FANUC高速、高精加工地全参数调整
- 格式:doc
- 大小:747.00 KB
- 文档页数:37
铣床、加工中心高速、高精加工的参数调整(北京发那科机电有限公司王玉琪)使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。
在FANUC的AC 电机的参数说明书中叙述了一般调整方法。
本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。
对于数控车床,可以参考此调整方法。
但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。
Cs控制时还可调整主轴的控制参数。
目录使用αi电机…………………………………………………P 2使用α电机……………………………………………………P22补充说明………………………………………………………P241使用αi电机伺服HRV控制的调整步骤⑴概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
图使用伺服HRV控制后的效果速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。
关于这方面的详细叙述,请见节“高速、高精加工的伺服参数调整”。
2图伺服HRV控制的效果实例⑵适用的伺服软件系列号及版本号90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。
⑶调整步骤概况HRV2和HRV3控制的调整与设定大致用以下步骤:①设定电流回路的周期和电流回路的增益(图中的*1 )电流回路的周期从以前的250μs降为125μs。
铣床、加工中心高速、高精加工的参数调整(北京发那科机电有限公司玉琪)使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。
在FANUC的AC 电机的参数说明书中叙述了一般调整法。
本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。
对于数控车床,可以参考此调整法。
但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。
Cs控制时还可调整主轴的控制参数。
目录使用αi电机…………………………………………………P 2使用α电机……………………………………………………P22补充说明………………………………………………………P2413.4.1伺服HRV控制的调整步骤⑴概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
图3.4.1(a) 使用伺服HRV控制后的效果速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。
关于这面的详细叙述,请见3.4.3节“高速、高精加工的伺服参数调整”。
2图3.4.1(b) 伺服HRV控制的效果实例⑵适用的伺服软件系列号及版本号90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。
⑶调整步骤概况HRV2和HRV3控制的调整与设定大致用以下步骤:①设定电流回路的期和电流回路的增益(图3.4.3(c)中的*1 )电流回路的期从以前的250μs降为125μs。
(北京发那科机电有限公司王玉琪)使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。
在FANUC的AC 电机的参数说明书中叙述了一般调整方法。
本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。
对于数控车床,可以参考此调整方法。
但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。
Cs控制时还可调整主轴的控制参数。
目录使用αi电机…………………………………………………P 2使用α电机……………………………………………………P22补充说明………………………………………………………P241伺服HRV控制的调整步骤⑴概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
图使用伺服HRV控制后的效果速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。
关于这方面的详细叙述,请见节“高速、高精加工的伺服参数调整”。
2图伺服HRV控制的效果实例⑵适用的伺服软件系列号及版本号90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。
⑶调整步骤概况HRV2和HRV3控制的调整与设定大致用以下步骤:①设定电流回路的周期和电流回路的增益(图中的*1 )电流回路的周期从以前的250μs降为125μs。
F A N U C高速高精加工的参数调整This manuscript was revised by the office on December 22, 2012铣床、加工中心高速、高精加工的参数调整(北京发那科机电有限公司王玉琪)使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。
在FANUC的AC 电机的参数说明书中叙述了一般调整方法。
本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。
对于数控车床,可以参考此调整方法。
但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。
Cs控制时还可调整主轴的控制参数。
目录1伺服HRV控制的调整步骤⑴概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
图使用伺服HRV控制后的效果速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。
关于这方面的详细叙述,请见节“高速、高精加工的伺服参数调整”。
2图伺服HRV控制的效果实例⑵适用的伺服软件系列号及版本号90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。
⑶调整步骤概况HRV2和HRV3控制的调整与设定大致用以下步骤:①设定电流回路的周期和电流回路的增益(图中的*1 )电流回路的周期从以前的250μs降为125μs。
FANUC_高速高精度控制的调整步骤1.确定控制要求:首先需要明确工件加工的要求,包括加工精度、加工速度等。
这对于调整控制参数非常重要。
2.选择控制参数:根据工件加工要求,选择合适的控制参数。
FANUC的控制系统通常具有多个调整参数,如加速度、减速度、速度反馈增益等。
这些参数可以根据具体要求进行调整。
3.建立数学模型:根据工件的加工特点,建立数学模型。
这个模型可以是线性或非线性,可以根据实际情况确定。
4.设计控制器:将数学模型转化为控制器的设计。
根据模型,设计出合适的控制器结构和参数,根据控制器要求进行调整。
5.调整参数:根据设计的控制器,调整控制参数。
这一步需要实际操作中的反馈数据,可以通过观察加工过程中的误差,对控制参数进行调整。
6.优化控制器:通过不断调整控制参数,将控制器优化到最佳状态。
这需要对参数进行微调,使得控制系统在工件加工过程中达到最佳性能。
7.验证控制器:通过对加工结果的验证,确认控制器调整的效果。
可以使用类似误差分析、振动测试等方法进行验证。
8.进一步优化:根据验证结果,进一步优化控制器。
这一步可以循环多次,直到控制器能够满足工件加工的需求。
9.文档化:将调整的过程和结果进行文档化。
这可以帮助今后的维护和调整工作。
总结:FANUC高速高精度控制的调整步骤主要包括确定控制要求、选择控制参数、建立数学模型、设计控制器、调整参数、优化控制器、验证控制器、进一步优化和文档化。
这些步骤的目的是使控制系统能够满足工件加工的要求,提高生产效率和加工精度。
高速、高精加工的参数调整使用αi电机3.4.1伺服HRV控制的调整步骤⑴ 概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
图 3.4.1(a) 使用伺服HRV控制后的效果速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。
关于这方面的详细叙述,请见3.4.3节“高速、高精加工的伺服参数调整”。
图 3.4.1(b) 伺服HRV控制的效果实例⑵ 适用的伺服软件系列号及版本号90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。
⑶ 调整步骤概况HRV2和HRV3控制的调整与设定大致用以下步骤:①设定电流回路的周期和电流回路的增益(图 3.4.3(c)中的*1 )电流回路的周期从以前的250μs降为125μs。
电流响应的改善是伺服性能改善的基础。
②速度回路增益的设定(图3.4.3(c)中的*2 )进行速度回路增益的调整时,对于速度回路的高速部分,应该使用速度环比例项的高速处理功能。
电流环控制周期时间的降低使电流响应得以改善,使用振荡抑制滤波器使可消除机械的谐振,这样可提高速度回路的振荡极限。
③ 消振滤波器的调整(图3.4.3(c)中的*3)机床可在某个频率下产生谐振。
此时,用消振滤波器消除某一频率下的振荡是非常有效的。
④ 精细加/减速的设定(图3.4.3(c)中的*4)当伺服系统的响应较高时,可能会出现加工的形状误差取决于CNC指令的扰动周期的现象。
铣床、加工中心高速、高精加工的参数调整)王玉琪(北京发那科机电有限公司使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能电机的参数说明书中叙述了一般调AC 系统(包括伺服)进行调整。
在CNC FANUC的对整方法。
本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。
功能,故车G05系统无G08和对于数控车床,可以参考此调整方法。
但是车床CNC控制时还可调整CsHRV参数和伺服参数。
床加工精度(如车螺纹等)不佳时,只能调整主轴的控制参数。
目录电机…………………………………………………iP 2 使用α电机……………………………………………………P22 使用αP24补充说明………………………………………………………1使用αi电机3.4.1伺服HRV控制的调整步骤⑴概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
专业文档供参考,如有帮助请下载。
.使用伺服HRV控制后的效果图3.4.1(a)速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
伺服用HRV2控制可以改善整个系统的伺服性能。
由于这一效果,使得伺服调整简化。
调整后,可以用HRV2HRV3改善高速电流控制,因此可进行高精度的机械加工。
纳米轮廓控制AI)控制,AI轮廓控制,HRV若伺服控制与CNC的预读(Look-ahead“高请见3.4.3节和高精度轮廓控制相结合,会大大改善加工性能。
关于这方面的详细叙述,速、高精加工的伺服参数调整”。
2HRV控制的效果实例图3.4.1(b) 伺服⑵适用的伺服软件系列号及版本号伺服,但必须使用21i320C5410和,,)及其以后的版本(用于(90B0/A0115i16i18i 卡)。
FANUC系统数控机床调试参数FANUC系统数控机床调试参数是指在使用FANUC系统的数控机床时,根据具体加工要求和机床性能进行调试和优化的参数设置。
通过合理的参数设置,可以提高机床的加工精度、加工效率和稳定性,确保加工质量和生产效率。
本篇文章将详细介绍FANUC系统数控机床调试参数的相关内容。
首先,我们来介绍一些常见的FANUC系统数控机床调试参数。
1.加工参数:包括进给速度、快速移动速度、加速度、减速度等。
这些参数直接影响机床的加工效率和加工质量。
根据加工材料、加工工艺和加工要求的不同,可以适当调整这些参数。
一般来说,进给速度越大,加工效率越高;而快速移动速度则直接关系到机床的定位精度和快速切换速度。
2.修整参数:包括修正工具半径、琢磨刀具半径、工件和加工曲线的变化。
这些参数主要用于修剪加工过程中产生的误差,并对加工误差进行补偿。
通过调整这些参数,可以减少加工误差,提高加工精度。
3.运动参数:包括插补精度、工具半径补偿、切削速度刚度等。
这些参数直接影响机床的运动精度和切削效果。
根据加工要求和机床的性能,可以适当调整这些参数,使机床在高速运动和切削过程中保持稳定。
4.伺服参数:包括伺服增益、速度反馈环、电流反馈环等。
这些参数主要用于调节数控机床的伺服系统,保证伺服系统的稳定性和响应速度。
通过合理调整这些参数,可以提高伺服系统的性能和精度,减少振动和误差。
5.轴参数:包括轴偏差补偿、轴运行速度、坐标系转换等。
这些参数主要用于调整数控机床的各个轴的运动精度和坐标系的转换。
通过合理调整这些参数,可以减少机床的位置误差和运动畸变,提高加工精度。
在调试FANUC系统数控机床时,需要根据实际情况进行参数设置和调整。
具体的调试步骤如下:1.根据加工要求和机床性能,确定需要调试的参数和范围。
2.设置机床的调试模式和参数修改权限,确保可以进行参数设置和调整。
3.逐一调试各个参数,根据实际情况进行调整,并记录下参数值和调试结果。
铣床、加工中心高速、高精加工的参数调整(北京发那科机电有限公司王玉琪)使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。
在FANUC的AC电机的参数说明书中叙述了一般调整方法。
本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。
对于数控车床,可以参考此调整方法。
但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。
Cs控制时还可调整主轴的控制参数。
目录使用αi电机…………………………………………………P2使用α电机……………………………………………………P22补充说明………………………………………………………P24⑴概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
“高速、高精加工的伺服参数调整”。
2⑵适用的伺服软件系列号及版本号90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。
⑶调整步骤概况HRV2和HRV3控制的调整与设定大致用以下步骤:①电流回路的周期从以前的250μs降为125μs。
电流响应的改善是伺服性能改善的基础。
②进行速度回路增益的调整时,对于速度回路的高速部分,应该使用速度环比例项的高速处理功能。
电流环控制周期时间的降低使电流响应得以改善,使用振荡抑制滤波器使可消除机械的谐振,这样可提高速度回路的振荡极限。
FANUC高速高精度控制的调整步骤FANUC是一家全球领先的工业机器人和自动化系统制造商,其提供的高速高精度控制系统在各种应用中被广泛采用。
为了实现最佳的性能,调整FANUC高速高精度控制系统是至关重要的。
以下是调整步骤的详细说明,包括性能评估,参数调整和性能优化。
第一步:性能评估在开始调整之前,首先需要对系统的性能进行评估。
这涉及到机器的速度、精度和稳定性等方面的测试。
可以使用一些常见的测试工具和方法,如轨迹测试、加速度和减速度测试、静态定位偏差测试等。
通过这些测试,可以确定系统的性能状况和潜在问题。
第二步:参数调整一旦完成了性能评估,接下来需要进行参数调整。
FANUC控制系统具有丰富的参数设置选项,可以根据实际需要进行调整。
主要有以下几个方面需要注意:1.母机参数:这些参数包括最大速度、最大加速度、最大转矩等。
根据机器的实际能力,调整这些参数可以在保证性能的同时提高系统的效率。
2.轴参数:每个轴都有一些与其相关的参数,如P、I、D增益、响应速度等。
根据轴的实际要求进行调整,可以提高轴的稳定性和响应速度。
3.插补参数:插补参数对于多轴协调运动非常重要。
在多轴运动中,插补参数的设置会影响整个系统的性能。
需要注意的是,插补参数的调整需要谨慎,以避免出现不稳定或误差增大的问题。
第三步:性能优化一旦参数调整完成,接下来是性能优化的步骤。
性能优化主要包括以下几个方面:1.运动平滑性:通过调整轴的参数和合理的轨迹规划,可以实现运动的平滑性。
这对于高速运动和高精度定位都非常重要。
2.轨迹控制:考虑到实际应用需求,可以进行轨迹控制的优化。
这包括角度、速度和加速度的优化,以最大程度地减少误差和震动。
3.协调控制:在多轴协调运动中,需要对插补参数进行调整,以实现更好的协调性和稳定性。
4.高速控制:如果需要进行高速运动,可以对加速度和速度进行优化,以提高系统的响应速度和性能。
最后,完成以上步骤后,建议重新进行性能测试,以确保系统已经达到预期的性能要求。
铣床、加工中心高速、高精加工的参数调整(北京发那科机电有限公司王玉琪)使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。
在FANUC的AC 电机的参数说明书中叙述了一般调整方法。
本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。
对于数控车床,可以参考此调整方法。
但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。
Cs控制时还可调整主轴的控制参数。
目录使用αi电机…………………………………………………P 2使用α电机……………………………………………………P22补充说明………………………………………………………P2413.4.1伺服HRV控制的调整步骤⑴概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
图3.4.1(a) 使用伺服HRV控制后的效果速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。
关于这方面的详细叙述,请见3.4.3节“高速、高精加工的伺服参数调整”。
2图3.4.1(b) 伺服HRV控制的效果实例⑵适用的伺服软件系列号及版本号90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。
⑶调整步骤概况HRV2和HRV3控制的调整与设定大致用以下步骤:①设定电流回路的周期和电流回路的增益(图3.4.3(c)中的*1 )电流回路的周期从以前的250μs降为125μs。
铣床、加工中心高速、高精加工的参数调整(北京发那科机电有限公司王玉琪)使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。
在FANUC的AC 电机的参数说明书中叙述了一般调整方法。
本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。
对于数控车床,可以参考此调整方法。
但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。
Cs控制时还可调整主轴的控制参数。
目录使用αi电机…………………………………………………P 2使用α电机……………………………………………………P22补充说明………………………………………………………P241使用αi电机3.4.1伺服HRV控制的调整步骤⑴概述i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。
图3.4.1(a) 使用伺服HRV控制后的效果速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。
因此可以减小机床的加工形状误差,提高定位速度。
由于这一效果,使得伺服调整简化。
HRV2控制可以改善整个系统的伺服性能。
伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。
若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。
关于这方面的详细叙述,请见3.4.3节“高速、高精加工的伺服参数调整”。
2图3.4.1(b) 伺服HRV控制的效果实例⑵适用的伺服软件系列号及版本号90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。
⑶调整步骤概况HRV2和HRV3控制的调整与设定大致用以下步骤:①设定电流回路的周期和电流回路的增益(图3.4.3(c)中的*1 )电流回路的周期从以前的250μs降为125μs。
电流响应的改善是伺服性能改善的基础。
②速度回路增益的设定(图3.4.3(c)中的*2 )进行速度回路增益的调整时,对于速度回路的高速部分,应该使用速度环比例项的高速处理功能。
电流环控制周期时间的降低使电流响应得以改善,使用振荡抑制滤波器使可消除机械的谐振,这样可提高速度回路的振荡极限。
③消振滤波器的调整(图3.4.3(c)中的*3)机床可在某个频率下产生谐振。
此时,用消振滤波器消除某一频率下的振荡是非常有效的。
④精细加/减速的设定(图3.4.3(c)中的*4)当伺服系统的响应较高时,可能会出现加工的形状误差取决于CNC指令的扰动周期的现象。
这种现象可用精细加/减速功能消除。
速度环使用尽可能高的回路增益可以改善整个伺服系统的性能。
⑤前馈系数的调整(图3.4.3(c)中的*5)使用预读功能的前馈,可以消除伺服的时滞,从而可减小加工的形状误差。
一般,前馈系数为97%—99%。
⑥位置增益的调整(图3.4.3(c)中的*6)当提高了速度回路的响应时,可以设定较高的位置增益。
较高的位置增益可减小加工误差。
3⑦设定和调整HRV3控制(图3.4.3(c)中的*7)若要求进一步改善伺服性能,可使用HRV3,以此设定更高的速度回路增益。
图3.4.1(c) 伺服HRV控制的调整表3.4.1 使用HRV2,3时的标准伺服参数(刚性高的加工中心机床)功能标准参数16i15i设定值切削/快移可切换⑴伺服HRV2控制(*1)No 2020No 1874设定电流周期为125μs的电机型号⑵速度环比例项高速处理功能No 2017No 2021No1959,#7No 18751(使该功能生效)近似1500-2000(伺服调整画面速度增○表3.4.1中最后一拦中有标记○的设定项,其值在切削进给和快速移动时可设定不同值。
(见3.4.2节“切削进给/快速移动的切换功能”)4(*1)当只使用电流周期250μs的电机时,设定应按以下修改:No 2004(16i),No 1809(15i)设00000011(250μs电流周期)No 2040(16i),No 1852(15i)设(标准值)×0.8No 2041(16i),No 1853(15i)设(标准值)×1.6⑷详细调整①电流环周期和电流环增益的设定根据上述表3.4.1中“⑴伺服HRV2控制”的设定内容,设定电流控制环的的参数。
对于使用同一个DSP的两个轴要设相同的周期时间。
该设定使得电流回路的处理周期为125μs,位置回路的周期为1ms。
其结果使电流回路的响应性能提高了1.6倍。
②速度回路增益的设定根据3.3.1节“增益调整步骤”的叙述调整速度环的增益。
[速度环的增益调整参数]No 2017(16i)的第7位或No 1959(15i)的第7位:设1(使速度环的比例项高速处理功能生效)速度增益值(在伺服调整画面上的增益)调整:以初始值150%逐渐增加增益值,目标值约为1000%③消振滤波器的调整如图3.4.1(d)所示,消振滤波器是消除转矩指令中的特定频率分量的衰减滤波器。
如果机械系统中有超过200Hz的强烈谐振,为了消除谐振,使用高的速度增益,消振滤波器是非常有用的。
因此,使用伺服HRV2控制时,要在“②速度回路增益的设定”前调整消振滤波器。
若谐振频率为200Hz或低于200Hz,不要使用消振滤波器。
5谐振频率的测量使用伺服调整软件,具体请见“⑸用伺服调整软件测量谐振频率的方法”。
图3.4.1(d) 消振滤波器(调整步骤)●以低速(F1000—F10000)开动机床。
●逐渐增加速度环的增益,直至进给时出现轻微振荡。
此时若设定大的速度环增益,机床有频率为200Hz以下的低频振荡,消除了先前出现的高频振荡。
如果高频振荡不出现,则不要使用消振滤波器。
●设定了产生轻微振荡的速度环增益后,观察TCMD,测量频率。
●在下述的参数中设定测量频率:[设定消振滤波器的参数]No 2113(16i),No 1706(15i)衰减中心频率{Hz}:设为机床的谐振频率。
No 2117(16i),No 2620(15i)衰减频带:30(当中心频率为600Hz或以上时设40)。
图3.4.1(e) 消振滤波器的效果(转矩指令波形)④精细加/减速功能的设定使用伺服HRV2控制时,可以设定高的位置环增益和高的速度环增益。
因此,当指定较大的加/减速度时,会产生与扰动周期相关的振荡。
为了避免这种振荡,可以使用精细加/减速功能。
但要确保精细加/减速的时间常数为8的倍数。
[精细加/减速的参数设定]No 2007#6(16i),No 1951#6(15i):1(使精细加/减速功能生效)6No 2209#2(16i),No 1749#2(15i):1(线性精细加/减速)No 2109(16i),No 1702(15i):16(精细加/减速的时间常数)(*1)对于切削进给和快速移动的精细加/减速可切换的参数,请见3.4.2节“切削进给/快速移动的切换功能”。
⑤前馈系数调整前馈用于补偿伺服位置回路的时滞,而速度前馈用于补偿速度回路的时滞。
当用加工R10/F4000或R100/F10000的圆弧检查加工半径误差时,在加工中调整前馈系数使实际加工轨迹与指令的轨迹尽量一致。
调整时,设定速度前馈系数为100。
详细调整请见3.4.3节“高速/高精加工的伺服参数调整步骤”。
[前馈参数的设定]No 2005#1(16i),No 1883#1(15i):1(使前馈功能生效)No 2092(16i),No 1985(15i):9700—9900(预读前馈系数)No 2069(16i),No 1962(15i):近似100(速度前馈系数)⑥位置增益调整指令的进给速度按下式计算:指令速度=(位置增益)×(位置偏差)+(前馈量)因此,若指令值和实际移动位置有偏差,增益大时会使误差的修正作用大,从而使得加工的形状误差小。
当使用伺服HRV2时,由于速度环的响应得到改善,可以设定比以前高的位置增益。
对于中型加工中心机床,增益值可设80—100 [1/s]。
(大型机床或闭环控制的机床,如果反向间隙较大时,其增益值应该设得小一些。
)快速移动机床,以最大切削速度进行加工,在加/减速时观察TCMD波形,以确定位置增益的极限。
当TCMD的波形上在10—30Hz期间出现急剧上升时,即为位置增益极限。
然后,在极限值参数中设为其值的80%。
位置增益确定后,应重新调整上面⑤中设定的位置前馈系数。
7[位置增益参数的设定]No 1825(16i,15i):5000--10000⑦伺服HRV3的调整需要设定以下参数:[HRV3参数的设定]No 2013#0(16i),No 1707#0(15i):1(使HRV3功能生效)No 2202#1(16i),No 1742#1(15i):1(使速度环增益的切削进给/快速移动切换功能生效)No 2334(16i),No 2747(15i):150(高速HRV电流控制的电流环增益倍率)下列参数用于调整使用高速HRV电流控制,在切削进给时的速度环增益。
其值设定为出现振荡时的0.7。
[伺服HRV3控制参数的设定]No 2335(16i),No 2748(15i):100—400(高速HRV电流控制的速度环增益比率)⑸使用伺服调整软件测量机床谐振频率的方法使用下述方法测量机床的谐振。
伺服软件应该用1998年8月的或其后的版本。
①使用伺服调整软件(SD)的准备。
在调整2中设定测量数据的型式。
(用模拟/数字一体的伺服检查板时设6作为数据位数。
用数字检查板时,将DIP开关设到12(奇数轴)或13(偶数轴))。
②设定No 2206#7(16i),No 1746#7(15i)为1。
两个伺服轴用同一个DSP控制时设定这一位。
③在这种状态,在每一电流环控制周期输出TCMD波形。
④在SD的F9画面上各通道的设定,选择TCMD测量。
对于电流的设定,设为放大器的最大电流值。
8⑤在这一状态下,使电机加/减速,在伺服的波形图上检查加/减速的正确输出。
⑥用SD,设定数据点数,实现0.1秒的数据采集.对于HRV1: 400个数据项对于HRV2: 800个数据项对于HRV3: 1600个数据项⑦转动电机,记下产生异常声响时的数据。
⑧调整SD的画面,使每次只显示第一轴或第二轴,(第一轴和第二轴的波形显示或隐藏可用键SHIFT+1和SHIFT+2控制)。
此外,在F3菜单上的放大项上设定适当值,以便清楚地观察TCMD波形上的振荡。
⑨此时,按CTRL+F键,置于频率分析方式。