第一章 函数与极限的练习解答
- 格式:doc
- 大小:533.50 KB
- 文档页数:16
一、P21:1;51.设),(),(∞+∞=55--A,),【310-B =,写出 B A B A B A -=\,A B ,及)()\(\B A A B A A --=的表达式。
解:),5()3,(+∞-∞= BA)5,10[-=B A),5)10,(\+∞--∞=-=( B A B A)5,10[)()\(\--=--=B A A B A A5.下列各题中,函数)(x f 和)x g (是否相同?为什么?(1)x x g x x f lg 2)(,lg )(2==解:不同。
定义域不同,),0()0,(+∞-∞= f D),0(+∞=g D 。
(2)2)(,)(x x g x x f ==解:不同。
对应法则不同,即:值域不同。
),0[,+∞==g f R R R 。
(3)334)(xx x f -=,31)(-•=x x x g解:相同。
因为定义域和对应法(或值域)则相同。
(4)x x x g x f 22tan sec )(,1)(-==解:不同。
定义域不同,R D f =},1,0,2{ ±=+≠=k k x x D g ππ。
二、P21:4(1)、(3)、(5)、(7)、(9);6;7(2);P22:10(1)、(4)、(5);11(1)、(3)、(5);15(1)、(3);16.4.求下列函数的自然定义域:(1)23+=x y ;解:32023-≥⇒≥+x x 。
即:),32[+∞-=D 。
(3)211x x y --=; 解:⎩⎨⎧≤≤-≠⎩⎨⎧⇒≥-≠1100102x x x x 。
即:]1,0()0,1[ -=D 。
(5)x y sin =;解:0≥x 。
即:),0[+∞=D (7))3arcsin(-=x y ;解:42131≤≤⇒≤-≤-x x 。
即:]4,2[=D 。
(9))1ln(+=x y解:101->⇒>+x x 。
即:),1(+∞-=D6.设,3,3,0,sin )(ππϕ≥<⎩⎨⎧=x x x x 求)2(),4(),4(),6(--ϕπϕπϕπϕ,并作出函数的)(x y ϕ=图形解:32,34,34,36πππππππ≥-<-<<, 216sin 6==⎪⎭⎫⎝⎛∴ππϕ,224sin 4==⎪⎭⎫ ⎝⎛ππϕ,22)4sin(4=-=⎪⎭⎫ ⎝⎛ππϕ,0)2(=-ϕ。
第一章 函数与极限第一节 映射与函数1.填空题:(1)函数)(x f y =与其反函数)(x y ϕ=的图形关于 x y = 对称.(2)函数21()1f x x =+-的定义域为__________________________;(3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} .(4)设b ax x f +=)(,则=-+=h x f h x f x )()()(ϕ a .(5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x .(6)函数2xx e e y --=的反函数为 。
(7)函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <12. 选择题:(1)下列正确的是:(B ,C )A.2lg )(x x f =与x x g lg 2)(=是同一函数.B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数.C.⎪⎩⎪⎨⎧<-=>==0,10,00,1sgn x x xx y 是x 的奇函数.D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. .(2))sin()(2x x x f -=是( A ).A.有界函数;B. 周期函数;C. 奇函数;D. 偶函数.(3)设54)(2++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ).A.1;B.–1;C.2;D.–2.(4)函数21arccos 1++-=x x y 的定义域是( )(A)1≤x ; (B)13≤≤-x ;(C))1,3(-; (D){}{}131≤≤-⋂<x x x x .(5)函数⎩⎨⎧≤<+≤≤--=30,104,3)(2x x x x x f 的定义域是( )(A)04≤≤-x ; (B)30≤<x ;(C))3,4(-; (D){}{}3004≤<⋃≤≤-x x x x .(6)函数x x x y sin cos +=是( )(A)偶函数; (B)奇函数; (C)非奇非偶函数; (D)奇偶函数.(7)函数xx f 2cos 1)(π+=的最小正周期是( )(A)2π; (B)π; (C) 4 ; (D)21 .(8)函数21)(x xx f +=在定义域为( )(A)有上界无下界; (B)有下界无上界;(C)有界,且 2121)(≤≤x f ; (D)有界,且2122≤+≤-x x .(9)与2)(x x f =等价的函数是( )(A) x ; (B) 2)(x ; (C) 33)(x ; (D) x .3.设132)1(2--=-x x x g(1) 试确定c b a ,,的值使c x b x a x g +-+-=-)1()1()1(2 ;(2) 求)1(+x g 的表达式解. 352)1(,0,1,22++=+===x x x g c b a4.求x x x f sgn )1()(2+=的反函数)(1x f -.解:⎪⎩⎪⎨⎧-<+--=>-=-1,)1(0,01,1)(1x x x x x x f5.设249)3lg(1)(x x x f -+-=,求)(x f 的定义域及)]7([-f f 。
第一章 函数与极限一 函数(见§1.1) Ⅰ 内容要求(ⅰ)在中学已有函数知识的基础上,加深对函数概念的理解和函数性质(奇偶性、单调性、周期性和有界性)的了解。
(ⅱ)理解复合函数的概念,了解反函数的概念,了解分段函数的概念。
(ⅲ)记忆基本初等函数的图象,了解初等函数的概念,自学双曲函数及反双曲函数。
(ⅳ)学会建立简单实际问题中的函数关系式。
Ⅱ 基本题型(ⅰ)有关确定函数定义域的题型1.(4分)1)2ln()(+-=x x x f 的定义域为 21<<-x2.(4分))2ln(1)(x x x f -+=的定义域为 [))2,1(1,1 -3.(4分))32arcsin(-=x y 的定义域为--------------- ( D ) A )2,1( B )2,1[ C ]2,1( D ]2,1[ 4.设)(x f 的定义域D = ]1,0[,求下列各函数的定义域: (1)(6分))(2x f []1,1-∈x(2)(6分))2(xf (]0,∞-∈x(3)(7分))31()31(-++x f x f ⎥⎦⎤⎢⎣⎡∈32,31x (ⅱ)有关确定函数(反函数)表达式的题型 5.(4分)已知: x xf cos 1)2(sin+=,则)(x f =)1(22x - 6.(4分)设⎪⎪⎩⎪⎪⎨⎧>=<-=0,10,00,1)(x x x x f ,则=)]([x f f ⎪⎪⎩⎪⎪⎨⎧>=<-=0,10,00,1)(x x x x f7.求下列函数的反函数(1)(4分)31+=x y 1,133-=-=x y y x (2)(4分)x x y +-=11 xxy y y x +-=+-=11,11 )1(-≠x(3)(6分))2ln(1++=x y 2211-=⇒-=--x y e y e x8.(7分)已知:,2sin )(,)(3x x x x x f =-=ϕ 求)].([)],([x f x f ϕϕ解:x x x x x f 2cos 2sin 2sin 2sin )]([233-=-=-=ϕϕϕ)(2s i n )(2s i n )]([3x x x f x f -==ϕ9.(10分)设x e x g x x x x f =⎪⎪⎩⎪⎪⎨⎧>-=<=)(,1||,11||,01||,1)(,求)]([x g f 和)]([x f g ,并作出这两个函数的图形。
第一章 函数、极限与连续(A)1.区间[)+∞,a 表示不等式( )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A .2-eB .∞C .0D .21 18.无穷小量是( )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。
高等数学练习题 第一章 函数与极限________系_______专业 班级 姓名______ ____学号_______第一节 映射与极限一.选择题 1.函数216ln 1x xx y -+-=的定义域为 [ D ] (A )(0,1) (B )(0,1)⋃(1,4) (C )(0,4) (D )4,1()1,0(⋃] 2.3arcsin 2lgxx x y +-=的定义域为 [ C ] (A ))2,3(]3,(-⋃-∞ (B )(0,3) (C )]3,2()0,3[⋃- (D )),3(+∞- 3.函数)1ln(2++=x x y 是 [ A ](A )奇函数 (B )非奇非偶函数 (C )偶函数 (D )既是奇函数又是偶函数 4.下列函数中为偶函数且在)0,(-∞上是减函数的是 [ D ] (A )222-+=x x y (B ))1(2x y -= (C )||)21(x y = (D ).||log 2x y = 二.填空题1. 已知),569(log )3(22+-=x x x f 则=)1(f 2 2. 已知,1)1(2++=+x x x f 则)(x f 12+-x x3. 已知xx f 1)(=,x x g -=1)(, 则()=][x g f x -114. 求函数)2lg(1-+=x y 的反函数 1102-+=x y5. 下列函数可以看成由哪些基本初等函数复合而成 (1) x y ln tan 2=: x s s v v u u y ====,ln ,tan ,2(2) 32arcsin lg x y =:__ 32x t t s s v v u u y =====,arcsin ,lg ,, _三.计算题1.设)(x f 的定义域为]1,0[, 求)(sin ),(2x f x f 的定义域解:)(2x f 的定义域为[11,-] )(s i n xf 的定义域为)()(,[Z k k k ∈+ππ1222.设⎪⎩⎪⎨⎧<<-≤-=2||111||1)(2x x x x x ϕ , 求)23(),21(),1(ϕϕϕ-, 并作出函数)(x y ϕ=的图形.解:01=)(ϕ 2321=-)(ϕ 2123=)(ϕ ( 图略 )4.已知水渠的横断面为等腰梯形,斜角 40=ϕ(图1-22)。
第一章 函数与极限1. 设 ⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21=224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由 ][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a ax a ax a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。
⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}nx 有界, 又,0lim =∞→nn y证明:.0lim =∞→n n n y x{}结论成立。
从而时,有,当自然数即又有对有界,∴=<=-<>∃>∀=≤∀>∃∴∞→ ..0)(,0,0lim ,,0εεεεMM y x y x My N n N y Mx n M x n n n n n n n n n 5. 根据函数的定义证明: ⑴()813lim 3=-→x x8)13(lim 813303,033,33813,03=-<--<-<>∀<-<-=-->∀→x x x x x x x 所以成立时,恒有,当=取故即可。
第一章 函数与极限习 题 1-11.求下列函数的自然定义域: (1)211y x=+-;解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -=解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x xy -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞. (6)1arctan y x =+解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++- (0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-; 当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+;当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫=- ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫=- ⎝,则 2211(2)142a f a a a a-⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭.4.设1||1,()0||1,()21|| 1.xx f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21xx xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,112||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1,1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证.6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么? (1)))()ln,()ln3f x xg x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x == 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞;解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x -=-,(,1)x ∈-∞. 解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1x y x-=-是单调递减的.8. 判定下列函数的奇偶性. (1)lg(y x =+;解:因为1()lg(lg(lg(()f x x x x f x --=-+=+=-+=-,所以lg(y x =+是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数. (3)22cos sin 1y x x x =++-; 解:因为2()2c o s s i n 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22c o s s i n 1y x x x =++-既非奇函数,又非偶函数.(4)2xxa ay -+=.解:因为()()2xxaaf x f x -+==,所以函数2x xa ay -+=是偶函数.9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证.10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界. 证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =;周期函数,周期为π. (2)1sin πy x =+; 周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数: (1)331xx y =-;解:依题意,31x y y =-,则3log 1y x y =-,所以反函数为13()log ,(,0)(1,)1xfx x x -=∈-∞⋃+∞-.(2)()ax b y ad bc cx d+=≠+;解:依题意,b dy x cy a-=-,则反函数1()()b dx f x ad bc cx a--=≠-.(3)(lg y x =+;解:依题意,1(1010)2yyx -=+,所以反函数11()(1010),2x xf x x R--=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤⎪⎝⎭.解:依题意,arccos32y x =,所以反函数1arccos3(),[0,3]2xf x x -=∈.13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)xy f x f e f e+====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πV h V r H r=∈.15.某城市的行政管理部门,在保证居民正常用水需要的前提下,为了节约用水,制定了如下收费方法:每户居民每月用水量不超过4.5吨时,水费按0.64元/吨计算.超过部分每吨以5倍价格收费.试建立每月用水费用与用水数量之间的函数关系.并计算用水量分别为3.5吨、4.5吨、5.5吨的用水费用.解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2,4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+ ,(1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n >取N =99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立.(3)要使2||3n a ε-<成立,13,9n εε->取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-< 成立.2.根据数列极限的定义证明:(1)1lim!n n →∞=; (2)lim1n n→∞=.解:(1)0ε∀>, 要使111|0|!!n n nε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使22|12)nn ε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|nε<, 则lim1n n→∞=.3.若lim n n x a →∞=,证明lim ||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0,由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim ||||n n x a →∞=. 同理可证0a <时, lim ||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-, ||1n x =, 显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>, 存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞.解: 因为limx →∞=, (3)π|cos|12n +≤, 所以 (3)πlim2x n →∞+=.6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞. 证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<, 同理,0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时,||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<? 解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<,只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<?解:要使222217|2||2|3|3|x y x x +-=-=--<0.001, 只要2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥.3.根据函数极限的定义证明:(1)3lim (21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim42x x x →--=-+; (4)limx →=.证明:(1) 由于|(21)5|2|x x --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim (21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时, 对ε∀>,总有35|3|1x x ε+-<-,故有35lim31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim42x x x →--=-+. (4) 由于|0|=<,任给0ε>,要使|0|ε-<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有|0|ε<,故limx →+∞=.4.用X ε-或εδ-语言,写出下列各函数极限的定义:(1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=;(3)lim ()x af x b +→=; (4)3lim ()8x f x -→=-.解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=.证明: 由于0lim ||lim 0x x x x ++→→==, 0lim ||lim ()0x x x x --→→=-=,所以0lim ||0x x →=.6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则l i m()x f x A→∞=.证明: 由于l i m ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x=为当x →∞时的无穷小; (3)13x y x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim01x x x →-=+.(2) 0ε∀>,因为111|sin 0||sin |||||x x xx x -=≤,取1M ε=, 则当||x M >时, 总有1|sin |1|sin 0|||||x x xx x ε-=≤<, 故1limsin 0x x x→∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x Mxxx +=+>->,所以13limx x x→+=∞.2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大? 解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数 sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+且()n x n →+∞→∞,πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M=+≥,所以sin y x x =是无界的.3.证明:函数11cosy xx=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1tx =,类似第2题可得.习 题 1-51.求下列极限: (1)23231lim41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ ;(3)22212lim n n nn n →∞⎛⎫+++ ⎪⎝⎭ ;(4)1132lim 32nn n n n ++→∞+-; (5)2211lim54x x x x →--+;(6)3221lim53x x x x →+-+;(7)lim x →+∞;(8)2221lim53x x x x →∞+++; (9)33()limh x h xh→+-;(10)22131lim41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x x x x →∞+-+;(13)1limx →(14)3lim 21x xx →∞+;(15)3lim (236)x x x →∞-+;(16)323327lim3x x x x x →+++-.解:(1) 23231lim41n n n n n →∞+++- = 233311lim 0411n nn n nn→∞++=+-.(2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦ = 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦= 1lim(1)11n n →∞-=+.(3)22212lim n n nn n →∞⎛⎫+++ ⎪⎝⎭ =21(1)12lim 2n n n n→∞+=.(4) 1132lim32n n n n n ++→∞+-=21()13lim2332()3nn n →∞+=-⋅.(5) 2211lim54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim43x x x →+=--.(6) 3221lim 53x x x x →+-+=322132523+=--⨯+.(7) limx →+∞=limx→+=lim x→111lim 2x →+∞-=.(8) 2221lim53x x x x →∞+++=2212lim2531x x xx→∞+=++.(9) 33()lim h x h xh→+-=32233(33)limh x x h xh h xh→+++-=3220lim (33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim11x x x x→+=++.(11) 23lim531x x x x x →∞+-+=22311lim0315x x xxx→∞+=-+.(12) 1limx →=1limx →=1lim x →.(13) 3lim21x xx →∞+=2lim12x xx→∞=+∞+.(14) 3lim (236)x x x →∞-+=32336lim (2)x x xx→∞-+=∞.(15) 323327lim 3x x x x x →+++-=32331lim (327)lim3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩ 问当a 为何值时,极限0lim ()x f x →存在.解:因为0lim ()lim 1,lim ()lim (2)x x x x x f x e f x x a a --++→→→→===+=,所以,当0lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在.3.求当x 1→时,函数12111x x ex ---的极限.解:因为11211111limlim (1)0,1x x x x x e x ex ----→→-=+=-11211111lim lim (1),1x x x x x ex ex ++--→→-=+=+∞-所以12111lim 1x x x ex -→--不存在。
第一章 函数与极限答案第一节 映射与函数1.填空题: (1)2,1-≥±≠x x ; (2)⎪⎩⎪⎨⎧≤<≤≤--+=10011x x x xy ; (3){0}; (4)a ;(5)x x 1-, x ;(6)⎩⎨⎧≤<≤-=32231-x ()1-(2x x xx f )2. 选择题:(1)C ; (2)A ; (3) B ; (4)B ; (5) B ; (6)C ; (7)C ; 3. 352)1(0,1,22++=+===x x x g c b a ;;4. )1(22x -;5. 22()0()()()0x x f x x x x ⎧--≤-=⎨-+-->⎩,即:220()0x x f x x x x ⎧≥=⎨-<⎩ 6. 解:22()(1)f x f x x +-= (1)令1x t =- 得22(1)()(1)f t f t t -+=-22(1)()(1)f x f x x -+=- (2)由(1)和(2)得;221()3x x f x +-=7. (1)|sin |y x =; (2)sin ||y x =; (3)2sin 2x y =.8.设[()]f g x 由(),()y f u u g x ==复合而成的,证明:(1) 若()g x 是偶函数,则[()]f g x 是偶函数。
(2) 若()f x 单调增加,()g x 单调减少,则[()]f g x 单调减少。
(略)第二节 数列的极限1.填空题:(1)0; (2)0; (3)6,0==b a ;(4)数列{}n x 有界是数列{}n x 收敛的必要条件. 数列{}n x 收敛是数列{}n x 有界的充分条件. 2.选择题:(1)B ; (2) D ; (3) D ; 3. 根据数列极限的定义证明: (略)4. 若a u n n =∞→lim ,证明a u n n =∞→lim .并举例说明反之不成立.提示:利用不等式:a u a u a u n n n -≤-≤-5. 设数列{}n x 有界,又0lim =∞→n n y ,证明:0lim =∞→n n n y x . (略)第三节 函数的极限1.填空题:(1)=+)0(f b ,=-)0(f 1 . 当=b 1 时,1)(lim 0=→x f x .(2) 充分必要(3) 必要;充分;必要;充分;充分必要. 2.选择题:(1) A ; (2) C ; (3) D ; (4) C 3. 根据函数极限的定义证明: 8)13(lim 3=-→x x ; (略)4.证明xx 1sinlim 0→不存在. 提示:取2个子序列趋于0,但极限不等。
一、P21:1;51.设),(),(∞+∞=55--AY ,),【310-B =,写出 B A B A B A -=\,A B I Y ,及)()\(\B A A B A A --=的表达式。
解:),5()3,(+∞-∞=Y Y BA)5,10[-=B A I),5)10,(\+∞--∞=-=(Y B A B A)5,10[)()\(\--=--=B A A B A A5.下列各题中,函数)(x f 和)x g (是否相同?为什么?(1)x x g x x f lg 2)(,lg )(2==解:不同。
定义域不同,),0()0,(+∞-∞=Y f D),0(+∞=g D 。
(2)2)(,)(x x g x x f ==解:不同。
对应法则不同,即:值域不同。
),0[,+∞==g f R R R 。
(3)334)(xx x f -=,31)(-•=x x x g解:相同。
因为定义域和对应法(或值域)则相同。
(4)x x x g x f 22tan sec )(,1)(-==解:不同。
定义域不同,R D f =},1,0,2{Λ±=+≠=k k x x D g ππ。
二、P21:4(1)、(3)、(5)、(7)、(9);6;7(2);P22:10(1)、(4)、(5);11(1)、(3)、(5);15(1)、(3);16.4.求下列函数的自然定义域:(1)23+=x y ;解:32023-≥⇒≥+x x 。
即:),32[+∞-=D 。
(3)211x x y --=; 解:⎩⎨⎧≤≤-≠⎩⎨⎧⇒≥-≠1100102x x x x 。
即:]1,0()0,1[Y -=D 。
(5)x y sin =;解:0≥x 。
即:),0[+∞=D (7))3arcsin(-=x y ;解:42131≤≤⇒≤-≤-x x 。
即:]4,2[=D 。
(9))1ln(+=x y解:101->⇒>+x x 。
即:),1(+∞-=D6.设,3,3,0,sin )(ππϕ≥<⎩⎨⎧=x x x x 求)2(),4(),4(),6(--ϕπϕπϕπϕ,并作出函数的)(x y ϕ=图形解:32,34,34,36πππππππ≥-<-<<Θ, 216sin 6==⎪⎭⎫⎝⎛∴ππϕ,224sin 4==⎪⎭⎫ ⎝⎛ππϕ,22)4sin(4=-=⎪⎭⎫ ⎝⎛ππϕ,0)2(=-ϕ。
图形略7.试证下列函数在指定区间内的单调性:(2)),0(,ln +∞+=x x y 。
证明:设210x x <<,则:Θ)(ln )()ln ()ln ()()(2121221121<+-=+-+=-x x x x x x x x x f x f 即:)()(21x f x f <。
∴函数)(x f 在区间),0(+∞内单调递增。
10.下列函数中哪些是偶函数,哪些是奇函数,哪些既非偶函数又非奇函数? (1))1(22x x y -=;(4))1)(1(+-=x x x y (5)1cos sin +-=x x y 解:(1)Θ)()1(])(1[)()(2222x f x x x x x f =-=---=-∴)(x f 为偶函数。
(4)Θ)()1)(1()1)(1(]1)][(1))[(()(x f x x x x x x x x x x f -=+--=+----=+----=-∴)(x f 为奇函数。
(5)Θ)()(1cos sin 1)cos()sin()(x f x f x x x x x f -≠≠+--=+---=-∴)(x f 既非偶函数又非奇函数。
11.下列函数中哪些是周期函数?对于周期函数,指出其周期: (1))2cos(-=x y:(3)x y πsin 1+=;(5)x y 2sin =。
解:(1)是周期函数,周期为π2;(3)是周期函数,周期为2;(5)是周期函数,周期为π。
15.设)(x f 的定义域]1,0[=D ,求下列各函数的定义域:(1))(2x f ;(3))0(),(>+a a x f解:(1)11102≤≤-⇒≤≤x x ,即:]1,1[-=D(3)a x a a x -≤≤-⇒≤+≤110,即:]1,[a a D --=16.设⎪⎩⎪⎨⎧>-=<=,1.1,1,0,1,1)(x x x x f xe x g =)(,求)]([x g f 和)]([x f g ,并作出这两个函数的图形。
解:⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=0.10,00,11.11,01,11)(.11)(,01)(,1)]([x x x e e e x g x g x g x g f x xx⎪⎩⎪⎨⎧>=<==-,1.,1,1,1,)]([1)(x e x x e ex f g x f 图略。
三、P31 1(1)、(3)、(5)、(7);2。
1.下列各题中,哪些数列收敛?哪些数列发散?对收敛数列,通过观察{}n x 的变化趋势,写出它们的极限。
(1)n n x 21=; (3)212nx n +=;(5)nn n x )1(-=; (7)nn x n 1-=解:(1)收敛数列,极限为0;(3)收敛数列,极限为2。
(5)发散数列; (7)发散数列。
2.设数列{}n x 的一般项2cos 1πn n x n =。
问?lim =∞→n n x 求出 N ,使当N n >时,n x 与其极限之差的绝对值小于正数ε。
当001.0=ε时,求出数N 。
解:(1)0lim =∞→nn x ;(2),0>∀ε要使επ<≤-=-nn nx n 102cos 10,只要ε1>n ,取⎥⎦⎤⎢⎣⎡=ε1N 即可。
(3)当001.0=ε时,1000=N 。
四、P37:1;P38:2;3;4。
1.对图1-28所示的函数)(x f ,求下列极限,如极限不存在,说明理由。
(1))(lim 2x f x -→;(2))(lim 1x f x -→;(3))(lim 0x f x → 解:(1)0)(lim2=-→x f x(2)1-)(lim 1=-→x f x (3)Θ1)1(lim )(lim )00(0-=-==---→→x x x f f1)1(lim )(lim )00(0===+++→→x x x f f )00(1-=-≠f∴)(lim 0x f x →不存在。
2.对图1-29所示的函数)(x f ,下列陈述中哪些是对的,哪些是错的?(1))(lim 0x f x →不存在;(2)0)(lim 0=→x f x ;(3)1)(lim 0=→x f x ; (4)0)(lim 1=→x f x ;(5))(lim 1x f x →不存在; (6)对每个),1,1(0-∈x )(lim 0x f xx →存在。
解:(1)错;(2)对;(3)错;(4)错;(5)对;(6)对。
3.对图1-30所示的函数,下列陈述中哪些是对的,哪些是错的? (1)1)(lim 1=+-→x f x ; (2))(lim 1x f x --→不存在;(3)0)(lim 0=→x f x ;(4)1)(lim 0=→x f x ;(5)1)(lim -1=→x f x ; (6)0)(lim 1=+→x f x ;(7)0)(lim -2=→x f x ;(8)0)(lim 2=→x f x 。
解:(1)对;(2)对;(3)对;(4)错;(5)对;(6)对;(7)对;(8)错。
4.求xx x x x x f ==)(,)(ϕ当0→x 时的左右极限,并说明它们在0→x 时的极限是否存在。
解:Θ11lim lim )(lim )00(000====----→→→x x x x xx f f11lim lim )(lim )00(000====++++→→→x x x x xx f f )00(-=f ,∴1)(lim 0=→x f xΘ1)1(lim lim )(lim )00(000-=-=-==----→→→x x x x xx ϕϕ 11lim lim )(lim )00(000====++++→→→x x x x xx ϕϕ)00(1-=-≠ϕ∴)(lim 0x x ϕ→不存在。
五、P49:1(1)(3)(5)(7)(9)(11)(13);2;3。
1.计算下列极限:(1)3522lim -+→x x x ;(3)112221lim -+-→x x x x ;(5)h x h x h 220)(lim -+→;(7)12122lim ---∞→x x x x ; (9)4586224lim +-+-→x x x x x ;(11))2141211(lim n n ++++∞→Λ;(13)35)3)(2)(1(lim nn n n n +++∞→解:(1)932543535lim lim lim lim lim2222222-=-+=-+=-+→→→→→x x x x x x x x x (3)11)1)(1()1(112lim lim lim 121221+-=+--=-+-→→→x x x x x x x x x x x 0111111lim lim lim lim 1111=+-=+-→→→→x x x x x x(5)hxh hx x h x h x h h 22202202)(lim lim-++=-+→→xx h x h x h h xh h h h h 2022)2(2lim lim lim lim 00020=+=+=+=+=→→→→ (7))112()11(121222222lim lim xx x x x x x x x x ---=---∞→∞→ 2100201)112()11(22lim lim =---=---=∞→∞→xx x x x (9))1)(4()2)(4(4586lim lim 4224----=+-+-→→x x x x x x x x x x321424)1()2(12lim limlim 444=--=--=--=→→→x x x x x x x(11)2211211211)2141211(lim lim ==--=++++∞→∞→n n n n Λ(13)515)31)(21)(11(5)3)(2)(1(lim lim 3=+++=+++∞→∞→n n n n n n n n n 。
2.计算下列极限:(1)2232)2(2lim -+→x x x x ;(2)122lim +∞→x x x ;(3))12(3lim +-∞→x x x解:(1)Θ16)2(,0)2(23222lim lim =+=-→→x x x x x∴02)2(2322lim =+-→x x x x ,从而∞=-+→2232)2(2lim x x x x (2)Θ000)12(1222lim lim =+=+=+∞→∞→x x x x x x ∴∞=+∞→122limx xx (3)Θ0210112111213233limlim=•=+-•=+-∞→∞→xxx x x x x∴∞=+-∞→)12(3lim x x x 。