCD各边的中点,则图中阴影部分的面积等于.22如图,三个大小相同的正方形重叠地放在一个大的正方形ABCD内,已知能看见的部分Ⅰ、Ⅱ、Ⅲ的面积分别是64平方厘米、38平方厘米、34平方厘米.那么正方形ABCD的边长是厘米.23如图中E、F、G、H分别是边AB、BC、CD、DA上的三等分点,如果阴影部分面积为10平方厘米,则四边形ABCD的面积等于平方厘米.24如图所示,有一张四边形纸片ABCD,其中AD=2,AB=4,CD=5,把这张四边形纸片如图所示折叠,点A落在点E处,点E到点C的最短距离为.25一张长方形铁皮长32厘米,宽10厘米,把它围成一个圆柱体,做底面周长,做高,所围成的圆柱体的体积最大.长方形围圆柱体有两种围法,但所围成的圆柱体没变.26一级台阶的长10米、宽0.8米、高0.5米,从一楼到二楼有12级台阶,二楼到六楼每层有18级台阶,台阶的表面积平方米.27用一块正方形玻璃来修补窗户,需要在相邻的两边分别划掉5厘米和2厘米,共划掉298平方厘米,原来正方形玻璃的面积是平方厘米,剩下部分的面积是平方厘米.28如图,图中的小正方形完全一样,大长方形的周长是56厘米.这个大长方形的面积是平方厘米.29长方形的广告牌长为15米,宽为10米,A、B、C、D分别在四条边上,并且C比A低4米,D在B 的右边7米,则四边形ABCD的面积是平方米.30如图所示,一种饮料瓶,容积是200ml,瓶身是圆柱形.将该瓶正放时饮料高20cm,倒放时余部分高5cm,瓶内的饮料是ml.31数学小组将一圆柱按左图切割开,然后拼为右图,观察填空.拼出的右图是一个近似的体,它的高与圆柱的高,是;它的底面积与圆柱的底面积,是;拼出图形的体积是,圆柱的体积与它,所以圆柱的体积是.32右图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,左图中阴影部分是右图中阴影部分的面积%.33一个圆柱铅块和一个圆锥铅块等底等高,它们可以熔铸成一个长8厘米、宽3厘米、厚2厘米的长方体,那么圆柱的体积是立方厘米,它们的体积相差立方厘米.34如图所示,把底面直径4厘米、高10厘米的圆柱切成若干等份,拼成一个近似的长方体.这个长方体的体积是立方厘米,表面积是平方厘米.三.应用题(共2小题)35如图所示,S A=32dm2,S B=8dm2,h=5dm.现在要把A处的铁块熔到B处.使A、B处同样高,这时B处比原来升高了多少分米?36如图,一瓶营养液的瓶底直径是12厘米,瓶高30厘米,液面高20厘米,倒置后,液面高25厘米.这个瓶子的容积是多少?等积变形(思维拓展提高卷)参考答案与试题解析一.选择题(共9小题)1【答案】A【分析】根据题意,我国古代数学家刘徽利用“出入相补”原理来计算平面图形的面积,根据数学常识即可完成判断。
2021=2022学年六年级下册数学(培优)思维能力训练卷姓名:___________班级:___________考号:___________一、填空题1.在NBA总决赛的一场比赛中,骑士球星詹姆斯全场27投16中加上8罚6中,得41分,已知3分线外投中一球记3分,3分线内投中一球算2分,罚球算1分,则詹姆斯本场比赛投中了(______)个3分球。
2.一根粗细均匀的竹竿(长约1米),在中点的位置打个小孔并拴上绳子。
左边的塑料袋在刻度2和4上,放3个棋子,右边的塑料袋在刻度3上,放(______)个棋子才能保持平衡。
3.蜡烛每分钟燃烧的长度一定,一支蜡烛点火8分钟后长12厘米,点火18分钟后长7厘米,这支蜡烛点火(______)分钟的长度是1厘米。
4.有一个空罐如图,如果倒入6碗浓果汁和3杯水,刚好倒满;如果倒入2碗浓果汁和2杯水,液面到达A处。
那么,要想倒到这个空罐的一半需要(______)碗浓果汁或者(______)杯水。
5.一个等腰三角形底和高的比是8∶3,如果沿着它的高剪开后,拼成一个长方形,这个长方形的面积是192平方厘米,然后再把拼成的长方形卷成一个最大的圆柱,这个圆柱的体积(________)立方厘米(π=3)。
6.A是大于0小于10的自然数,B是0,用字母A、B组成一个能同时被2、3、5整除的四位数是(______)。
7.计算机是将信息转化成二进制数进行处理的,二进制“逢二进一”,(1101)2表示二进制数,将它转化成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(11011)2转化成十进制形式是数(______)。
8.何师傅将一批博易新思维教材装箱,当他装满15箱时,发现已装的书比这批书的4还少24本,接着他又装满13箱,正好装完。
这批书共有(______)7本。
9.一个盒子里有黑、白、红三色的珠子共17颗,其中白色珠子的颗数是红色珠子的7倍,那么盒子里最少有(______)颗黑珠子。
多次相遇问题(思维拓展提高卷)一、选择题(共8小题)1甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。
已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是()A.166米B.176米C.224米D.234米2爸爸和儿子去2km外的公园,爸爸和儿子同时出发.儿子骑车到公园时,爸爸只走了一半路程.儿子立刻返回,遇到爸爸后又骑向公园,到公园又返回⋯直到爸爸到达公园.儿子从出发开始一共骑了()A.2kmB.4kmC.6km3甲、乙两人在400米的圆形跑道上练习跑步,从同一地点同时向相反方向出发,途中第一次相遇和第二次相遇经过40秒,甲比乙每秒快2米。
乙每秒跑( )米。
A.10B.6C.5D.44一条环形跑道的长是40米,小东和小明在跑道上同一点沿相反方向同时出发,小东每秒跑6米,小明每秒跑4米,那么,除第一次出发以外,两人在中途相遇了( )次后又相遇在原出发点.A.2B.3C.4D.55一辆汽车和一辆摩托车同时从甲、乙两地相向开出,相遇后辆车继续行驶,当摩托车到达甲城,汽车到达乙城后,立即返回,第二次相遇时汽车距甲城120千米,汽车与摩托车的速度比是2:3.则甲乙两城相距多少千米.()A.100(km)B.150(km)C.155(km)D.135(km)6依依和萍萍沿着400米的环形跑道跑步.她们从同一地点出发,向相反方向跑动,依依的速度是140米/分,萍萍的速度是110米/分.( )分钟后她们第二次相遇.A.1.25B.2.5C.3.2D.6.57甲乙两人分别从桥的两端同时出发,往返于桥的两端之间。
甲的速度是70米/分,乙的速度是80米/分,过6分钟两人第二次相遇。
这座桥长()A.150米B.300米C.450米8A,B两地相距2400米,甲从A地,乙从B地同时出发,在AB两地往返长跑,甲每分钟300米.乙是240米,35分钟后停止.甲乙在第( )次相遇距A最近.A.1B.2C.3D.4二、填空题(共32小题)1甲、乙两车同时从A、B两地相向而行,在距B地54千米处相遇,他们各自到达对方车站后立即返回,在距A地42千米处相遇。
六年级下册数学思维培优训练及答案一、培优题易错题1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.2.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.3.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.4.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.(1)写出图中格点四边形DEFG对应的S,N,L.(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.【答案】(1)解:根据图形可得:S=3,N=1,L=6(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a ,∴S=N+ L﹣1,将N=82,L=38代入可得S=82+ ×38﹣1=100【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.5.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.6.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.(1)用含的代数式表示点对应的数:________;(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.①用含的代数式表示点在由到过程中对应的数:________ ;②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);③当PQ=3 时,求 t的值.________【答案】(1)(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,【解析】(1)点所对应的数为:( 2 )①② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒当时,:,:,解之得当时,:,:,解之得【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.7.甲、乙两瓶盐水,甲瓶盐水的浓度是乙瓶盐水的倍.将克甲瓶盐水与克乙瓶盐水混合后得到浓度为的新盐水,那么甲瓶盐水的浓度是多少?【答案】解:设乙瓶盐水的浓度是x,甲瓶水的浓度是3x。
100×3x+300x=(100+300)×15%600x=60x=0.10.1×3=0.3=30%答:甲瓶盐水的浓度是30%。
【解析】【分析】设乙瓶盐水的浓度是x,甲瓶水的浓度是3x。
等量关系:甲瓶水盐的质量+乙瓶水盐的质量=混合后盐的质量。
根据等量关系列方程解答即可。
8.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?【答案】解:甲的工作效率:,丙的工作效率:,乙的工作效率:,乙独做的时间:1÷=24(天)。
答:乙一人单独抄需要24天才能完成。
【解析】【分析】已知甲、乙、丙合抄一天完成书稿的,又已知甲每天抄写量等于乙、丙两人每天抄写量之和,因此甲两天抄写书稿的,即甲每天抄写书稿的;由于丙抄写5天相当于甲乙合抄一天,从而丙6天抄写书稿的,即丙每天抄写书稿的,这样用三人的工作效率和减去甲、丙的工作效率即可求出乙的工作效率,进而求出乙单独完成需要的时间。
9.一项挖土方工程,如果甲队单独做,16天可以完成,乙队单独做要20天能完成.现在两队同时施工,工作效率提高20%.当工程完成时,突然遇到了地下水,影响了施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程.问整工程要挖多少方土?【答案】解:工作效率和:,遇到地下水前的天数:(天),遇到地下水后工作的天数:10-(天),遇到地下水后的工作效率:,47.25÷()=1100(方)答:整工程要挖1100方土。
【解析】【分析】用原来的工作效率和乘(1+20%)求出提高后的工作效率和,用原来完成的工作量除以工作效率和求出遇到地下水前挖的时间,进而求出遇到地下水后挖的时间。
用遇到地下水后的工作量除以工作时间求出后来的工作效率。
根据分数除法的意义,用每天少挖的土方数除以前后合做的工作效率的差即可求出整工程挖的土方数。
10.几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?【答案】解:每人每天割草:,(名)。
答:共有20名学生。
【解析】【分析】有12人全天都在甲地割草,设有人上午在甲地,下午在乙地割草.由于这人在下午能割完乙地的草(甲地草的),所以这些人在上午也能割甲地的草,所以12人一天割了甲地的草,这样就可以求出每人每天割草量,用全部草量除以每人每天的割草量即可求出学生总数。