合金的晶体结构
- 格式:ppt
- 大小:1.39 MB
- 文档页数:18
合金的晶体结构合金是由两种或两种以上的金属元素与非金属组成的具有金属特性的物质。
例如碳钢是铁和碳组成的合金。
组成合金的最基本的、独立的物质称为组元,简称为元。
一般来说,组元就是组成合金的元素。
例如铜和锌就是黄铜的组元。
有时稳定的化合物也可以看作组元,例如铁碳合金中的Fe3C就可以看作组元。
通常,由两个组元组成的合金称为二元合金,由三个组元组成的合金称为三元合金。
相是指合金中成分、结构均相同的组成部分,相与相之间具有明显的界面。
通常把合金中相的晶体结构称为相结构,而把在金相显微镜下观察到的具有某种形态或形貌特征的组成部分总称为组织。
所以合金中的各种相是组成合金的基本单元,而合金组织则是合金中各种相的综合体。
一种合金的力学性能不仅取决于它的化学成分,更取决于它的显微组织。
通过对金属的热处理可以在不改变其化学成分的前提下改变其显微组织,从而达到调整金属材料力学性能的目的。
根据构成合金的各组元之间相互作用的不同,固态合金的相结构可分为固溶体和金属化合物两大类。
1.固溶体合金在固态下,组元间仍能互相溶解而形成的均匀相,称为固溶体。
形成固溶体后,晶格保持不变的组元称溶剂,晶格消失的组元称溶质。
固溶体的晶格类型与溶剂组元相同。
根据溶质原子在溶剂晶格中所占据位置的不同,可将固溶体分为置换固溶体和间隙固溶体两种。
(1置换固溶体溶质原子代替溶剂原子占据溶剂晶格中的某些结点位置而形成的固溶体,称为置换固溶体。
置换固溶体可分为有限固溶体和无限固溶体两类。
形成置换固溶体时,溶质原子在溶剂晶格中的溶解度主要取决于两者晶格类型、原子直径的差别和它们在周期表中的相互位置。
(2间隙固溶体溶质原子分布于溶剂的晶格间隙中所形成的固溶体称为间隙固溶体。
由于晶格间隙通常很小,所以都是由原子半径较小的非金属元素(如碳、氮、氢、硼、氧等溶入过渡族金属中,形成间隙固溶体。
(3固溶体的性能由于溶质原子的溶入,固溶体发生晶格畸变,变形抗力增大,使金属的强度、硬度升高的现象称为固溶强化。
合金的三种晶体结构合金是由两种或两种以上的金属元素或金属与非金属元素按一定比例混合而成的新材料,常常具有比单个金属更好的性能。
合金的晶体结构是指合金中各种金属原子或金属与非金属原子的排列方式和组织形态。
合金的晶体结构对其性能和用途具有重要影响。
合金晶体结构可以分为三种类型:面心立方结构、体心立方结构和密堆积结构。
1. 面心立方结构(Face-centered Cubic,FCC)面心立方结构是一种晶格结构,空间群为Fm3m,由面心立方单元格组成。
在面心立方结构中,各个原子位于每个正方形面的中心和每个正方形棱的中心,原子密排,形成紧密堆积结构。
每个顶点的原子等效共享给8个晶格点,每个面心原子等效共享给2个晶格点,因此每个立方体中含有4个原子。
典型的面心立方结构的合金有黄铜(Cu-Zn合金)、铝合金(Al-Cu合金)、镍合金(Ni-Cu合金)等。
面心立方结构的合金具有良好的塑性和韧性,并且容易形成单相固溶体。
2. 体心立方结构(Body-centered Cubic,BCC)体心立方结构是一种晶格结构,空间群为Im3m,由体心立方单元格组成。
在体心立方结构中,各个原子位于立方体的8个顶点和一个立方体的中心,形成紧密堆积结构。
由于每个顶点原子等效共享给8个晶格点,每个体心原子等效只共享给1个晶格点,因此每个立方体中含有两个原子。
典型的体心立方结构的合金有α-铁、钾钠合金(Na-K合金)等。
体心立方结构的合金具有较高的熔点和硬度,以及较好的导电性和磁导性。
3. 密堆积结构(Close-packed Structure,CP)密堆积结构是一种晶格结构,由密堆积单元堆叠而成,密堆积的原子排列较紧密。
密堆积结构可分为六方密堆积(hexagonal close-packed structure,HCP)和立方密堆积(cubic close-packed,CCP)两种类型。
六方密堆积结构是一种顶下六角形最紧密堆积的结构,具有ABABAB…的结构顺序。
铝合金晶体结构
铝合金是由铝和其他金属元素混合而成的合金,具有良好的强度、耐
腐蚀性和导电性。
其晶体结构可以分为两类:铝单质和铝合金。
铝单质的晶体结构为面心立方格子,每个原子周围有12个最近邻原子,其中6个在同一平面上,另外6个在上下两个平面中。
这种结构使得
铝单质具有良好的塑性和导电性。
而铝合金的晶体结构则取决于所添加的其他金属元素。
常见的铝合金
有以下几种晶体结构:
1. 固溶态:在加热时,其他金属元素会溶解在铝中形成固溶态。
此时
晶体结构与纯铝相同为面心立方格子。
2. 调质态:在加热后快速冷却至室温后,其他金属元素会形成一些小
颗粒分布于铝中,此时晶体结构为四方密排。
3. 变形硬化态:通过变形加工使得晶粒发生变化,在此状态下的晶体
结构多样,常见的为等轴晶、柱状晶和片状晶。
总之,铝合金的晶体结构多样化,不同的结构对其性能有着不同的影
响。
因此,在制造铝合金时需要根据具体用途和要求来选择合适的晶体结构。