幂函数知识点高一数学知识点总结2018高一数学幂函数知识点总结
- 格式:doc
- 大小:36.50 KB
- 文档页数:3
幂函数知识点笔记总结一、基本概念1. 幂函数的定义幂函数是指以底数为自变量,指数为常数的函数,一般形式为 f(x) = a*x^n,其中a为常数,n为整数。
特殊情况下,指数可以是分数或负数。
2. 幂函数的图像特征当底数为正数且指数为正整数时,幂函数为增函数,图像从左下到右上逐渐上升;当底数为正数且指数为负整数时,幂函数为减函数,图像从左上到右下逐渐下降;当底数为负数且指数为奇数时,幂函数为增减函数,图像在原点对称;当底数为负数且指数为偶数时,幂函数为非定义域。
3. 幂函数的定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性,可以是整个实数集合、正实数集合或负实数集合。
4. 幂函数的奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
二、函数性质1. 增减性当指数n为正数时,幂函数为增函数,图像从左下到右上逐渐上升;当指数n为负数时,幂函数为减函数,图像从左上到右下逐渐下降。
2. 奇偶性当指数n为奇数时,幂函数为奇函数,具有原点对称性;当指数n为偶数时,幂函数为偶函数,具有y轴对称性。
3. 定义域和值域幂函数的定义域为实数集合R,值域取决于底数a的正负和指数n的奇偶性。
4. 图像特征底数为正数且指数为正整数时,幂函数为增函数;底数为正数且指数为负整数时,幂函数为减函数;底数为负数且指数为奇数时,幂函数为增减函数;底数为负数且指数为偶数时,幂函数为非定义域。
5. 渐近线当底数a为正数且指数n为正数时,幂函数的渐近线为y=0(x轴);当底数a为正数且指数n为负数时,幂函数的渐近线为x=0(y轴);其他情况下,幂函数没有渐近线。
三、常见变形1. 幂函数的平移对于幂函数f(x) = a*x^n,当a>0时,平移y轴时,可以通过加减常数来实现;当a<0时,平移x轴时,也可以通过加减常数来实现。
2. 幂函数的伸缩对于幂函数 f(x) = a*x^n,当a>0时,伸缩x轴时,可以通过系数a来实现;当a<0时,伸缩y轴时,也可以通过系数a来实现。
高一数学上册幂函数知识点幂函数是一种常见的函数形式,由于其在数学和实际问题中的广泛应用,掌握幂函数的知识点对高一学生来说至关重要。
本文将介绍高一数学上册幂函数的主要知识点,包括定义、性质以及解题方法等。
1. 幂函数的定义幂函数是指形如f(x) = x^a的函数,其中a为常数,x为自变量。
在幂函数中,底数x通常为正实数,指数a可以是正数、负数或零。
2. 幂函数的图像与性质(1)当指数a为正数时,幂函数的图像呈现递增的趋势。
若指数a大于1,则曲线斜率较大;若指数a介于0到1之间,则曲线斜率较小。
(2)当指数a为负数时,幂函数的图像呈现递减的趋势。
(3)当指数a为零时,幂函数的图像为一条水平直线。
3. 幂函数的基本性质(1)定义域:对于幂函数f(x) = x^a,其定义域为所有使得x^a有意义的实数x。
(2)值域:幂函数值域的范围可以是整个实数轴,或者是一个区间,具体取决于底数的正负和指数的奇偶性。
(3)对称性:当指数a为奇数时,幂函数关于原点对称;当指数a为偶数且底数x为正数时,幂函数关于y轴对称。
4. 幂函数的运算法则(1)幂函数的加法:若f(x) = x^a 和 g(x) = x^b 为幂函数,则它们的和函数是h(x) = x^a + x^b。
(2)幂函数的乘法:若f(x) = x^a 和 g(x) = x^b 为幂函数,则它们的乘积函数是h(x) = (x^a)(x^b) = x^(a+b)。
(3)幂函数的倒数:若f(x) = x^a 为幂函数,则其倒数函数是g(x) = 1/f(x) = 1/(x^a) = x^(-a)。
5. 幂函数的解题方法(1)求函数的定义域:根据幂函数的定义,求解所有使得x^a 有意义的实数x即可得到函数的定义域。
(2)求函数的值域:根据底数的正负和指数的奇偶性,可以确定函数的值域范围。
(3)求函数的性质与图像:通过计算函数的导数、二阶导数等信息,可以推断函数的增减性、凹凸性和图像的特征。
引言:高中幂函数是高中数学中的重要部分,它在数学研究和实际问题中有着广泛的应用。
本文将对高中幂函数的知识点进行总结和整理,帮助学生完善对幂函数的理解和掌握。
概述:幂函数是指形如y=x^n的函数,其中n是常数。
幂函数的特点是具有单调性和奇偶性,其图象通常为一条曲线。
在研究幂函数时,需要掌握其定义、性质和应用。
正文:一、幂函数的定义1.1 幂函数的基本形式幂函数的基本形式是y=x^n,其中n是常数。
幂函数的定义域为所有实数,且n可以是正整数、负整数、零和有理数。
1.2 幂函数的图象当n为正奇数时,幂函数的图象在第一象限和第三象限上单调递增;当n为正偶数时,幂函数的图象在第一象限上单调递增,且具有对称轴y=0;当n为负数时,幂函数的图象在第一、三象限上单调递减。
1.3 幂函数的特殊情况当n=1时,幂函数变为一次函数;当n=0时,幂函数变为常数函数;当n为正无穷大时,幂函数趋向于正无穷大;当n为负无穷大时,幂函数趋向于零。
二、幂函数的性质2.1 幂函数的单调性幂函数在定义域上的单调性与n的值有关。
当n为正奇数时,幂函数是增函数;当n为正偶数时,在非负区间上是增函数,在负区间上是减函数;当n为负数时,在非负区间上是减函数,在负区间上是增函数。
2.2 幂函数的奇偶性幂函数的奇偶性与n的奇偶性有关。
当n为奇数时,幂函数是奇函数;当n为偶数时,幂函数是偶函数。
2.3 幂函数的零点当n为正奇数时,幂函数的零点为x=0;当n为正偶数时,幂函数的零点为x=0;当n为负奇数时,幂函数没有零点;当n为负偶数时,幂函数的零点为x=0。
三、幂函数的图象变换3.1 幂函数的平移幂函数的平移是指将幂函数的图象沿横轴或纵轴方向移动。
平移的方向和距离与平移的规律有关,具体可利用平移的公式进行计算。
3.2 幂函数的伸缩幂函数的伸缩是指将幂函数的图象进行纵向或横向的拉伸或压缩。
伸缩的方式和伸缩的规律有关,可利用伸缩的公式进行计算。
3.3 幂函数的翻折幂函数的翻折是指将幂函数的图象进行关于横轴或纵轴的翻折。
高一数学幂函数知识点归纳大全在高一数学学科中,幂函数是重要的一个知识点。
幂函数是指形如y = ax^n的函数,其中a和n是实数,且a≠0,n≠0。
一、幂函数的定义及性质幂函数的定义就是函数的定义,即y = ax^n,其中a称为幂函数的底数,n称为指数。
幂函数的性质有以下几点:1. 当n为正整数时,幂函数表示乘方运算,例如y = 2x^3表示x的3次方。
2. 当n为负整数时,幂函数表示倒数,例如y = 2x^-2表示x的倒数的平方。
3. 当n为分数时,幂函数表示根式,例如y = 2x^(1/2)表示x的平方根。
4. 当n为零时,幂函数表示常数函数,即y = a,其中a为常数。
二、幂函数图像特征1. 当a>0且n为正偶数时,幂函数的图像开口向上,且对称于y轴。
2. 当a>0且n为正奇数时,幂函数的图像开口向上,且不对称于y 轴。
3. 当a<0且n为正偶数时,幂函数的图像开口向下,且对称于y轴。
4. 当a<0且n为正奇数时,幂函数的图像开口向下,且不对称于y 轴。
三、幂函数的变换幂函数可以通过平移、伸缩、翻转等变换得到其他函数形式。
1. 平移:平移是指将函数的图像沿x轴或y轴方向上下左右移动。
例如,对于函数y = 2x^3,将x坐标减2,可以得到y = 2(x-2)^3,实现了向右平移2个单位。
2. 伸缩:伸缩是指将函数的图像沿x轴或y轴方向上下左右拉长或缩短。
例如,对于函数y = 2x^3,将x坐标扩大为原来的2倍,可以得到y = 2(2x)^3,实现了横向的伸缩。
3. 翻转:翻转是指将函数的图像沿x轴或y轴方向上下左右翻转。
例如,对于函数y = 2x^3,将函数的图像上下翻转,可以得到y = -2x^3,实现了关于x轴的翻转。
四、幂函数的应用1. 金融领域:在复利计算中,幂函数常被用于计算投资收益和贷款利息。
2. 自然科学领域:幂函数经常出现在自然界的现象中,如物体的自由落体运动中,下落距离与时间的关系可以用幂函数表示。
高中幂函数知识点总结幂函数知识点包括幂函数的定义、幂函数的图象和性质、利用幂函数解不等式的步骤、幂函数图象性质的拓展等部分,有关幂函数的详情如下:幂函数的定义(1)一般地,函数y=xα叫做幂函数(power function),其中x是自变量,α是常数.(2)幂函数解析式的结构特征①指数为常数;②底数是自变量,自变量的系数为1;③幂xα的系数为1;④只有1项.幂函数的图象和性质常见幂函数(1)y=x、y=x2、y=x3、、y=x-1的图象(2)性质利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式求参数范围,注意分类讨论思想的应用.幂函数图象性质的拓展对于幂函数y=xα(α∈R)时,可视为y=型(p,q互异)根据最简分数的值,来类比常见幂函数的图象.(1)当α>0时,①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x的增大而增大;③在第一象限内,α>1时,图象是向下凸的;0<α<1时,图象是向上凸的;④在第一象限内,过点(1,1)后,图象向右上方无限伸展.(2)当α<0时,①图象都通过点(1,1);②在第一象限内,函数值随x的增大而减小,图象是向下凸的;③在第一象限内,图象向上与y轴无限接近,向右与x轴无限接近;④在第一象限内,过点(1,1)后,|α|越大,图象下降的速度越快.(3)幂函数的奇偶性.y=xα,当α=p,q∈Z)是最简分数时,当p,q均为奇数时,y=xα是奇函数;当p为偶数,q为奇数时,y=xα是偶函数;当q为偶数时,y=xα为非奇非偶函数.。
幂函数知识点高一必修一幂函数是高中数学中的一个重要概念,它在解决实际问题和理论推导中都有广泛应用。
在高一必修一的数学课程中,学生将首次接触到幂函数的概念和相关知识。
本文将从定义、性质、图像和应用等方面进行介绍,帮助学生更好地理解和掌握幂函数。
一、幂函数的定义幂函数是形如$f(x)=x^a$的函数,其中$x$是自变量,$a$是常数且$a$可以为有理数、整数或实数。
当$a$为有理数时,幂函数的定义域是实数集;当$a$为整数时,幂函数的定义域可以是正实数集、负实数集或者零;当$a$为实数时,幂函数的定义域可以是正实数集和零集。
二、幂函数的性质1. 定义域:幂函数的定义域取决于指数的取值范围,通常为实数集或者特定的数集。
2. 奇偶性:当指数$a$为整数且为偶数时,幂函数是偶函数;当指数$a$为整数且为奇数时,幂函数是奇函数;当指数$a$为实数且为非整数时,幂函数既不是奇函数也不是偶函数。
3. 单调性:当指数$a>0$时,幂函数是增函数;当指数$a<0$时,幂函数是减函数。
4. 对称轴:当指数$a$为整数且为偶数时,幂函数的对称轴为$y$轴;当指数$a$为整数且为奇数时,幂函数没有对称轴。
三、幂函数的图像根据幂函数的性质可以推断出其图像的一些特点。
1. 当指数$a>1$时,幂函数的图像在原点左侧逐渐趋近于$x$轴且斜率逐渐增大;在原点右侧逐渐上升但斜率趋于0。
2. 当指数$a=1$时,幂函数的图像为直线$y=x$。
3. 当指数$0<a<1$时,幂函数的图像在整个定义域上单调递减,并且在$x$轴上趋于无穷。
4. 当指数$a=0$时,幂函数的图像为常数函数$y=1$。
5. 当指数$a<0$时,幂函数的图像在整个定义域上单调递减,但在$x$轴右侧逐渐趋近于0。
综上所述,幂函数的图像呈现出不同的形态和趋势,具体取决于指数的取值范围。
四、幂函数的应用幂函数在实际问题中有广泛的应用,尤其在自然科学和工程技术领域。
高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。
高考数学幂函数知识点总结一、幂函数的定义和性质幂函数是数学中一种常见的函数形式,它的定义形式为y = ax^n,其中a和n都为实数,x为自变量,y为因变量。
幂函数在数学中扮演着重要的角色,广泛应用于自然科学和工程技术领域。
下面我们来总结一些幂函数的重要性质和应用。
1. 幂函数的定义域和值域:幂函数y = ax^n的定义域为实数集R,值域则取决于a和n 的取值范围。
当a>0时,n为整数时,函数的值域为正实数集R+;当a<0时,n为奇数时,函数的值域为负实数集R-。
2. 幂函数的奇偶性:当n为偶数时,函数为偶函数;当n为奇数时,函数为奇函数。
具体而言,当n为偶数时,对于任意x,有f(-x)=f(x);当n为奇数时,对于任意x,有f(-x)=-f(x)。
3. 幂函数的图像变换:幂函数y = ax^n在平面直角坐标系中的图像变换与参数a和n的取值相关。
当a>1时,函数图像沿y轴方向压缩,当0<a<1时,函数图像沿y轴方向拉伸;当n>1时,函数图像在原点左侧上升,当0<n<1时,函数图像在原点右侧上升。
4. 幂函数的极限:当a>1时,幂函数在正无穷大时趋于正无穷大;当0<a<1时,幂函数在正无穷大时趋于0。
若n>0,幂函数在负无穷大时趋于正无穷大;若n<0,幂函数在负无穷大时趋于0。
二、幂函数的常见应用幂函数因为其特殊的形式和性质,在科学和工程中有广泛的应用。
以下是幂函数在一些具体问题中的运用。
1. 物质的增长和衰减:在生物学和经济学中,常常需要研究物质的增长和衰减过程。
幂函数可用来描述这种过程。
例如,生物种群的增长可以用幂函数进行建模,其中a表示种群的初始数量,n表示增长率。
同样,经济学中的人口增长、环境污染以及经济发展等问题也可以利用幂函数进行分析。
2. 各种规律的描述:幂函数可以应用于描述一些规律和现象。
例如,光的强度随距离的关系、金融领域中财富分布的不平等系数、能量消耗与功率之间的关系等都可以用幂函数来表达。
幂函数知识点总结一、幂函数的基本概念1.1 定义幂函数是指以自变量 x 为底数的常数次幂,形式为 y = ax^n,其中 a 为非零实数,n 为实数。
其中,底数 a 称为幂函数的底数,指数 n 称为幂函数的指数。
1.2 定义域和值域幂函数的定义域为全体实数集 R,即 x 可以取任意实数值;而值域则受底数 a 和指数 n 的影响而不同。
当 n 为正数时,值域为全体正实数集 R^+;当 n 为负数时,值域为正实数集R^+,并且x ≠ 0;当 n 为零时,值域为全体实数集 R。
1.3 奇偶性当指数 n 为偶数时,幂函数关于 y 轴对称;当指数 n 为奇数时,幂函数关于原点对称。
1.4 增减性当指数 n 大于 1 时,幂函数在定义域上是增函数;当指数 n 大于 0 且小于 1 时,幂函数在定义域上是减函数。
二、幂函数图像的特点2.1 当底数 a 大于 1 时当底数 a 大于 1 时,幂函数的值域为正实数集 R^+。
图像呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势。
2.2 当底数 0 < a < 1 时当底数 0 < a < 1 时,幂函数的值域同样为正实数集 R^+。
图像呈现出从左下方无穷趋近于x 轴,经过原点后逐渐下降并趋近于 0 的趋势。
2.3 当底数 a 小于 0 时当底数 a 小于 0 时,则根据指数 n 的奇偶性和正负性来确定图像的性质。
当指数 n 为正偶数时,图像同样呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势;当指数 n 为正奇数时,图像同样呈现从左上方无穷趋近于 x 轴,经过原点后逐渐下降并趋近于负无穷的趋势。
2.4 特殊情况当底数 a 等于 1 时,幂函数的图像表现为一条平行于 x 轴的直线 y = 1;当底数 a 等于 -1 时,根据指数 n 的奇偶性不同,图像分别为一条平行于 x 轴的直线 y = -1 和关于 y 轴对称的抛物线。
高一数学知识点:幂函数知识点_知识点总结幂函数是高中数学中的重要概念之一,在高一数学学习中也占据了重要的地位。
掌握幂函数的知识点对于高中数学学习的深入理解和解题能力的提升都具有重要意义。
本文将对高一数学中的幂函数知识点进行总结,并提供相关示例和解题思路,以帮助读者更好地掌握这一知识点。
一、幂函数的定义和基本性质1. 定义:幂函数是指形如y = x^a(其中a表示常数)的函数,这里x是自变量,y是因变量。
幂函数中,指数a可以是正数、负数或零。
2. 基本性质:- 当a>0时,函数是增函数;- 当a<0时,函数是减函数;- 当a=0时,函数是常数函数;- 当x>1时,函数值增大较快;当0<x<1时,函数值减小较快;- 函数图像关于y轴对称(当指数为偶数)或者关于原点对称(当指数为奇数)。
二、幂函数的图像和特殊情况1. 幂函数的图像:不同指数a对应的幂函数图像有所不同,可以通过绘制函数图像来直观地理解幂函数的特点。
2. 特殊情况:- 当a>1时,可以看到幂函数的图像在原点处有一个变化方向的拐点;- 当0<a<1时,幂函数的图像在原点处有一个极值点,对称轴为y 轴;- 当a=1时,幂函数为y=x,即一次函数;- 当a=0时,幂函数为y=1,即常数函数;- 当a<0时,幂函数的图像会经过y轴正半轴和负半轴两个点,形状类似于倒置的U型。
三、幂函数的图像变换和平移1. 横向压缩和拉伸:幂函数图像可以通过调整指数a的大小来实现横向的压缩和拉伸。
当a>1时,图像会被压缩;当0<a<1时,图像会被拉伸。
2. 纵向压缩和拉伸:幂函数图像可以通过调整函数的整体乘积常数k来实现纵向的压缩和拉伸。
当k>1时,图像会被压缩;当0<k<1时,图像会被拉伸。
3. 平移操作:幂函数图像可以通过横向和纵向平移来实现整体位置的调整。
横向平移可以通过修改自变量x的值来实现;纵向平移可以通过修改常数项b来实现。
高一数学幂函数知识点1.概念:y x α=(x 是自变量,α是常数)注意:(1).只有形如y x α=(α为任意实数,x 为自变量)的函数才是幂函数,否则就不是; (2).判断是否为幂函数的依据:y x α=①.指数为常数 ②. 底数为自变量 ③. 底数系数为1 如:()3,2,5,y x y x y x ααα===+等都不是幂函数.2.幂函数的图象 按0,1,1,01,0ααααα==><<<五种类型分3.幂函数y x α=在第一象限图象特征(1).当1α>时,图象过(0,0),(1,1),下凸递增,如3y x = (2).当01α<<时,图象过(0,0),(1,1),上凸递增,如12y x =(3).当0α<时,图象过(1,1),下凸递减,且以两坐标轴为渐近线.如12y x -= 4.幂函数的性质(1).所有的幂函数在()0,+∞上都有意义,图象都过(1,1). (2).如果0α>,则幂函数过原点,在()0,+∞上单调递增.(3).如果0α<,图象在()0,+∞上单调递减,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限逼近y 轴;当x 趋向于+∞时,图象在x 轴上方无限逼近x 轴. (4).①.当α为奇数时,幂函数为奇数 ②.当α为偶数时,幂函数为偶数 ③.当(),,pp q p q N qα+=∈为互质,时a. 若q 为奇数,则当p 为奇数时p q y x =为奇函数,当p 为偶数时p qy x =为偶函数 b. 若q 为偶数,则p 必为奇数,此时pqy x =为非奇非偶函数 (5).幂函数的定义域①.当N α+∈时,定义域为R ②.当0α=时,定义域为{}|,0x x R x ∈≠ ③.当α为负整数时,定义域为{}|,0x x R x ∈≠ ④.当(),,1,,pp q N q p q qα+=∈>且互质时 a. q 为偶数时,定义域为[)0,+∞ b. q 为奇数时,定义域为R ⑤.当()-,,1,,pp q N q p q qα+=∈>且互质时 a. q 为偶数,定义域为()0,+∞ b. q 为奇数,定义域为{}|,0x x R x ∈≠.。
高一幂函数知识点总结函数(function)是(高中)(数学)教学的主线之一,其内容丰富、知识点众多,包括有指数函数、幂函数、对数函数、三角函数等,贯穿数学教学全过程,然而学生在学习函数时,往往知其然不知其所以然,徒然明白解题方法和过程,却对解题的意义和知识来源应用一概不知,最终无法形成对知识的牢固记忆,将知识又还给了老师。
基于此,以下是为大家精心搜集整理的:(高一)幂函数知识点总结,仅供大家参考阅读。
高一幂函数知识点总结如下:一.定义:形如y=xa(是常数)的函数,叫幂函数。
二.图象幂函数的图象和性质;由d取值不同而变化,如图如示:三.幂函数的性质:n0时,(1)图象都通过点(0,0),(1,1)(2)在(0,+),函数随的增大而增大n0时,(1)图象都通过(1,1)(2)在(0,+),函数随x的增加而减小(3)在第一象限内,图象向上与y轴无限地接近,向右与x轴无限地接近。
注意事项:1.判断幂函数的定义域的方法可概括为(对指数)"先看正负,是负去零,再看奇偶,是偶非负'2.根据幂函数的定义域,值域及指数特点画其图象。
函数位于第一象限的图象在"n1'时,往上翘;0四.例析:分析:分指数幂的定义提示了分数指数幂与根式的关系,因此根式运算可以转化为分数指数幂的运算。
启示:要善于与已学过的知识联系,解决新问题,同时也是善于将新概念理解为已学过的知识的拓展。
分析:底数分别不同而指数相同,可以看作是用幂函数的单调性质去理解。
和。
两个幂函数,利解:(1)(0,+)是递增的又∵1.11.4利用幂函数的性质比较数的大小。
例3.比较的大小。
分析:三个量比较大小,先考虑取值的符号。
启示:当直接比较大小难以进行时,可以考虑借助一些中间量特殊值,如0,1或其他数来解决。
分析:在指数运算中,注重运算顺序和灵活运用乘法合成。
启示:此处化简过程可与(初中)代数式的运算联系。
五.本周知识同步自测题:1.计算的值()2.下列命题中正确的是( )A.当n=0时,函数y=x的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.若幂函数y=xn的图象关于原点对称,则y=xn在定义域内y随x的增大而增大nD.幂函数的图象不可能在第四象限3.实数a,b满足0A.ab4.在幂函数y=xa,y=xb,y=xc,y=xd在第1象限的图象中(右图),的大小关系为()A.abcdB.dbcaC.dcbaD.bcda5.下列函数中是幂函数的是)6.设幂函数y=xn的图象经过(8,4),则函数y=xn的值域为。
幂函数知识点-高一数学知识点总结,2018高一数学幂函数知识点总结函数知识点当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x 小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
幂函数知识点。
数学高中幂函数知识点总结一、幂函数的定义幂函数是形如y = ax^b (a ≠ 0)的函数,其中a、b为常数且b为实数。
当b为自然数时,叫做指数函数;当b为整数时,叫做整数幂函数。
二、幂函数的基本性质1、幂函数的定义域:要求x的b次幂在任何实数范围内都有定义,即x∈R。
2、幂函数的值域:当b为正数时,a为正值时,y的取值范围是(0,+∞);当b为正数时,a为负值时,y的取值范围是(-∞,0);当b为负数时,函数图象经过第二象限,y的取值范围是(0,+∞),a的正负对y的取值范围没有影响。
3、幂函数的奇偶性:b为偶数时,函数图象关于y轴对称;b为奇数时,函数图象关于原点对称。
4、幂函数的单调性:在定义域内,当b>0时,a>0时y随x增大而增大;当b>0时,a<0时y随x增大而减小。
5、幂函数的图象:a) b>0时,a>1时的函数图象是上凸的抛物线,a<1时的函数图象是下凸的抛物线;b) b<0时,a>0时的函数图象是一条破折线;c) b=1时,函数图像是一条直线。
6、幂函数的增长性:a) 当a>1,b>0时,y随x增大而增大;b) 当0<a<1,b>0时,y随x增大而减小;c) 当a>0,b<0时,y随x增大而减小。
三、幂函数的运算性质1、乘法运算:幂函数y=ax^m和y=bx^n的乘积是幂函数y=abx^(m+n)。
2、除法运算:幂函数y=ax^m和y=bx^n的商是幂函数y=(a/b)x^(m-n)。
(b≠0)3、幂函数的乘方:(ax^m)^n = a^nx^(m*n)。
四、幂函数的应用1、指数增长和指数衰减:指数增长是指幂函数的指数大于1且底数大于1时,函数值随自变量的增大而呈指数增长;指数衰减是指幂函数的指数大于1且底数小于1时,函数值随自变量的增大而呈指数衰减。
2、复利问题:利息的计算通过年限n^{'}m即可直接得到m*n倍经过以上的总结,我们对高中幂函数的相关知识有了更深入的了解。
高中幂函数知识点总结在高中数学中,学生们需要掌握幂函数的基本性质、图像特征、变化规律以及应用等知识点。
下面就幂函数的这些知识点进行总结。
一、幂函数的基本性质1.定义域和值域幂函数的定义域为全体实数集R,当a>0时,幂函数的值域为(0,+∞);当a<0时,幂函数的值域为(-∞,0)。
当b为实数时,定义域不变,值域也不变。
2.奇函数和偶函数当b为奇数时,幂函数为奇函数,其图像关于原点对称;当b为偶数时,幂函数为偶函数,其图像关于y轴对称。
3.增减性当b>0时,a^b是单调递增函数;当b<0时,a^b是单调递减函数;当a>1时,a^x是单调递增函数;当0<a<1时,a^x是单调递减函数。
4.奇偶性当b为偶数时,幂函数的值域为(0,+∞),其奇函数;当b为奇数时,幂函数的值域为(-∞,+∞),其为奇函数。
5.图像特征当a>1时,幂函数的图像开口向上,且与y轴有交点(0,1);当0<a<1时,幂函数的图像开口向下,且与y轴有交点(0,1)。
二、幂函数的变化规律1.当a>1时,随着x的增大,幂函数的值也增大;当0<a<1时,随着x的增大,幂函数的值逐渐减小。
2.当b>0时,随着x的增大,幂函数的值也增大;当b<0时,随着x的增大,幂函数的值逐渐减小。
3.在定义域内,当a大于1时,幂函数呈现增长趋势,a小于1时,幂函数呈现下降趋势。
幂函数的图像是在a的基础上上升或下降,实际上是在描绘x的指数函数。
4.幂函数的图像经常在一轴上浮躺,显示出一种不平滑的弧度,变化没有一元二次函数的平稳。
随着a的变大或者减小,幂函数的图像与x轴的夹角越来越小。
5.当b不为整数,是一个更加复杂的形式;而指数函数是幂函数的一种特殊情况,b为整数时。
三、幂函数的应用1.在现实生活中,幂函数的变化规律被应用在各个方面,比如物理学中的指数增长和衰减模型、生物学中的人口增长模型、经济学中的利润增长模型等。
高一数学知识点幂函数知识点知识点总结高一数学知识点─ 幂函数知识点总结幂函数是数学中的一种基本函数类型,在高一数学课程中占据重要地位。
幂函数的表达形式为$f(x) = ax^b$,其中$a$和$b$为常数($a \neq 0$)。
一、幂函数的定义域和值域幂函数$f(x) = ax^b$的定义域为实数集,即$(-\infty, +\infty)$。
幂函数的值域则取决于$a$和$b$的取值范围。
当$b > 0$时,幂函数的值域为$(0, +\infty)$。
此时,函数图像从第三象限逐渐上升到第一象限。
当$b < 0$时,幂函数的值域为$(-\infty, 0)$。
此时,函数图像从第一象限逐渐下降到第三象限。
二、幂函数的对称性幂函数的对称性可以分为以下两种情况:1. 当$b$为偶数时,幂函数$f(x) = ax^b$关于$y$轴对称。
即对于任意$x$都有$f(-x) = f(x)$。
2. 当$b$为奇数时,幂函数$f(x) = ax^b$关于原点对称。
即对于任意$x$都有$f(-x) = -f(x)$。
三、幂函数的增减性与极值幂函数$f(x) = ax^b$的增减性与$b$的正负性相关。
1. 当$b > 0$时,幂函数在定义域上是递增函数。
随着$x$的增大,函数值也随之增大。
2. 当$b < 0$时,幂函数在定义域上是递减函数。
随着$x$的增大,函数值反而减小。
对于幂函数$f(x) = ax^b$而言,只有$b > 0$且$a > 0$时,才会存在极大值;只有$b < 0$且$a < 0$时,才会存在极小值。
四、幂函数的图像特征对于幂函数$f(x) = ax^b$,根据参数$a$和$b$的取值范围,其图像可以表现出不同的特征。
1. 当$a > 0$,$b > 1$时,函数图像呈现上升的指数形态。
2. 当$a < 0$,$b > 1$时,函数图像呈现下降的指数形态。
高一数学知识点幂函数知识点总结幂函数是数学中的一种基本函数形式,它的形式为f(x) = x^a,其中a为常数。
在高一数学中,学习幂函数是非常重要的一部分,本文将对高一数学知识点中的幂函数进行总结和归纳。
一、幂函数的定义和性质幂函数可用 y = x^a 表示,其中a为常数。
以下是幂函数的一些基本性质:1. 自变量的取值范围:幂函数的自变量x可以是任意实数。
当a为正偶数时,幂函数定义域为正实数集;当a为负偶数时,幂函数定义域为负实数集;当a为奇数时,幂函数的定义域为全体实数集。
2. 定义域和值域:因为幂函数的定义域为全体实数集,所以其值域也是全体实数集。
3. 奇偶性:当a为正偶数时,幂函数是偶函数;当a为负偶数时,幂函数是奇函数;当a为奇数时,幂函数既不是偶函数也不是奇函数。
4. 单调性:若a>0,则幂函数在定义域上是递增函数;若a<0,则幂函数在定义域上是递减函数。
5. 图像特点:幂函数的图像一般存在一个不可见的特殊点(0,0),当a>0时,图像在第一象限中单调递增,通过点(1,1);当a<0时,图像在第四象限中单调递增,通过点(1,1);当a为负偶数时,图像经过点(-1,1)。
二、幂函数的图像与变换1. 幂函数的基本图像:以y = x^2为例,当x取非负实数时,幂函数是递增曲线,在定义域上图像呈现开口向上的抛物线;当x取负实数时,幂函数的图像和x轴关于y轴对称。
2. 幂函数的图像平移:对于幂函数y = x^a,其中a为常数,在x轴向右平移c个单位长度的函数为y = (x-c)^a,表示为:f(x) --> f(x+c)。
3. 幂函数的图像伸缩:对于幂函数y = x^a,其中a为正常数,可以进行垂直方向的伸缩,即在y轴方向上缩放一定倍数。
若倍数k > 1,函数为y = kx^a;若0 < k < 1,函数为y = kx^a。
三、幂函数与指数函数的关系指数函数与幂函数是密切相关的,两者具有相似的性质。
高一数学知识点幂函数知识点知识点总结高一数学知识点-幂函数知识点总结幂函数是高中数学中一种重要的函数类型,它在各种实际问题中的应用十分广泛。
本文将对高一数学中的幂函数知识点进行总结,包括幂函数的定义、性质、图像和应用等方面。
一、幂函数的定义幂函数是指形如y = a^x的函数,其中a是一个正实数且a≠1,x是自变量,y是因变量。
其中,a被称为底数,x是指数。
二、幂函数的性质1. 定义域和值域:对于底数为正实数且不为1的幂函数,它的定义域是全体实数,值域是(0, +∞)。
当底数为负实数时,定义域为奇数次幂的负实数和偶数次幂的非负实数,值域与正实数的幂函数相同。
2. 单调性:当底数a>1时,幂函数递增;当0<a<1时,幂函数递减。
3. 奇偶性:当底数a>0时,幂函数是奇函数;当底数a<0时,幂函数是偶函数。
4. 零点与解集:当底数a>0时,幂函数在x=0处有零点;当底数a<0时,对于偶数次幂的幂函数在x=0处有零点。
5. 渐近线:当底数a>1时,幂函数的图像有一个水平渐近线y=0;当0<a<1时,幂函数的图像有一个正轴渐近线y=0。
三、幂函数的图像幂函数在平面直角坐标系中的图像特点如下:1. 当底数a>1时,随着x的增大,幂函数的值也逐渐增大,当x趋近于无穷大时,y趋近于无穷大。
2. 当0<a<1时,随着x的增大,幂函数的值逐渐减小,当x趋近于无穷大时,y趋近于0。
3. 当底数a<0时,幂函数的图像会根据指数的奇偶性以及底数的正负性产生不同的变化,需要具体分析。
四、幂函数的应用幂函数在各个领域中都有广泛的应用,下面介绍几个常见的应用场景:1. 成长问题:幂函数可以用来描述人口、资源、财富等随时间呈指数增长或指数衰减的情况。
2. 科学实验:幂函数可以用来描述某些物理量随着条件变化的规律,例如温度随着时间的变化、放射性物质的衰减等。
根据幂函数知识点总结归纳
幂函数是数学中的一种特殊函数形式,定义为 f(x) = x^a,其中a 可以是实数。
以下是幂函数的基本特点和性质的总结:
1. 幂函数的定义域是所有实数集,即幂函数可以在整个实数轴上取值。
2. 幂函数的导数可以通过幂函数的定义和导数的基本性质计算得出。
对于 f(x) = x^a,在定义域内对 x 求导,得到导数 f'(x) =
a*x^(a-1)。
3. 幂函数的图像特点与指数 a 的正负相关。
当 a > 0 时,幂函数的图像是递增的,趋近于正无穷;当 a < 0 时,幂函数的图像是递减的,趋近于零。
4. 幂函数在 x = 0 处的取值与指数 a 的奇偶性相关。
当 a 是奇数时,幂函数在 x = 0 处取值为 0;当 a 是偶数且 a > 0 时,幂函数在 x = 0 处取值为正。
5. 当 a = 1 时,幂函数成为恒等函数,即 f(x) = x。
此时幂函数的图像为一条直线,斜率为 1。
6. 幂函数之间可以进行基本的运算,如加法、减法、乘法和除法。
幂函数的加法运算为 f(x) + g(x) = x^a + x^b;减法运算为 f(x) - g(x) = x^a - x^b;乘法运算为 f(x) * g(x) = (x^a) * (x^b) = x^(a+b);除法运算为 f(x) / g(x) = (x^a) / (x^b) = x^(a-b)。
以上是对幂函数知识点的简单总结归纳。
幂函数在数学中具有广泛的应用,对于理解和解决实际问题具有重要意义。
高一数学知识点幂函数的总结高一数学知识点关于幂函数的总结幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a 为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
幂函数知识点-高一数学知识点总结,2018高一数学幂函数知识点总结
函数知识点当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x 小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x
为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
幂函数知识点。