当前位置:文档之家› 陶瓷纤维棉指标

陶瓷纤维棉指标

陶瓷纤维棉指标
陶瓷纤维棉指标

陶瓷纤维棉指标

陶瓷纤维棉由高纯度的硅酸铝原料熔融后,采用喷吹法或甩丝法制造而成。陶瓷纤维棉是陶瓷纤维系列制品的基础材料。

产品特点:

?在高温状态下仍松散柔软且具有良好的弹性

?良好的热稳定性,高温收缩小,低热容

?低导热率,良好的隔热性能

?良好的化学稳定性,抗侵蚀性

?良好的抗热震,吸音性能

?安装简便

产品应用:

?高温环境填充密封及隔热(窑车,管道,窑门等)

?纤维复合材料(如:摩擦片等)

?各种工业炉衬里(热面及背衬)

?建筑防火,吸音

?高温过滤材料

?深加工制品原料(陶瓷纤维板,真空成型毡/板或其他制品等)

1260 纤维棉1400 纤维棉1500 纤维棉1600 纤维棉分类温度(℃) 1260 1425 1500 1600

熔点(℃) 1760 1700 1760 - 颜色白色白色绿蓝白色平均纤维直径( u m) 3.5 3.5 3.5 3.1 纤维长度(mm) ~250 ~250 ~150 ~100 纤维比重(Kg/m3) 2600 2800 2650 3100

渣球含量(>212 微米) (%) 18 18

导热系数Kcal/mh ℃ (W/mK) ,ASTM C201, 190kg/m3

平均400℃0.08 0.08

平均600℃0.12 0.12

平均800 ℃0.16 0.16

平均1000 ℃0.23

化学成分:

Al2O347.1 35.0 40.0 72

SiO252.3 49.7 58.1 28

ZrO215.0

Cr2O3 1.8 棉的包装(Kg/ 箱)15

关键字:陶瓷纤维棉耐火材料

棉纤维性质

棉纤维性质 长度 棉纤维长度是指纤维伸直时两端间的距离,是棉纤维的重要物理性质之一。棉纤维的长度主要由棉花品种、生长条件、初加工等因素决定。棉纤维长度与成纱质量和纺纱工艺关系密切。棉纤维长度长,整齐度好,短绒少,则成纱强力高,条干均匀,纱线表面光洁,毛羽少。 棉纤维的长度是不均匀的,一般用主体长度、品质长 棉纤维化学、物理性质 度、均匀度、短绒率等指标来表示棉纤维的长度及分布。主体长度是指棉纤维中含量最多的纤维的长度。品质长度是指比主体长度长的那部分纤维的平均长度,它在纺纱工艺中,用来确定罗拉隔距。短绒率是指长度短于某一长度界限的纤维重量占纤维总量的百分率。一般当短绒率超过15%时,成纱强力和条干会明显变差。此外,还有手扯长度、跨距长度等长度指标。 线密度 棉纤维的线密度是指纤维的粗细程度,是棉纤维的重要品质指标之一,它与棉纤维的成熟程度、强力大小密切相关。棉纤维线密度还是决定纺纱特数与成纱品质的主 不同日均温、土壤水量下不同品种棉纤维长度 要因素之一,并与织物手感、光泽等有关。纤维较细,则成纱强力高,纱线条干好,可纺较细的纱。 成熟度

棉纤维的成熟度是指纤维细胞壁的加厚程度,即棉纤维生长成熟的程度,它与纤维的各项物理性能密切相关。正常成熟的棉纤维,截面粗、强度高、转曲多、弹性好、有丝光、纤维间抱合力大、成纱强力也高。所以,可以将成熟度看成棉纤维内在质量的一个综合性指标。 强度和弹性 棉纤维的强度是纤维具有纺纱性能和使用价值的必要条件之一,纤维强度高,则成纱强度也高。棉纤维的强度常采用断裂强力和断裂长度表示。细绒棉的 常用纤维的基本性能 强力为3.5~4.5cN,断裂长度为21~25km;长绒棉的强力为4~6cN,断裂长度为30km.由于单根棉纤维的强力差异较大,所以一般测定棉束纤维强力,然后再换算成单纤维的强度指标。棉纤维的断裂伸长率为3%~7%,弹性较差。 吸湿性 棉纤维是多孔性物质,且其纤维素大分子上存在许多亲水性基因(—OH),所以其吸湿性较好,一般大气条件下,棉纤维的回潮率可达8.5%左右。 耐酸碱性 棉纤维耐无机酸能力弱。棉纤维对碱的抵抗能力较大,但会引起横向膨化。可利用稀碱溶液对棉布进行“丝光”。 此外,棉纤维中还夹着杂质和疵点,杂质有泥沙、树叶、铃壳等,疵点有棉结、索丝等。它们即影响纺织的用棉量,也影响加工和纱部质量,所以必须进行检验,严格控制。 编辑本段棉型织物的特点 棉型织物是指以棉纱或棉与棉型化纤混纺纱线织

陶瓷纤维毯的主要生产方法和工艺流程(特选参考)

陶瓷纤维毯的主要生产方法和工艺流程 陶瓷纤维毯的主要生产方法和工艺流程散状纤维坯送入针刺机针刺时,"针刺制毯"借鉴无纺针刺工艺技术开发而成。由于刺针上钩状针脚,使纤维层互相紧密交织,以提高纤维毯的抗拉强度及抗风蚀性能。主要生产方法主要有电阻炉和电弧炉两种。纤维的成形方法分为喷吹法、甩丝法和甩丝-喷吹法等。硅酸铝纤维原料的熔融一般采用电炉作为熔化设备。工艺流程电弧法喷吹成纤、湿法制毡工艺:形成流股,合格配合原料加入电弧炉中熔融。流股经压缩空气或蒸汽喷吹后成为纤维,经过除渣器除渣后,集棉形成废品纤维。废品纤维被送入搅拌槽旋涡除渣后,被送至贮料槽,施加粘接剂后形成浆料。浆料经压机模压或真空吸滤,干燥形成陶瓷纤维毯。 电阻法喷吹(或甩丝)成纤、 干法针刺制毯工艺:根据其成纤方法不同,陶瓷纤维毯有两种生产工艺; 电阻法喷吹(包括平吹和立吹)成纤、 干法针刺制毯工艺;"针刺制毯"是借鉴无纺针刺工艺技术开发而成,散状纤维坯 送入针刺机针刺时,由于刺针上钩状针脚,使纤维层互相紧密交织,以提高纤维毯的 抗拉强度及抗风蚀性能。 针刺机利用具有三角形或其他形状的截面,且在棱边上带有刺钩的刺针对纤维网反

复进行穿刺。由交叉成网或气流成网机下机的纤网,在喂入针刺机时十分蓬松,只是由纤维与纤维之间的抱合力而产生一定的强力,但强力很差,当多枚刺针刺入纤网时,刺针上的刺钩就会带动纤网表面及次表面的纤维,由纤网的平面方向向纤网的垂直方向运动,使纤维产生上下移位,而产生上下移位的纤维对纤网就产生一定挤压,使纤网中纤维靠拢而被压缩。当刺针达到一定的深度后,刺针开始回升,由于刺钩顺向的缘故,产生 移位的纤维脱离刺钩而以几乎垂状态留在纤网中,犹如许多的纤维束“销钉”钉入了纤网,从而使纤网产生的压缩不能恢复,如果在每平方厘米的纤网上经数十或上百次的反复穿刺,就把相当数量纤维束刺入了纤网,纤网内纤维与纤维之间的摩擦力加大,纤网强度升高,密度加大,纤网形成了具有一定强力、密度、弹性等性能的非织造品。 针刺非织造材料的主要应用有地毯、装饰用毡、运动垫、褥垫、家具垫、鞋帽用呢、肩垫、合成革基布、涂层底布、熨烫用垫、伤口敷料、人造血管、热导管套、过滤材料、土工织物、造纸毛毯、油毡基布、隔音隔热材料以及车用装饰材料等。目前,针刺机在高温过滤产品的运用比较多。高温过滤产品的高性能纤维主要有玻璃纤维、Nomex纤维、P84纤维、PPS纤维、PETT纤维。由于前几种纤维自身的特性,使用范围受到了一定影响。玻璃纤维比较脆,Nomex纤维耐氧化性差,P84纤维易水解老化,PPS纤维使用温度较低。而PETT纤维耐化学腐蚀、耐高温,能在各种恶劣环境下使用并取得较好的效果,也比其他纤维制成的滤料有更长的使用寿命。 虽然PETT具有良好的耐温和耐化学腐蚀性能,但价格昂贵且过滤效率相对其它纤维制成滤料没有优势。为此,有些企业在其中加入适量的超细玻璃纤维,既不影响耐温性能,又能提高滤料的过滤效率和降低率料价格,也扩大了适用范围和延长使用寿命。 针刺机种类: 条纹针刺机、通用花纹针刺机、异式针刺机、环形针刺机、圆管型特殊针刺机、四板正位对刺针刺机、倒刺针刺机、双滚筒针刺机、双主轴针刺机、起绒针刺机、提花针刺机、高速针刺机、电脑自动跳跃针刺机、针刺水刺复合机等。 针刺机的主要组成部分: 1.针刺机主要由机架,送网机构、针刺机构、牵拉机构、花纹机构、传动机构 等组成,其中花纹机构仅花纹针刺机具有。(其中最重要的是针刺机构) 2.针刺非织造工艺形式有预刺、主刺、花纹针刺、环式针刺和管式针刺等。 (其中预刺和主刺是最普遍的。) 针刺法非织造工艺的特点: 1.适合各种纤维,机械缠结后不影响纤维原有特征。

纤维的17项特性指标详解

纤维的17项特性指标详解 纤维的特性决定了它的品质特征以及其在特定应用条件下的适用性。一般采用标准测试和试验室检测来测量和比较纤维的特性。 一、耐磨牢度 耐磨牢度是指抵抗穿着摩擦的能力,其有助于提高织物的耐久性。由高断裂强度和耐磨牢度好的纤维制成的服装能长时间耐穿,并且在很长一段时间后才会有穿着磨损的迹象出现。 锦纶广泛应用于运动外套,如滑雪夹克衫、足球短衫。这是因为它的强度和耐磨牢度都特别好。醋酯纤维由于它出色的悬垂性和低成本,则经常用于外衣和夹克衫的衬里。但由于醋酯纤维的耐磨性差,在夹克衫外层织物出现相应磨损之前衬里易磨损或形成破洞。 二、吸水性 吸水性就是吸湿的能力,它通常用回潮率来表示。纤维的吸水性是指干燥纤维在温度为70℉(相当于21℃),相对湿度为65%的标准条件下的空气中吸收水分的百分数。 易吸水的纤维称为亲水纤维。所有天然动植物纤维和两种人造纤维——粘胶纤维和醋酯纤维是亲水纤维。那些吸水有困难或只能吸收少量水分的纤维称做疏水性纤维。除粘胶纤维、Lyocell 纤维和醋酯纤维以外,所有人造纤维都是疏水性纤维。玻璃纤维则根本不吸水,其他纤维通常只有4%或更低的回潮率。 纤维的吸水性影响其许多方面的应用,包括: ●皮肤舒适性:由于吸水性差,汗液的流动会引起冷而湿的感觉。 ●静电性:伴随着疏水纤维会发生衣服粘着和冒火花等问题,因为几乎没有水分来帮助疏散累积在纤维表面的带电粒子,灰尘也因为静电而被带到纤维上并粘附其上。 ●水洗后尺寸稳定性:水洗后,疏水性纤维比亲水性纤维收缩要小,纤维很少膨胀,这是织物收缩的原因之一。 ●去污性:很容易从亲水性纤维中去除污渍,因为纤维会把清洁剂和水同时吸入。 ●拒水性:亲水性纤维通常要进行较多的拒水耐用后处理,因为这种化学处理可以使这些纤维拒水性更好。 ●褶皱回复性:疏水性纤维通常拥有较好的褶皱回复性,特别是经过洗烫之后,因为它们不吸水、不膨胀并在褶皱状态下干燥。 三、化学作用 在纺织品加工(如印染、后整理)和家庭/专业护理或清晰(如用肥皂、漂白粉和干洗溶剂等)过程中,纤维一般需与化学品接触。化学品的种类、作用强度以及作用时间决定了对纤维的影响程度。了解化学品对不同纤维的影响是很重要的,应为它直接与清洗中所需要的护理有关。 纤维对化学品有不同的反应。举个例子,棉纤维抗酸性相对较低,而耐碱性则很好。另外,

耐火陶瓷纤维基础知识

耐火陶瓷纤维基础知识一、耐火陶瓷纤维定义 以SiO 2、AL 2 O 3 为主要成分且耐火度高于1580℃纤维状隔热材料的总称。 二、耐火陶瓷纤维的特点 1、耐高温:使用温度可达950-1450℃。 2、导热能力低:常温下为0.03w/m.k,在1000℃时仅为粘土砖的1/5。 3、体积密度小:耐火陶瓷纤维制品一般在64-500kg/m3之间。 4、化学稳定性好:除强碱、氟、磷酸盐外,几乎不受化学药品的侵蚀。 5、耐热震性能好:具有优良的耐热震性。 6、热容量低:仅为耐火砖的1/72,轻质转的1/42。 7、可加工性能好:纤维柔软易切割,连续性强,便于缠绕。 8、良好的吸音性能:耐火陶瓷纤维有高的吸音性能,可作为高温消音材料。 9、良好的绝缘性能:耐火陶瓷纤维是绝缘性材料,常温下体积电阻率为 1×1013Ω.cm,800℃下体积电阻率为6×108Ω.cm。 10、光学性能:耐火陶瓷纤维对波长1.8-6.0um的光波有很高的反射性。 三、耐火陶瓷纤维的分类 1、按结构可分为晶质纤维和非晶质纤维两大类。 2、按使用温度可分为: 普通型耐火陶瓷纤维使用温度950℃ 标准型耐火陶瓷纤维使用温度1000℃ 高纯型耐火陶瓷纤维使用温度1100℃ 高铝型耐火陶瓷纤维使用温度1200℃ 锆铝型耐火陶瓷纤维使用温度1280℃ 含锆型耐火陶瓷纤维使用温度1350℃ 莫来石晶体耐火纤维(72晶体)使用温度1400℃ 氧化铝晶体耐火纤维(80、95晶体)使用温度1450℃ 3、生产方法 (1)非晶质纤维 原材料经电阻炉熔融,在熔融状态下,在骤冷(0.1S)条件下,在高速旋转甩丝辊离心力的作用下或在高速气流的作用下被甩丝而成或被吹制而成的玻璃态纤维。 (2)晶体纤维 生产方法主要有胶体法和先驱体法两种。 胶体法:将可融性的铝盐、硅盐,制成一定粘度的胶体溶液,按常规生产方法成纤后经热处理转变成铝硅氧化物晶体纤维。 先驱体法:将可溶性的铝盐、硅盐,制成一定粘度的胶体溶液,随后被先驱体(一种膨化了的有机纤维)吸收,再进行热处理,转变成铝硅氧化物晶体纤维。

绝热材料设计报告

材料设计报告 材料中澳1401 蔡云伟0605140118 本次材料设计任务由老师在课堂给出,题目如下: 设计一种绝热材料,密度小于1g/cm3,工作温度大于1600摄氏度,热导率小于0.1W/(m k). 在进行了小组讨论和学术方向的查询之后,我们的小组得出了往陶瓷绝热材料方向进行设计的结论,我将以分点的形式展开我的设计报告。 一、绝热材料的相关介绍 在设计材料之前,我首先了解了这类材料的基本信息。绝热材料是指能阻滞热流传递的材料,又称热绝缘材料。传统绝热材料,如玻璃纤维、石棉、岩棉、硅酸盐等,新型绝热材料,如气凝胶毡、真空板等。它们用于建筑围护或者热工设备、阻抗热流传递的材料或者材料复合体,既包括保温材料,也包括保冷材料。绝热材料一方面满足了建筑空间或热工设备的热环境,另一方面也节约了能源。国家将绝热材料看作是继煤炭、石油、天然气、核能之后的“第五大能“。绝热材料种类繁多,一般可按材质、使用温度、形态和结构来分类。按材质可分为有机绝热材料、无机绝热材料和金属绝热材料三类。 二、材料的设计思路 首先我们要求是,热导率不到0.1,密度不超过水的材料,因此导热率和密度都不符合要求的金属材料。最好的选择即是非金属材料。我们参考了碳纤维、气凝胶、金属粉末涂层的不同材料,然而在研究过程中我们发现碳碳非金属材料在导热率上有缺陷,最近火热的气凝胶材料也在工作温度条件上达不到要求,气凝胶最高抵抗1400摄氏度,但我们所设计的材料工作温度就在1600度,因此气凝胶材料不符合要求。而且气凝胶材料的缺陷在于不好控制其微观材料结构(气态的均匀分布性以及分子热运动的影响),所以我们最终还是放弃了气凝胶材料。 之后我们把视野放到了无机非金属材料陶瓷上,陶瓷纤维材料在理论上完美符合我们的要求。其低密度,高耐热性,低热导率,且抗磨耐用的特点无疑是我们的首选。因为陶瓷是有悠久历史的固体材料,所以我们在设计中可以借鉴前人的工艺成果,并且将我们所需的特性进一步加强。陶瓷的低密度是因为多气孔,那么我们在设计材料时需要加入隔热的真空层来减轻质量,进一步加强优势,并且节省材料。并且寻找陶瓷脆性易损的原因,设计时考虑应力危险区,合理调整陶瓷的晶向结构,并增加其使用寿命。 三、陶瓷材料的简介 陶瓷纤维是一种纤维状轻质耐火材料,它的直径一般为2~5 μm,长度多为30~250 mm,纤维表面呈光滑圆柱形。由于其重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械震动等优点,广泛应用于机械、冶金、化工、石油、陶瓷、玻璃、电子等行业。根据使用功能,陶瓷纤维可以分为高温陶瓷纤维和功能陶瓷纤维,用作绝热材料,过滤材料,高温超导材料等,此外陶瓷纤维还被用于生产耐高温陶瓷纤维纸和箱板纸。[1] 陶瓷纤维最早出现在美国,1941 年美国巴布维尔考克斯公司以天然高岭土为原料使用电弧熔融喷吹的方法制得陶瓷纤维[2]。20 世纪40 年代后期,美国两家公司生产的硅酸铝系列陶瓷纤维首次应用于航天领域。20 世纪60 年代,美国研制出多种应用工业窑炉壁衬的陶瓷纤维。目前,国外企业在原有1000 型、1260 型、1400 型、1600 型[3]及混配纤维的基础上,在陶瓷纤维熔体内加入Zr O2、Cr2O3,提高了陶瓷纤维的使用温度[4]

陶瓷纤维的主要用途和生产历史

陶瓷纤维的主要用途和生产历史 陶瓷纤维是一种纤维状轻质耐火材料,具有重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械震动等优点,因而在机械、冶金、化工、石油、陶瓷、玻璃、电子等行业都得到了广泛的应用.近几年由于全球能源价格的不断上涨、节能已成为中国国家战略的背景下,比隔热砖与浇筑料等传统耐材节能达 10-30%的陶瓷纤维在中国国内得到了更多更广的应用,发展前景十分看好。 主要用途 1、各种隔热工业窑炉的炉门密封、炉口幕帘。 2、高温烟道、风管的衬套、膨胀的接头。 3、石油化工设备、容器、管道的高温隔热、保温。 4、高温环境下的防护衣、手套、头套、头盔、靴等。 5、汽车发动机的隔热罩、重油发动机排气管的包裹、高速赛车的复合制动摩擦衬垫。 6、输送高温液体、气体的泵、压缩机和阀门用的密封填料、垫片。 7、高温电器绝缘。 8、防火门、防火帘、灭火毯、接火花用垫子和隔热覆盖等防火缝制品。 9、航天、航空工业用的隔热、保温材料、制动摩擦衬垫。 10、深冷设备、容器、管道的隔热、包裹。 11、高档写字楼中的档案库、金库、保险柜等重要场所的绝热、防火隔层,消防自动防火帘。 生产历史 从生产历史上看,最早诞生的是喷丝生产工艺,但单线的生产能力较低,年产一般为1000-1500吨.随着生产效率提高的要求与生产工艺的不断探索与研究,最终发明了更先进的甩丝生产工艺,甩丝生产工艺的单条生产线的生产能力能达到喷丝工艺的2-4倍.以英国摩根热陶瓷公司在上海的甩丝毯生产线为例,单线年产量达近6000吨; 甩丝生产工艺已被绝大多数行业生产巨头与客户接受,所以中国在近五年内几乎所有新建陶瓷纤维生产线都选用甩丝工艺法喷丝纤维毯也有其独特的应用,如果需要将纤维打碎后做成二次加工品(如:制作真空成型品等),喷丝纤维因纤维较细而更容易与其他原料充分混合,所以较受欢迎. 所以,甩丝与喷丝工艺的陶瓷纤维各有所长,客户要根据实际应用取其长而避其短,以期达到最佳的效果.当然,甩丝毯的适用场合要远远多于喷丝毯.

棉纤维检测

棉纤维检测 棉纤维性能检验方法 (一)品级 品级是原棉品质优劣的一个综合性指标,反映棉纤维的内在质量。品是品质,级是级别。品级划分依据成熟程度、色泽特征、轧工质量 分级情况: 细绒棉分七级,一级至七级(无级外棉)。三级为标准级,一级至五级为纺用棉。 长绒棉分为一至五级,三级为品级标准级,五级以下为级外棉。 彩棉分为一至三级,二级为品级标准级,三级以下为级外棉。 品级标准分为文字标准和实物标准 评级方法:在分级室内人工模拟昼光光线或北窗射入的正常光线下,手持棉样,在实物标准旁逐样对照,决定棉样品级。 (二)长度 1、长度及不均一性 细绒棉纤维长度一般为: 23~33mm 长绒棉纤维长度一般为: 33~45mm 长度-重量分布曲线图(右偏)自然长度排列曲线图 图棉纤维长度分布曲线 2、影响长度的因素 (1)棉花的种类与品种(决定因素) (2)生长条件 (3)初加工 3、长度与成纱质量与纺纱工艺的关系 (1)棉纤维长度与成纱强度 (2)棉纤维长度与成纱细度 (3)棉纤维长度与成纱条干均匀度 (4)棉纤维长度与成纱毛羽 (5)纤维长度与纺纱工艺的关系十分密切(棉纺设备的结构与尺寸、各道工序的工艺参数,

因棉纤维的长短不同而不同) 4、棉纤维长度的指标与检验 (1)长度指标: ★主体长度:棉纤维长度分布中占重量或根数最多的一组长度。 用于工商交易。细绒棉25-31mm,长绒棉33mm以上。 ★品质长度:主体长度以上各组纤维的重量加权平均长度。 确定棉纺织工艺参数用。 ★短绒率:棉纤维中长度短于一定界限长度的纤维重量(或根 数)占纤维总量(或根数)的百分率。 细绒棉界限:16mm;长绒棉界限20mm。 4、棉纤维长度的指标与检验 (2)测试方法: ①罗拉式分组测定法 ②手扯尺量法 ③梳片式分组测定法 ④纤维照影仪和HVI法 ①罗拉式分组测定法 仪器:Y111型或Y111A型罗拉式长度分析仪 测到的指标:主体长度、品质长度、短绒率、质量平均长度、长度标准差、长度变异系数、基数、均匀度。 (三)成熟度 1、棉纤维成熟度的概念与影响因素 ①定义——纤维胞壁加厚的程度和纤维中纤维素充满的程度,胞壁越厚,纤维素淀积的越多,成熟度越好。 ②影响因素:棉花的种类与品种、生长条件(影响大) 2、棉纤维成熟度与纤维性能、成品生产的关系 成熟度高,则中腔小、胞壁厚,腔宽与壁厚的比值小。正常成熟的棉纤维,截面粗、强度高、弹性好、有丝光,并有较多的天然转曲,可产生较大的抱合力,成纱强度高。 成熟度是综合反映棉纤维的内在质量的一项指标。 3、棉纤维成熟度的指标与检验 检验方法:腔壁对比法、显微镜法、偏振光法(2种) 指标:成熟系数K、成熟度比M、成熟纤维百分率P (1)成熟系数K:根据棉纤维腔宽与壁厚的比值的大小所定出的相应数值。 2)成熟度比M=实际增厚度/标准增厚度 成熟度比越大,说明纤维越成熟。 低于0.8时未成熟,M=1时成熟良好。 显微镜法:18%氢氧化钠溶液膨胀后,分正常、薄壁、死纤维 (3)成熟纤维百分率P:成熟纤维根数占纤维总根数的平均百分率。 显微镜法:18%氢氧化钠溶液膨胀后,分未成熟纤维、成熟纤维

硅酸铝陶瓷纤维

1 硅酸铝陶瓷纤维简介 1前言 陶瓷纤维是一种广泛应用于各类热工窑炉的绝热耐高材料。由于其容重大大低于其它耐火材料,因而蓄热很小,隔热效果明显,作为炉衬材料可大大降低热工窑炉的能源损耗,在节能方面为热工窑炉带来了一场革命。另一方面,由于陶瓷纤维的物理特性完全小同于传统耐火材料,因而它的应用技术和方法对热工窑炉的砌筑同样带来了一场变革。 陶瓷纤维于70年代末在中国开始工业生产。80年代,陶瓷纤维的应用得到了迅速推广,但主要都在1000℃以下的度范围内使用,应用技术简单落后。进入90年代,随着含锆纤维的开发和多晶氧化铝纤维的应用推广,使用度提高到1000℃--1400℃,但由于产品质量的缺陷和应用技术的落后,应用领域和应用方式都受到了局限,如多晶氧化铝(或莫来石)纤维不能制成纤维毯,产品规格单一,以散棉、混合纤维或纤维块为主,虽然产品的使用度有所提高,但强度很差,限制了应用范围,也缩短了使用寿命。日前大多用于原有炉衬内贴面,节能效果未能得到充分体现。含锆纤维是用熔融法生产的一种用途广泛、成本较低的硅酸铝系高档陶瓷纤维产品(长期使用度可达1350℃),可大量用作砌筑各种炉窑的热面或全纤维炉衬,但日前国内产品在这方面的质量和应用开发还很滞后。含铬纤维的使用度比含锆纤维的更高,可达1400℃,也属于熔融法生产的硅酸铝系陶瓷纤维,价格远低于多晶纤维,在国外应用很广泛,但国内还末见报道。 2陶瓷纤维的种类及性能 陶瓷纤维的品种主要有普通硅酸铝纤维,.高铝硅酸铝纤维,含cr2o2,zro2或b2o3的硅酸铝纤维,多晶氧化铝纤维和多晶莫来石纤维等。近年来国外已经开发成功或正在开发一些新的陶瓷纤维品种,如镁橄榄石纤维、sio2--cao-mgo〕系陶瓷纤维、al2o3-cao系陶瓷纤维和一些特殊的氧化物纤维。 镁橄榄石纤维是.高锻烧石棉后制得的一种陶瓷纤维。它的化学组成中mgosio2<1,容重为48—640kg/m3, 导热系数为0.44—0.70(w/m℃,熔点为1600--1700℃。镁橄榄石纤维可以作为石棉代用材料在高条件下长期使用。 sio2-cao-mgo系陶瓷纤维中的al2o3和其它杂质的含量很低,它以硅酸钙和硅灰石为原料经熔融成纤维后制得。这种陶瓷纤维的真空成型制品在1260℃加热24h后的收缩率小于3.5%,使用安全。 另一种对健康无害的陶瓷纤维是化学组成中不含sio2的al2o3-cao系纤维,其al2o3和cao含量在90%以上。它是用化工原料al2o3粉和caco3粉经高熔融后制得的一种陶瓷纤维。这种陶瓷纤维已有毡、毯和真空成型制品。 用熔融法生产的石英纤维是一种性能优异的陶瓷纤维,但由于价格昂贵,一般不用作绝热材料。在石英纤维上涂上si和a1可一进一步提.高其绝热性能。用过的石英纤维制品还可以再生使用,方法是将废石英纤维绝热制品粉碎,与水和粘结剂混合后成型制成高绝热制品。 高硅氧纤维也是一种性能忧良的陶瓷纤维,它是用普通碱硅酸盐玻璃纤维经酸处理和热处理后制得的高si o2含量的玻璃纤维,其长期使用度在1000℃以上。美国宇航局将它用作航天飞行器的绝热材料。 用溶胶一凝胶法可以生产al2o3纤维、多晶莫来石纤维和zro2纤维等陶瓷纤维。近年来,采用溶胶一凝胶法还成功开发一种al2o3-y2o3纤维。在这种纤维中al2o3的含量一般为14.7-54.3%,y2o3的含量为45.

棉花的品质指标

棉花的品质指标 棉纤维品质构成 1.棉纤维长度 是纤维品质中最重要的指标之一,与纺纱质量关系十分密切,当其他品质相同时,纤维愈长,其纺纱支数愈高。支数的计算,是在公定回潮率条件下(8.5%),每一公斤棉纱的长度为若干米时,即为若干公支,纱越细,支数越高。纺纱支数愈高,可纺号数愈小,强度愈大。 表一:原棉长度与可纺支数的关系 原棉种类 纤维长度(毫米) 细度(米/克) 可纺织数(公支) 长绒棉 33--41 6500--8500 100--200 细绒棉 25--31 5000--6000 33--99 粗绒棉 19--23 3000--4000 15--30 2.长度整齐度。纤维长度对成纱品质所起作用也受其整齐度的影响,一般纤维愈整齐,短纤维含量愈低,成纱表面越光洁,纱的强度提高。 3.纤维细度。纤维细度与成纱的强度密切相关,纺同样粗细的纱,用细度较细的成熟纤维时,因纱内所含的纤维根数多,纤维间接触面较大,抱合较紧,其成纱强度较高。同时细纤维还适于纺较细的纱支。但细度也不是越细越好,太细的纤维,在加工过程中较易折断,也容易产生棉结。 4.纤维强度。指拉伸一根或一束纤维在即将断裂时所能承受的最大负荷,一般以克或克/毫克或磅/毫克表示,单纤维强度因种或品种不同而异,一般细绒棉多在3.5- 5.0克之间,长绒棉纤维结构致密,强度可达4.5- 6.0克。 5.纤维成熟度。棉纤维成熟度是指纤维细胞壁加厚的程度,细胞壁愈厚,其成熟度愈高,纤维转曲多,强度高,弹性强,色泽好,相对的成纱质量也高;成熟度低的纤维-各项经济性状均差,但过熟纤维也不理想,纤维太粗,转曲也少,成纱强度反而不高。 表二:棉纤维的经济性状及可纺号数比较 棉纤维经济性状 长绒棉 细绒棉 色泽 乳白 洁白

陶瓷纤维性能及成分

陶瓷纤维是一种集传统绝热材料、耐火材料优良性能于一体的纤维状轻质耐火材料。其产品涉及各领域,广泛应用于各工业部门,是提高工业窑炉、加热装置等热设备热工性能,实现结构轻型化和节能的基础材料。 主要化学成份: SiO2: 45%-55% AL2O3: 40%-50% Fe2O3:0.8%-1.0% Na2O+K2O:0.2-0.5% 特点及用途: 具有低导热率,优良的热稳定性,化学稳定性,无腐蚀性.用该纤维生产的制动器衬片具有良好的耐高温性和分散性,适合各类混料机搅拌. 适用于有耐高温要求,热恢复性能好,制动噪音小的制动器衬片. 陶瓷纤维是一种纤维状轻质耐火材料,具有重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械震动等优点,因而在机械、冶金、化工、石油、交通运输、船舶、电子及轻工业部门都得到了广泛的应用,在航空航天及原子能等尖端科学技术部门的应用亦日益增多.发展前景十分看好。陶瓷纤维在我国起步较晚,但一直保持着持续发展的势头,生产能力不断增加,并实现了产品系列化,我国已发展成为世界陶瓷纤维生产大国。 陶瓷纤维的现状及发展趋势 早在1941年,美国巴布考克·维尔考克斯公司就利用天然高岭土经电弧炉熔融后喷吹成了陶瓷纤维。20世纪40年代后期,美国有两家公司生产硅酸铝系纤维,并第1次将其用于航空工业。进入50年代,陶瓷纤维已正式投入工业化生产,到了60年代,已研制开发出多种陶瓷纤维制品,并开始用于工业窑炉的壁衬。1973年全球出现能源危机后,陶瓷纤维获得了迅速的发展,其中以硅酸铝系纤维发展最快,每年以10%~15%的速度增长。美国和加拿大是陶瓷纤维的生产大国,年产量达到了10万t左右,约占世界耐火纤维年总产量的1/3。欧洲的陶瓷纤维产量位于第三,年产量达到6万t左右。在年产30万t的陶瓷纤维中,各种制品的比例大致为:毯和纤维模块45%;真空成型板、毡及异形制品25%;散状纤维棉15%:纤维绳、布等织品6%;纤维不定形材料6%:纤维纸3%。 陶瓷纤维制品的应用领域主要是加工工业和热处理工业(工业窑炉、热处理设备及其它热工设备),其消耗量约占40%,其次是钢铁工业,其消耗量约占25%。国外在提高陶瓷纤维产量的同时,注意研制开发新品种,除1000型、1260型、1400型、1600型及混配纤维等典型陶瓷纤维制品外,近年来在熔体的化学组分中添加ZrO2、Cr2O3等成分,从而使陶瓷纤维制品的最高使用温度提高到1300℃。此外,有些生产企业还在熔体的化学组分中添加CaO、MgO等成分,研制开发成功多种新产品。如可溶性陶瓷纤维含62%~75%Al2O3的高强陶瓷纤维及耐高温陶瓷纺织纤维等。因此,目前在国外陶瓷纤维的应用带来了十分显著的经济效益,导致陶瓷纤维的应用范围日益扩大,一些主要工业发达国家的陶瓷纤维产量继续保持持续增长的发展势头,其中尤以玻璃态硅酸铝纤维的发展最为迅速。同时,随着陶瓷纤维应用范围的不断扩大,导致陶瓷纤维制品的生产结构随之发生重大改变.如陶瓷纤维毯(包括纤维块)的产量由过去占陶瓷纤维产量的70%下降至45%;陶瓷纤维深加工制品(如纤维绳、布等纤维制品)、纤维纸、纤维浇注料、可塑料、涂抹料等纤维不定形材料的产量大幅度增长,接近于陶瓷纤维产量的15%。陶瓷纤维新品种的开发生产和应用,大大促进了陶瓷纤维的应用技术和施工方

棉纤维

棉纤维的性能 色泽通常为白色、乳白色或淡黄色.(1-彩棉的色泽?) 光泽较差,(2-原因?)棉织物可通过漂白(3-什么是漂白,原理?)或荧光增白(4- 什么是荧光增白,原理?)处理,丝光(5-什么是丝光?)和轧光(6-什么是丝光?)等后整理有助于提高光泽度。 染色性良好(7-原因?),可以染成各种颜色。耐磨性不突出(8-原因?),棉织品不太耐穿。 1-纤维强度(9-什么叫纤维强度?)较高(10-原因?),干态强力约为 2.6-4.9cN/dtex,湿态强力约为2.9-5.6cN/dtex,吸湿后强力稍有上升 (10%-20%)(11-吸湿后强度上升的原因?) 2-纤维弹性(12-什么叫纤维弹性?)较差(13-原因?),变形能力较差。棉纤维弹性较差。 3-纤维吸湿性(13-定义?)较强(14-原因?)。棉制服装吸湿、透气, 无闷热感,也无静电现象(15-什么是静电?它对人体有什么危害?)。棉纤维在水中浸润后,能吸收接近其本身重量1/4的水分,导致横截面变粗,长度变短,因此棉织物在裁剪前应预缩,以避免制成服装后尺寸变校。脱脂棉纤维吸着液态水最多可达干纤维木身质量的8倍以上,利用这一性能可以制成药棉。棉纤维吸湿后强力增加(16-吸水后强度边大的原因?),因此,棉织物耐水洗。在一定的温湿度条件下,棉纤维易受霉菌等微生物的侵害,纤维素大分子水解,纤维表面会产生黑斑(17-水解的本质?)。 4-纤维导电性差,纤维内腔充满了静止的空气,因此棉纤维是一种保暖性 较好的材料。棉纤维耐热性较好,但不如涤纶、脂纶,却优于羊毛、蚕丝,接近于粘胶纤维。棉纤维耐光性一般,如长时间与日光接触,纤维强力会降低,并发硬变脆。 5-纤维化学性怕酸耐碱与其他天然纤维素纤维一样,耐无机酸的能力较 弱,在浓硫酸或盐酸中,即使在常温下也能引起纤维素的迅速破坏,纤维素长时间在稀酸溶液中也会水解,强力降低。汗液中的酸性物质也会损坏棉制品。棉纤

纤维材料公司生物可溶性耐火陶瓷纤维生产项目

纤维材料公司生物可溶性耐火陶瓷纤维生产项目

第一章总论 1.1 项目概述 1.1.1 项目名称 生物可溶性耐火陶瓷纤维生产项目 1.1.2 承办单位 枣庄***纤维材料有限公司 1.2 项目概况 1.2.1 建设场址 拟建项目位于枣庄市峄城区 1.2.2 建设规模和工程方案 本项目建设规模确定为年产1.2万吨生物可溶性耐火陶瓷纤维,正常年的年销售收入约为9600万元。 主要技术经济指标

1.2.3 项目投入总资金及效益情况 初步估算,项目总投资5996万元,其中建筑工程费用3200万元,设备购置及安装费用380万元,其它费用237万元,基本预备费用181万元,建设期利息98万元,流动资金1900万元。 本项目实施后,可实现年销售收入9600万元,正常年税后利润1932万元,总投资收益率42.97%,税后内部收益率43.21%,税后投资回收期为 3.3年(税后,含建设期),税后财务净现值10107万元。项目的经济效益良好,具有一定的盈利能力,能较快的收回投资,在财务上是可行的。

1.3 可行性研究的依据 1、<投资项目可行性研究指南>(试用版) 2、<中华人民共和国环境保护法> 3、<中华人民共和国节约能源法> 4、<工业项目建设用地控制指标(试行)> 5、<建设项目经济评价方法与参数>(第三版) 6、<中华人民共和国国民经济和社会发展第十二个五年规划纲要> 7、<化学工业”十二五”科技发展纲要> 8、<山东省国民经济和社会发展第十二个五年规划纲要> 9、<山东省化学工业调整振兴规划> 10、<枣庄市国民经济和社会发展第十二个五年规划纲要> 11、建设单位提供的有关材料

陶瓷纤维的概述

陶瓷纤维的概述 纺织G1401 常媛 ● 陶瓷纤维是一种纤维状轻质耐火材料,具有重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械震动等优点,因而在机械、冶金、化工、石油、陶瓷、玻璃、电子等行业都得到了广泛的应用。近几年由于全球能源价格的不断上涨,节能已成为中国国家战略,在这样的背景下,比隔热砖与浇筑料等传统耐材节能达10-30%的陶瓷纤维在中国国内得到了更多更广的应用,发展前景十分看好。 ●定义 普通陶瓷纤维又称硅酸铝纤维,因其主要成分之一是氧化铝,而氧化铝又是瓷器的主要成分,所以被叫做陶瓷纤维。而添加氧化锆或氧化铬,可以使陶瓷纤维的使用温度进一步提高。 陶瓷纤维制品是指用陶瓷纤维为原材料,通过加工制成的重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械震动等优点的工业制品,专门用于各种高温,高压,易磨损的环境中 陶瓷纤维制品是一种优良的耐火材料。具有重量轻、耐高温、热容小、保温绝热性能良好、高温绝热性能良好、无毒性等优点。 到目前为止,中国国内现在大大小小的陶瓷纤维生产厂家共有二百多家,但分类温度为1425℃(含锆纤维)及以下的陶瓷纤维的生产工艺,只分为甩丝毯与喷吹毯两种。 ●特点

质量轻、绝热性能好、热稳定性好、化学稳定性好、加工容易、施工方便。既不耐磨又不耐碰撞,不能抵抗高速气流的冲刷,不能抵抗熔渣的侵蚀。 ●分类 陶瓷纤维是经过经过双面针刺工艺制作而成,在是高温和低温环境中都被广泛的使用,现在市面上的根据生产工艺的不同,我们一般把陶瓷纤维毯分为两类,一种是甩丝毯,一种是喷丝毯。 1. 纤维丝的直径:甩丝纤维更粗些,甩丝纤维一般为 3.0-5.0µm,喷丝纤维一般为2.0-3.0µm; 2. 纤维丝的长度:甩丝纤维更长些,甩丝纤维一般为150-250mm, 喷丝纤维一般为100-200mm; 3. 导热系数:喷丝毯由于纤维较细而优于甩丝毯; 4. 抗拉抗折强度:甩丝毯由于纤维更粗而优于喷丝毯; 5. 制作陶瓷纤维组块的应用:甩丝毯由于纤维较粗且长而优于喷丝毯,在组块制作的折叠过程中,喷吹纤维毯易于破碎和撕裂,而甩丝纤维毯可以折叠得非常紧密并且不易破坏,组块的质量会直接影响到炉衬的质量; 6. 余热锅炉等大块毯的竖直层铺应用:甩丝毯由于纤维丝粗而长,具有更好的抗拉力,更经久耐用,所以甩丝毯优于喷丝毯; ●硅酸铝纤维制品的生产方法 硅酸铝纤维原料的熔融一般采用电炉作为熔化设备,主要有电

棉纤维长度-梳片式长度仪法

梳片式棉纤维长度试验 一、目的与要求 了解Y121型梳片式长度分析仪的结构原理,掌握测试棉纤维长度的方法及各种长度指标的计算。 二、实训仪器用具与试样材料 Y121型梳片式长度分析仪、扭力天平(称量为100mg和25mg各一台)、叉形板、纤维夹、钢丝压锤、针耙、压棉板、钢梳、挑针、镊子、50mm纤维尺、黑绒板、棉样若干。 三、仪器结构与工作原理 ①实验仪器结构:Y121型梳片长度分析仪主要由撑杆、滑杆、梳片架、上梳片及下梳片、落梳键等组成。 梳片架上有梳片槽17个,装上、下梳片用,下梳片间距为3.75mm的各组纤维。下梳片下端有滑架托住,扳动撑杆使滑架移动,托在其上的下梳片也随之逐片落下,用叉形板可将全部下梳片抬高,然后将滑架推到原来的工作位置,上梳片可插放在二片下梳片中间以此减少梳片间距,以更好握持短纤维。两只分析器装在同一底板上,中间有间位螺钉,可以随意旋转。 ②工作原理利用一组钢针梳片将试样整理成一端平齐棉束,而后自长到短地将棉束中的纤维按一定长度分若干组,分别称取各组重量,从而求得长度的各种指标。 四、实验方法、步骤 1、试样准备 ①从实验室样品中抽取和制备试验试样:从实验室样品的正反两面均匀地抽取32丛,每丛约6mg,经撕松除去杂质混匀后,制成试验样品约200mg。将试验样品整理平齐,然后纵向称取三份50mg试样,其中一份备用。将每一份试样用手扯法使纤维成为比较平直而一端整齐的棉束,即为试验试样。在整理过程中除紧棉索和紧棉结外,不得丢弃纤维。 ②从实验棉条中取样并制备试验试样:从试验棉条中纵向分取三份50mg试样,其中一份备用,用手扯法将每份试样整理成比较平直而一端整齐的棉束,即为试验试样。 2、操作步骤 ①将整理好的棉束放在左梳架下梳片的中央,使棉束整齐一端露出第一梳片约 1.5mm,用压锤将棉束压入梳片内,至少压到离针端4mm以下,但不低于梳针长度的二分之一处。 ②拨动撑杆放下左梳架上的梳片,直到少量纤维露出靠近操作者的那一梳片为止。 ③从水平方向用纤维夹分次取伸出梳片的最长纤维,不要一次把所有伸出纤维都拔完。 ④将纤维夹上的纤维移向右梳架的下梳片中央,夹子钳口应与靠近操作者的那一梳片平

【CN109811470A】一种低密度柔性陶瓷纤维毯的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910173022.0 (22)申请日 2019.03.07 (71)申请人 上海伊索热能技术股份有限公司 地址 201708 上海市青浦区华新镇华益村 (72)发明人 汪永斌  (74)专利代理机构 上海天翔知识产权代理有限 公司 31224 代理人 陈骏键 (51)Int.Cl. D04H 3/105(2012.01) D04H 3/002(2012.01) D06C 7/02(2006.01) C04B 35/622(2006.01) C04B 35/14(2006.01) (54)发明名称一种低密度柔性陶瓷纤维毯的制备方法(57)摘要本发明公开的一种低密度柔性陶瓷纤维的制备方法,包括以下步骤:1)将氧化铝、氧化硅、氧化铬按照比例进行搅拌混配;2)将混配原料加入电熔炉内进行熔化处理;3)将熔融状态下的混配原料输送至甩丝机内,所述甩丝机对熔融状态下的混配原料甩丝成纤维;4)利用引风机将所述纤维收集至集棉器中,并经由所述集棉器堆积成纤维坯;5)将所述纤维坯输送至针刺机内进行针刺定厚处理,得到陶瓷纤维毯半成品;6)将所述陶瓷纤维毯半成品输送至加热炉进行加热定型,并经过冷却后形成陶瓷纤维毯成品。本发明所制备的陶瓷纤维毯的抗拉强度>100KPa,弯曲360°不开裂,密度为96~160kg/m 3 。权利要求书1页 说明书4页CN 109811470 A 2019.05.28 C N 109811470 A

权 利 要 求 书1/1页CN 109811470 A 1.一种低密度柔性陶瓷纤维的制备方法,其特征在于,包括以下步骤: 1)将氧化铝41~45%、氧化硅50~56%、氧化铬1.8~3.6%三种原料按重量百分比加入无重力搅拌机中搅拌混配,并形成混配原料; 2)将混配原料加入电熔炉内进行熔化处理; 3)将熔融状态下的混配原料输送至甩丝机内,所述甩丝机对熔融状态下的混配原料甩丝成纤维; 4)利用引风机将所述纤维收集至集棉器中,并经由所述集棉器堆积成纤维坯; 5)将所述纤维坯输送至针刺机内进行针刺定厚处理,得到陶瓷纤维毯半成品; 6)将所述陶瓷纤维毯半成品输送至加热炉进行加热定型,并经过冷却后形成陶瓷纤维毯成品。 2.如权利要求1所述的低密度柔性陶瓷纤维的制备方法,其特征在于,在步骤1)中,所述无重力搅拌机的搅拌速率为140~180转/分钟,搅拌时间为30~50分钟,搅拌方式为多叶片双轴闭向搅拌,搅拌温度为常温。 3.如权利要求1所述的低密度柔性陶瓷纤维的制备方法,其特征在于,在步骤2)中,所述电熔炉的熔化温度为2000~2200℃,熔化时间为60~120分钟。 4.如权利要求1所述的低密度柔性陶瓷纤维的制备方法,其特征在于,在步骤3)中,甩丝机在甩丝处理时的工作参数为A辊的功率为40~50Hz,B辊的功率为40~50Hz。 5.如权利要求1所述的低密度柔性陶瓷纤维的制备方法,其特征在于,在步骤4)中,所述引风机的负压为-0.9~-0.5MPa。 6.如权利要求1所述的低密度柔性陶瓷纤维的制备方法,其特征在于,在步骤5)中,所述针刺机的针刺频率为22Hz~50Hz。 7.如权利要求1所述的低密度柔性陶瓷纤维的制备方法,其特征在于,在步骤6)中,所述加热炉的加热温度为500℃~750℃,加热时间为10~40分钟。 2

关于编制陶瓷纤维干棉项目可行性研究报告编制说明

陶瓷纤维干棉项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/0518199124.html, 高级工程师:高建

关于编制陶瓷纤维干棉项目可行性研究报 告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国陶瓷纤维干棉产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5陶瓷纤维干棉项目发展概况 (12)

实验5 罗拉法测定棉纤维长度

实验五罗拉法测定棉纤维长度 纺织纤维的长度是纤维的形态尺寸指标,与纺织加工及纱布质量有密切关系。棉、毛、麻等天然纤维的长度一般在25-250 mm;化学短纤维则根据需要切成各种长度。由于各种纤维的长度差异很大,纺纱加工的机台规格和采用的工艺参数也需随之变化。因此,在商业贸易或工业生产中,纤维长度都是一项必测的品质指标。长度对产品质量的关系密切,当其他条件不变时,纤维越长,成纱中纤维之间接触面积越大,抱合力越好,纱的强度越高。特别当纤维的长度长而且长度整齐时,纱的强度、均匀度较好,纱的表面光洁,毛羽少。 长度对纺纱加工的关系也很密切,纤维越长,开松、梳理时纤维越易缠节而产生棉毛粒等疵点。因此对长纤维必须采用比较缓和的工艺,在后纺加工中,则长纤维纱条强度不高,不易断头,捻系数可相应取得较低,细纱产量高,不易断头,捻系数可相应取得较低,细纱产量高。纤维短则在前纺加工中成网困难,断头率高,细纱必须采用较高的捻系数,因而细纱机的产量较低。 表示纤维长度的指标很多,按测试仪器和方法而异。常用的有表示长度集中性的指标如平均长度、主体长度、有效长度和品质长度等。还有某些长度特性指标如跨越长度等。平均长度是纤维长度的平均值。根据测试方法不同,而又可分为根数平均长度、重量加权平均长度以及截面加权平均长度等。根数平均长度是各根纤维词典之和的平均数。重量加权平均长度是各组词典的重量加权平均数。截面积加权平均长度是各组长度的截面积加权平均数。一般用电容式长度仪测定。 主体长度是纤维试样中数量最多的一部分纤维的长度。更根据测试方法的不同,又可分为根数主体长度和重量主体长度两类。根数主体长度指试样中根数最多的一部分纤维的长度。重量主体长度指试样用分组称重法测定时,得到的重量最重的一组纤维的长度。品质长度是确定纺纱工艺参数时作为依据的长度。棉纤维的品质长度一般表示在某一界限以下的纤维重量(或根数)占总重量(或根数)的百分率。数值越大,表示质量越差。 测定纤维程长度的仪器与方法很多,生产中常用的有罗拉式长度分析仪测定棉纤维长度、中段称重法测定化学短纤维长度、梳片式长度分析仪测定棉纤维及羊毛、苎麻、绢丝或不等长化纤的长度等、排图法测定棉或不等长化纤、羊毛、苎麻、绢丝等的有效长度。近代测试技术在长度测试中的应用很多,如数字式照影仪、电容式纤维长度仪等。 一、罗拉法测定棉纤维长度实验的目的要求 使用罗拉式纤维长度分析仪将一端排列整齐的棉纤维束,按一定组距分组称重后,求出纤维长度的各种指标。通过实验,熟悉仪器的结构和实验方法,掌握棉纤维长度各指标的计算方法。并对棉纤维的长度值具有一定的概念。 二、试验仪器和试样 试验仪器为Y111型罗拉式纤维长度分析仪和两台扭力天平,其中一台称量为100mg,感量为0.2mg,感量为0.05mg。试样为棉纤维一种。并需准备稀梳、密梳、镊子及小钢尺等用具。 三、基本知识 1、棉纤维的长度和长度分布棉纤维的长度是在纤维发育过程中的前期延伸期形成的,而棉纤维包壁厚度则在纤维发育过程中的后期即延伸期形成的。因此,棉纤维的长度不因纤维成熟的好坏而有差异。 棉纤维由自然生长而成,长度很不均匀,一般为27mm、29mm、

相关主题
文本预览
相关文档 最新文档