计算机系统结构存储系统
- 格式:ppt
- 大小:3.17 MB
- 文档页数:61
计算机系统结构考点总结计算机系统结构是计算机科学与技术领域的重要分支,涉及计算机硬件和软件的组成及其相互关系。
为了帮助大家更好地掌握这一领域的核心知识,本文将针对计算机系统结构的考点进行详细总结。
一、计算机系统结构基本概念1.计算机系统结构的定义及发展历程2.计算机系统结构的分类:冯·诺伊曼结构、哈佛结构、堆栈式结构等3.计算机系统性能指标:指令周期、CPU时钟周期、主频、缓存命中率等二、中央处理器(CPU)1.CPU的组成:算术逻辑单元(ALU)、控制单元(CU)、寄存器组等2.指令集架构:复杂指令集计算机(CISC)、精简指令集计算机(RISC)3.CPU缓存:一级缓存、二级缓存、三级缓存及其工作原理4.多核处理器:核数、并行计算、线程级并行等三、存储系统1.存储器层次结构:寄存器、缓存、主存储器、辅助存储器等2.主存储器:DRAM、SRAM、ROM等3.磁盘存储器:硬盘、固态硬盘、光盘等4.存储器管理:分页、分段、虚拟存储器等四、输入输出系统1.I/O接口:并行接口、串行接口、USB、PCI等2.I/O设备:键盘、鼠标、显示器、打印机等3.I/O控制方式:程序控制、中断、直接内存访问(DMA)等4.I/O调度策略:先来先服务(FCFS)、最短作业优先(SJF)、扫描算法等五、总线与通信1.总线分类:内部总线、系统总线、I/O总线等2.总线标准:ISA、PCI、PCI Express等3.通信协议:TCP/IP、UDP、串行通信等4.网络拓扑结构:星型、总线型、环型、网状等六、并行计算与分布式系统1.并行计算:向量机、SIMD、MIMD等2.分布式系统:分布式计算、分布式存储、负载均衡等3.并行与分布式编程:OpenMP、MPI、MapReduce等4.并行与分布式算法:排序、搜索、分布式锁等通过以上考点的总结,相信大家对计算机系统结构有了更加全面和深入的了解。
计算机系统的逻辑组成结构计算机系统是由硬件和软件两部分组成的。
其中,硬件是指计算机的物理设备,而软件是指运行在计算机上的程序和数据。
计算机系统的逻辑组成结构是指计算机系统中各个组成部分之间的逻辑关系和功能划分。
一、中央处理器(Central Processing Unit,简称CPU)中央处理器是计算机系统的核心,负责执行各种指令和进行数据处理。
它由控制器和运算器两部分组成。
控制器负责指令的解析和执行,运算器负责数据的运算和处理。
中央处理器通过控制总线、数据总线和地址总线与其他硬件设备进行通信。
二、存储器存储器是计算机系统中用于存储数据和程序的设备。
根据存取方式的不同,存储器可以分为随机存取存储器(Random Access Memory,简称RAM)和只读存储器(Read-Only Memory,简称ROM)。
RAM用于存储临时数据和程序,而ROM用于存储固定的程序和数据。
三、输入设备输入设备用于将外部数据或指令输入到计算机系统中。
常见的输入设备有键盘、鼠标、扫描仪、摄像头等。
输入设备将输入的数据转化为计算机可以识别和处理的形式,并通过输入接口传输给计算机系统。
四、输出设备输出设备用于将计算机系统处理后的数据或结果输出到外部环境中。
常见的输出设备有显示器、打印机、投影仪等。
输出设备将计算机系统的输出信号转化为人类可以理解的形式,并通过输出接口传输给外部环境。
五、外部存储器外部存储器用于扩展计算机系统的存储容量,可以独立于计算机系统进行数据的存储和读取。
常见的外部存储器有硬盘、光盘、U盘等。
外部存储器通过接口与计算机系统进行数据的传输和交换。
六、总线总线是计算机系统中各个硬件设备之间传输数据和信号的通道。
根据功能和传输速率的不同,总线可以分为数据总线、控制总线和地址总线。
数据总线用于传输数据,控制总线用于传输控制信号,地址总线用于传输设备地址。
七、操作系统操作系统是计算机系统的核心软件,负责管理和控制计算机系统的各个硬件和软件资源。
简述冯.诺依曼计算机系统结构
冯·诺依曼计算机系统结构也被称为冯·诺依曼体系结构或冯·诺依曼体系,是现代计算机系统结构的基础和范例。
该结构由美国数学家冯·诺依曼于1945年提出,并在其著作《EDVAC报告》中详细阐述。
冯·诺依曼计算机系统结构包括以下几个关键部分:
1.中央处理器(CPU):负责执行计算机指令和处理数据的核心部件,分为算术逻辑单元(ALU)和控制单元(CU)两部分。
2.存储器:用于存储指令和数据的设备,包括主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)。
3.输入/输出设备:用于与外部世界进行信息交互的设备,如键盘、鼠标、显示器、打印机等。
4.指令集架构(ISA):规定了计算机能够执行的指令集和操作码的集合,决定了计算机的编程模型和指令执行方式。
5.存储程序:计算机能够执行的指令和数据以二进制形式存储在存储器中,并按照顺序执行。
冯·诺依曼计算机系统结构的特点包括:
1.存储程序:指令和数据以相同的格式存储在存储器中,计算
机可以按顺序读取并执行。
2.存储器访问:计算机可以通过地址寻址方式从存储器中读取或写入指令和数据。
3.存储器分层:将存储器分为主存储器和辅助存储器,主存储器用于临时存储数据和指令,辅助存储器用于永久存储。
4.指令流水线:计算机可以将指令和数据进行流水线处理,以提高执行效率。
5.可编程性:冯·诺依曼计算机具有较高的可编程性,可以根据需求修改和执行不同的程序。
冯·诺依曼计算机系统结构的发展和应用为现代计算机科学和技术的进步提供了坚实的基础,并成为了普遍采用的计算机结构范例。
计算机体系结构存储系统的认识理解计算机存储系统主要分为主存储器和辅助存储器两种类型。
主存储器是计算机体系结构中的核心部分,也是计算机系统中最接近中央处理器(CPU)的存储器。
主存储器通常由高速随机访问存储器(RAM)组成,是计算机进行数据读取和写入的地方。
它具有较快的访问速度和读写能力,可以直接被CPU访问。
主存储器中存储的数据是临时存储的,当计算机断电时,其中的数据会被清除。
辅助存储器是计算机体系结构中的非易失性存储器,主要用于长期存储和备份数据。
常见的辅助存储设备包括硬盘驱动器、固态硬盘、光盘和闪存驱动器等。
辅助存储器的容量比主存储器大,可以存储大量的数据,并且数据不会因为断电而丢失。
然而,辅助存储器的访问速度较慢,需要较长的时间来读取和写入数据。
在计算机体系结构中,主存储器和辅助存储器之间通过缓存来进行数据的传输和管理。
缓存是一种临时存储器,用于存储CPU需要频繁访问的数据和指令。
缓存位于CPU和主存储器之间,并且具有较快的访问速度和容量,可以提高计算机系统的性能。
计算机存储系统的设计需要考虑多个方面的因素,包括存储容量、访问速度、数据可靠性和成本等。
存储容量是指存储系统可以存储数据的总量,它需要根据计算机系统的需求进行合理的配置。
访问速度是指存储系统能够读取和写入数据的速度,它通常取决于存储器的性能和传输通道的带宽。
数据可靠性是指数据在存储系统中的安全性和可靠程度,需要通过冗余备份和错误检测与纠正等技术来保证。
成本是指构建和维护存储系统所需的资源和费用,需要在满足其他需求的前提下尽量降低成本。
总之,计算机体系结构中的存储系统是计算机系统的重要组成部分,主要包括主存储器和辅助存储器。
主存储器用于临时存储和处理数据,具有较快的访问速度和读写能力;辅助存储器用于长期存储和备份数据,具有大容量和非易失性的特点。
存储系统的设计需要考虑存储容量、访问速度、数据可靠性和成本等多个方面的因素。
通过合理配置和管理存储系统,可以提高计算机系统的性能和可靠性。
计算机系统组成是什么计算机系统是如何组成的计算机系统是由多个不同组件、部件和技术构成的复杂系统。
每个组件都有特定的功能和目的,合在一起形成了一个完整的计算机系统。
计算机系统的组成主要包括以下几个方面:中央处理器(CPU)、存储器、输入输出设备、操作系统和应用软件。
1. 中央处理器(CPU):中央处理器是计算机系统的核心,负责执行程序和处理数据。
它通常由控制单元和算术逻辑单元组成。
控制单元负责指挥和协调系统的各个部件,实现程序的顺序执行,而算术逻辑单元则负责执行算术和逻辑运算。
2. 存储器:存储器用于存储数据和程序。
计算机存储器层次结构分为主存储器和辅助存储器。
主存储器通常是使用半导体材料制造的随机访问存储器(RAM),用于存储当前正在运行的程序和处理的数据。
而辅助存储器(如硬盘、固态硬盘和光盘等)则用于长期存储数据和程序。
3. 输入输出设备:输入输出设备用于与外部世界进行交互。
常见的输入设备包括键盘、鼠标、扫描仪和摄像头等,用于将数据和命令输入到计算机系统中。
而输出设备如显示器、打印机和音频设备等则用于将计算机系统处理的结果反馈给用户。
4. 操作系统:操作系统是计算机系统的核心软件,它协调和管理计算机系统的各个硬件和软件资源。
操作系统负责分配CPU时间、内存管理、文件系统管理、设备管理和用户接口等。
常见的操作系统包括Windows、macOS和Linux等。
5. 应用软件:应用软件是用户使用计算机系统解决问题和完成工作的工具。
它包括各种办公软件、娱乐软件、图形设计软件、数据库管理软件等。
应用软件使用户能够利用计算机系统的功能实现各种任务和目标。
计算机系统的组成是一个相互协作的整体。
中央处理器通过存储器获取指令和数据进行处理,然后将结果输出到输出设备中显示给用户。
操作系统负责管理各个组件的资源和协调他们之间的通信。
应用软件则建立在操作系统之上,充分利用计算机系统的硬件和操作系统提供的功能。
另外,计算机系统的组成还涉及到计算机体系结构、总线技术、输入输出控制等方面。
计算机系统结构的组成
计算机系统结构通常包括以下几个主要组成部分:
1. 处理器:处理器是计算机的核心部分,负责执行程序中的指令。
它从内存中获取指令并执行,然后处理数据,并将结果存储回内存中。
处理器的能力决定了计算机的速度和性能。
2. 内存:内存是计算机的临时存储设备,用于存储正在处理的程序和数据。
内存分为随机存取存储器(RAM)和只读存储器(ROM)。
RAM可以随时读写,而ROM只能读取不能写入。
3. 输入/输出设备:输入/输出设备是计算机与外部世界交互的工具。
常见的输入设备包括键盘、鼠标、触摸屏等,常见的输出设备包括显示器、打印机、音响等。
4. 存储器:存储器是计算机的永久性存储设备,用于长期存储数据和程序。
常见的存储器包括硬盘、闪存盘、光盘等。
5. 总线:总线是计算机中各个部分之间传输数据的通道。
总线带宽决定了数据传输的速度,总线类型决定了计算机各个部分之间的连接方式。
6. 操作系统:操作系统是计算机的管理和控制软件,
负责管理计算机的资源,控制程序的执行,并提供用户界面。
操作系统是计算机的重要组成部分,它使得计算机更易于使用和管理。
7. 应用软件:应用软件是为特定目的而编写的程序,例如办公软件、图像处理软件等。
应用软件使计算机具有各种功能和用途。
以上这些部分共同构成了计算机系统结构的主要组成部分。
在实际应用中,根据不同的需求和用途,还可以对计算机系统结构进行更详细或更概括的分类。
408计算机组成原理考研大纲计算机组成原理是一门计算机科学与技术中的基础课程,它是计算机科学与技术专业和相关专业研究生入学考试(考研)的必考科目。
下面将详细介绍408计算机组成原理考研的大纲内容。
一、大纲概述408计算机组成原理考研的大纲主要分为四个部分,包括计算机系统结构与体系结构、存储系统、I/O系统、总线系统。
了解这些内容可以帮助考生全面了解计算机组成原理的基本概念和原理,在考试中能够灵活运用并解决相关问题。
二、具体内容1.计算机系统结构与体系结构这部分主要介绍计算机系统结构和体系结构的基本概念、发展历程、基本特点、各组成部分的功能与作用、指令的执行过程等。
重点内容包括:冯·诺依曼结构、存储程序原理、指令系统和指令格式、CISC和RISC结构、超长指令字结构、流水线技术以及处理器的类型和性能指标等。
2.存储系统存储系统是计算机组成原理中的重要组成部分,这部分主要介绍存储器的层次结构、存储器的组织与管理、存储器的读写过程、存储器的映射和覆盖等。
具体内容包括:存储器的分类、存储器的访问时间和数据传输速度、存储器的容量和成本、主存的地址映射和地址转换、虚拟存储器的概念和技术等。
3.I/O系统I/O系统是计算机与外部设备进行数据交换和通信的重要部分,这部分主要介绍I/O系统的基本概念、I/O设备的种类与特点、I/O系统的组成与结构、I/O方式和I/O控制方式等。
具体内容包括:输入输出设备的分类和特点、输入输出接口的结构和功能、数据传输方式和数据传输方式的选择、I/O控制方式和中断系统、I/O中断处理程序的编写等。
4.总线系统总线系统是计算机组成原理中负责连接计算机各个部件的一种特殊形式的传输线路,可以实现各个功能模块之间的数据传输和信息交换。
这部分主要介绍总线系统的基本概念、总线的分类、总线的组织方式、总线标准和总线性能等。
具体内容包括:总线的各个部分的功能和作用、总线仲裁控制和总线传送的原理、总线主控制和设备控制等。
1. 什么是存储系统?对于一个由两个存储器M 1和M 2构成的存储系统,假设M1的命中率为h ,两个存储器的存储容量分别为s 1和s 2,存取时间分别为t 1和t 2,每千字节的成本分别为c 1和c 2。
⑴ 在什么条件下,整个存储系统的每千字节平均成本会接近于c 2? ⑵ 该存储系统的等效存取时间t a 是多少?是多少?⑶ 假设两层存储器的速度比r=t 2/t 1,并令e=t 1/t a 为存储系统的访问效率。
试以r 和命中率h 来表示访问效率e 。
⑷ 如果r=100,为使访问效率e>0.95,要求命中率h 是多少?是多少?⑸ 对于⑷中的命中率实际上很难达到,对于⑷中的命中率实际上很难达到,假设实际的命中率只能达到假设实际的命中率只能达到0.96。
现在采用一种缓冲技术来解决这个问题。
采用一种缓冲技术来解决这个问题。
当访问当访问M 1不命中时,不命中时,把包括被访问数把包括被访问数据在内的一个数据块都从M 2取到M 1中,并假设被取到M 1中的每个数据平均可以被重复访问5次。
请设计缓冲深度(即每次从M 2取到M 1中的数据块的大小)。
答:答:⑴ 整个存储系统的每千字节平均成本为:整个存储系统的每千字节平均成本为:12s 1s 2c 2s 1s 1c 2s 1s 2s 2c 1s 1c c ++´=+´+´=不难看出:当s1/s2非常小的时候,上式的值约等于c2。
即:s2>>s1时,整个存储器系统的每千字节平均成本会接近于c2。
⑵ 存储系统的等效存取时间t a 为:为:2t )h 1(1t hta´-+´=⑶r)h 1(h 1t )h 1(t h t t t e 211a1´-+=´-+´==⑷ 将数值代入上式可以算得:h>99.95% ⑸通过缓冲的方法,我们需要将命中率从0.96提高到0.9995。
计算机体系结构是指根据属性和功能不同而划分的计算机理论组成部分及计算机基本工作原理、理论的总称。
以下是一些主要的知识点:
1. 存储程序计算机(冯诺依曼型):这种类型的计算机包括运算器、存储器、输入输出设备和控制器四部分。
它以运算器为中心,采用存储程序原理,即程序(指令)和数据放在同一存储器中。
此外,存储器按地址访问,控制流由指令流产生,指令由操作码和地址码组成,数据以二进制代码表示。
2. 程序员所看到的机器属性:这包括数据表示,即硬件能直接辨认和处理的数据类型;寻址规则,包括最小寻址单元,寻址方式及其表示;寄存器定义,包括各种寄存器的定义,数量和使用方式。
3. 指令系统:指令系统是计算机中用来计算和控制的命令集合。
4. 流水线技术:这是一种提高处理器执行指令速度的技术,将指令执行过程分解为多个阶段,并让各阶段的操作重叠进行。
5. 存储层次:存储层次是指把内存划分为不同的等级,以满足不同的存储需求。
6. 输入输出系统:这是负责计算机与外部信息交互的部分。
7. 多处理机和非冯-洛依曼型计算机:这些是计算机体系结构中的高级主题。
计算机系统结构密训计算机系统结构是指计算机硬件和软件组件之间的关系和交互方式。
它涉及到计算机内部各个组成部分的功能、连接方式、层次结构等方面。
计算机系统结构主要包括以下几个方面:1.中央处理器(CPU):CPU是计算机的核心部件,负责执行指令和处理数据。
它包括算术逻辑单元(ALU)、控制单元(CU)和寄存器等部分。
ALU用于执行算术和逻辑运算,CU负责控制指令的执行过程,寄存器用于暂存数据和指令。
2.存储器:存储器用于存储计算机的数据和指令。
主要包括内存(RAM)和外存(硬盘、光盘等)。
内存是计算机中实时存取数据和指令的地方,而外存用于长期存储数据和指令。
3.输入输出设备:输入输出设备用于与计算机进行交互。
常见的输入设备有键盘、鼠标、扫描仪等,输出设备有屏幕、打印机、音箱等。
输入设备将外界的信息输入到计算机中,输出设备将计算机处理后的数据和结果展示给用户。
4.总线:总线是连接计算机各个组件的通信线路。
它分为数据总线、地址总线和控制总线。
数据总线负责传输数据,地址总线用于传输存储器地址,控制总线用于传输控制信号。
5.指令集架构:指令集架构是计算机硬件与软件之间的接口规范。
它决定了计算机能够执行的指令和支持的数据类型。
常见的指令集架构有精简指令集(RISC)和复杂指令集(CISC)。
6.并行计算:并行计算是指多个处理器同时执行任务,以提高计算机系统的性能。
它可以通过并行算法和并行硬件来实现。
常见的并行计算模式有并行计算、向量计算和并发计算。
7.系统层次结构:系统层次结构描述了计算机系统的层次组织关系。
常见的系统层次结构有冯·诺依曼结构和哈佛结构。
冯·诺依曼结构将数据和指令存储在同一存储器中,哈佛结构则将其分开存储。
计算机系统结构是计算机科学中的重要概念,对于我们理解计算机工作原理、进行系统设计和优化都起着重要的作用。
通过合理设计计算机系统结构,可以提高计算机系统的性能、可靠性和可扩展性。
计算机体系结构存储系统的认识与理解计算机体系结构是计算机科学中的一个重要概念,涉及到计算机硬件和软件之间的关系、计算机的逻辑结构和功能等方面。
存储系统是计算机体系结构中的重要组成部分,负责存储和管理系统的数据和程序。
本文将介绍计算机体系结构存储系统的认识与理解,并探讨其重要性和实现方法。
一、计算机体系结构存储系统的认识与理解计算机存储系统是指为计算机提供存储数据和程序的地方,通常包括主存储器、辅助存储器和输入输出设备等组成部分。
其中,主存储器是计算机中最重要的存储系统之一,用于存储计算机程序和数据。
主存储器通常分为三种类型:随机访问存储器(RAM)、只读存储器(ROM)和闪存。
RAM是随机访问的存储器,可以在任何时候进行读写操作,但是其容量有限。
ROM是一种只读存储器,只能读取其编程内容,因此其容量非常大,但不可修改。
闪存是一种非易失性存储器,具有快速读写速度和大容量等优点,但是较为昂贵。
辅助存储器包括外置存储器和内置存储器。
外置存储器通常包括硬盘、软盘、USB存储器等,用于存储临时数据和文件。
内置存储器则包括内存、EEPROM、FRAM等,用于存储系统配置文件、程序代码等。
输入输出设备用于将数据和程序传输到计算机外部,例如显示器、键盘、鼠标等。
计算机存储系统的重要性不言而喻。
存储系统的配置和优化对计算机的性能、可靠性和安全性都有着重要的影响。
合理的存储系统可以提高计算机的运行效率,减少存储空间的占用,提高数据传输速度,降低系统出错率。
二、计算机体系结构存储系统的实现方法计算机体系结构存储系统的实现方法可以分为以下几种:1. 基于硬件的存储系统:这种存储系统直接将存储芯片嵌入到计算机系统中,通过硬件连接实现数据的存储和读取。
2. 基于软件的存储系统:这种存储系统使用操作系统提供的软件存储功能,通过操作系统的存储管理功能实现数据的存储和读取。
3. 基于网络的存储系统:这种存储系统通过网络进行数据存储和传输,可以通过分布式存储技术实现数据的大容量存储和高效性访问。
计算机组成与系统结构计算机组成与系统结构是计算机科学中的重要领域,涉及到计算机硬件和软件的设计、构建和运行。
本文将探讨计算机组成与系统结构的基本概念、主要组成部分以及它们之间的关系和相互作用。
一、概述计算机组成与系统结构是指计算机硬件和软件的组成和结构。
计算机组成涉及到计算机的物理部件,包括中央处理器(CPU)、内存、存储器、输入输出设备和总线等。
系统结构则关注计算机的整体结构和工作原理。
二、计算机组成1.中央处理器(CPU):CPU是计算机的核心,负责执行指令和控制计算机的运行。
它由控制单元和算术逻辑单元组成。
2.存储器:存储器用于存储和读取数据和指令。
它分为主存储器和辅助存储器两部分。
主存储器包括随机存取存储器(RAM)和只读存储器(ROM)等。
3.输入输出设备:输入输出设备用于与计算机进行信息交互。
常见的输入设备有键盘、鼠标和扫描仪等,输出设备包括显示器、打印机和音响等。
4.总线:总线用于传输数据和指令,连接计算机内的各个组件。
三、系统结构1.冯·诺依曼体系结构:冯·诺依曼体系结构是现代计算机体系结构的基础,它将指令和数据存储在同一个存储器中,并采用顺序执行的方式处理指令。
2.并行结构:并行结构允许多个处理器同时执行指令,以提高计算机的处理能力。
常见的并行结构包括对称多处理器(SMP)和向量处理器等。
3.分布式系统:分布式系统由多台计算机组成,通过网络进行通信和协调工作。
分布式系统具有高可靠性和高扩展性的优势。
四、组成与结构的关系计算机组成和系统结构相互依存,组成决定了结构的实现方式,结构又反过来影响了组成的选择和配置。
组成和结构的协调与平衡对于实现高性能、高可靠性的计算机系统至关重要。
总之,计算机组成与系统结构是计算机科学中的核心概念。
了解计算机组成与系统结构的基本原理和关系,有助于理解计算机的工作原理,提高计算机的性能和可靠性。
只有在正确的组成和结构的指导下,计算机才能发挥出最大的潜力,为人类提供更加强大的计算和处理能力。
冯诺依曼计算机五大体系结构
冯·诺依曼计算机是20世纪初计算机发展的重要一步,它向世界送去了计算机的希望。
冯·诺依曼开发了“五大体系结构”,即输入输出
(I/O)系统、存储程序、运算器、控制器和指令解释器。
本文将这五大体系结构详细介绍如下:
一、输入输出(I/O)系统
输入输出(I/O)系统主要用于将冯·诺依曼机器与外界设备连接,以便与外界设备的信息进行交换,进而支持冯·诺依曼机器的其他功能。
二、存储程序
存储程序是一种可存储信息的装置,用来储存、增改和读取存储在内存中的信息,它是冯·诺依曼计算机中最重要的一个系统。
三、运算器
运算器主要用于实现运算和处理逻辑指令,能够计算出由运算符号和其他数据组成的表达式的值。
四、控制器
控制器主要用于控制工作流程,包括确定指令的执行顺序,并将相应
的指令依次送入机器中。
五、指令解释器
指令解释器用来解释工作指令,它主要将含有字节的机器指令解码成具有较高级别的机器指令,以便机器识别并运行。
总之,冯·诺依曼计算机五大体系结构是计算机科学历史上一个重要的里程碑,它为计算机而形成的重要基础,它赋给我们自动解决问题的能力。
简述你对计算机存储系统层次结构的理解计算机存储系统层次结构是把计算机存储设备分层管理的一种结构,它是一种结构化的方式,将存储器按功能划分成不同层次,使得系统的使用者可以方便地访问所需要的存储资源,而不需要考虑其底层实现。
计算机存储系统层次结构一般可以分为五种不同层次,分别是“硬件层”、“操作系统层”、“文件管理系统层”、“应用程序层”和“应用数据层”。
硬件层是计算机存储系统的最底层,它由计算机的硬件设备构成,包括中央处理器、内存以及存储设备等等,它们负责存取操作以及处理数据。
接着是操作系统层,它为用户提供访问和操作硬件设备的接口,使得用户可以更方便地操作设备,而不必关心设备本身的内部细节。
下一层是文件管理系统层,它负责把用户的输入文件存储在硬件设备上,也就是我们常说的文件存储,以及对文件进行管理,比如将文件保存在特定的文件夹中,以方便用户查找等等,使得用户能够更加方便地进行文件的存取操作。
接下来是应用程序层,它是一种可视化的界面,可以使用户更加便捷地使用计算机,一般来说,应用程序层提供了一系列可执行的程序,用户可以根据自己的需求进行选择,从而使得用户可以更加便捷地进行工作。
最后一层是应用数据层,它提供了用户可以使用的特定应用数据,这些数据可以帮助用户更加方便地完成工作。
计算机存储系统层次结构具有许多优点,最主要的是可以有效的提高计算机的存储效率。
因为将存储资源分层管理,使得用户能够更快速地定位所需要的数据,从而提高系统的性能,另外,将存储空间划分不同层次,可以有效满足用户的不同需求,从而使得计算机存储空间得到最大化的利用。
综上所述,计算机存储系统层次结构是将计算机存储设备按功能划分成不同层次的一种结构,它可以有效的提高计算机的存储效率,满足用户的不同需求,让用户可以更加方便的访问所需要的资源,同时也方便进行文件的存取操作。
只要系统管理者能够合理的采用计算机存储系统层次结构,就可以使得计算机系统得到最大化的发挥。