人教版七年级数学下册第七章 平面直角坐标系同步练习
- 格式:doc
- 大小:197.96 KB
- 文档页数:5
人教版数学七年级下册第七章《平面直角坐标系》测试题(含答案)一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1)5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()A.(5,2) B.(1,5) C.(-2,2) D (2,1)9.在平面直角坐标系中,点P的横坐标是-3,且点P到x轴的距离为5,则P的坐标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
第七章破体直角坐标系检测题〔时辰:120分钟,总分值:100分〕一、选择题〔共10小题,每题3分,总分值30分〕1.在破体直角坐标系中,已经清楚点〔2,-3〕,那么点在〔〕A.第一象限B.第二象限C.第三象限D.第四象限2.如图,、、这三个点中,在第二象限内的有〔〕A.、、B.、C.、D.第2题图第3题图3.如图,矩形的各边分不平行于轴或轴,物体甲跟物体乙分不禁点〔2,0〕同时出发,沿矩形的边作缭绕运动,物体甲按逆时针倾向以1个单位 /秒匀速运动,物体乙按顺时针倾向以2个单位 /秒匀速运动,那么两个物体运动后的第2 012次相遇所在的坐标是〔〕A.〔2,0〕B.〔-1,1〕C.〔-2,1〕D.〔-1,-1〕4. 已经清楚点坐标为,且点到两坐标轴的距离相当,那么点的坐标是〔〕A.〔3,3〕 B.〔3,-3〕C.〔6,-6〕 D.〔3,3〕或〔6,-6〕5.设点在轴上,且位于原点的左侧,那么以下结论精确的选项是〔〕A.,为一切数B.,C.为一切数,D.,6.在直角坐标系中,一个图案上各个点的横坐标跟纵坐标分不加正数,那么所得的图案与原本图案比较〔〕A.形状波动,大小扩大到原本的倍B.图案向右平移了个单位C.图案向上平移了个单位D.图案向右平移了个单位,同时向上平移了个单位7.已经清楚点,在轴上有一点点与点的距离为5,那么点的坐标为〔〕A.〔6,0〕B.〔0,1〕C.〔0,-8〕D.〔6,0〕或〔0,0〕8.如图,假设将直角坐标系中“鱼〞的每个“顶点〞的横坐标保持波动,纵坐标分波动为原本的,那么点的对应点的坐标是〔〕A.〔-4,3〕B.〔4,3〕C.〔-2,6〕D.〔-2,3〕9.如图,假设在象棋盘上树破直角坐标系,使“帅〞位于点〔-1,-2〕,“馬〞位于点〔2,-2〕,那么“兵〞位于点〔〕A.〔-1,1〕B.〔-2,-1〕C.〔-3,1〕D.〔1,-2〕10.一只跳蚤在第一象限及轴、轴上跳动,在第一秒钟,它从原点跳动到〔0,1〕,然后接着按图中箭头所示倾向跳动[即〔0,0〕→〔0,1〕→〔1,1〕→〔1,0〕→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是〔〕A.〔4,O〕B.〔5,0〕C.〔0,5〕D.〔5,5〕第8题图第9题图第10题图二、填空题〔共8小题,每题3分,总分值24分〕11. 已经清楚点是第二象限的点,那么的取值范围是 .12. 已经清楚点与点关于轴对称,那么,.13. 一只蚂蚁由〔0,0〕先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________.14.在破体直角坐标系中,点〔2,+1〕肯定在第__________象限.15. 点跟点关于轴对称,而点与点关于轴对称,那么_______ ,_______ ,点跟点的位置关系是__________.16. 已经清楚是整数,点在第二象限,那么_____.17. 如图,正方形的边长为4,点的坐标为〔-1,1〕,平行于轴,那么点的坐标为__________.18. 如图,围棋盘的左下角呈现的是一局围棋比赛中的几多手棋.为记录棋谱便当,横线用数字表示.纵线用英文字母表示,如斯,黑棋①的位置可记为〔,4〕,白棋②的位置可记为〔,3〕,那么白棋⑨的位置应记为__________.第17题图第18题图三、解答题〔共6小题,总分值46分〕19.〔6分〕如以下图,三角形ABC三个顶点A、B、C的坐标分不为A (1,2)、B〔4,3〕、C〔3,1〕.把三角形A1B1C1向右平移4个单位,再向下平移3个单位,偏偏掉掉落三角形ABC,试写出三角形A1B1C1三个顶点的坐标.第19题图第20题图20.〔8分〕如图,在破体网格中每个小正方形边长为1,〔1〕线段CD是线段AB通过如何样的平移后掉掉落的?〔2〕线段AC是线段BD通过如何样的平移后掉掉落的?21.〔8分〕在直角坐标系中,用线段顺次连接点A 〔,0〕,B〔0,3〕,C〔3,3〕,D〔4,0〕.〔1〕这是一个什么图形;〔2〕求出它的面积;〔3〕求出它的周长.22.〔8分〕如图,点用表示,点用表示.假设用→→→→表示由到的一种走法,并规那么从到只能向上或向右走,用上述表示法写出另两种走法,并揣摸这几多种走法的行程是否相当.23.〔8分〕如图,已经清楚A〔-1,0〕,B〔1,1〕,把线段AB平移,使点B移动到点D〔3,4〕处,这时点A移动到点C处.〔1〕画出平移后的线段CD,并写出点C的坐标;〔2〕假设平移时只能左右或者上下移动,表达线段AB是如何样移到CD的.第23题图第24题图24.〔8分〕如以下图.〔1〕写出三角形③的顶点坐标.〔2〕通过平移由③能掉掉落④吗?什么缘故?〔3〕按照对称性由三角形③可得三角形①、②,顶点坐标各是什么?第七章破体直角坐标系检测题参考答案1.D 分析:因为横坐标为正,纵坐标为负,因而点〔2,-3〕在第四象限,应选D.2.D 分析:由图可知,在第二象限,点在轴的正半轴上,点在轴的负半轴上,因而,在第二象限内的有.应选D.3.D 分析:矩形的边长为4跟 2,因为物体乙的速度是物体甲的2倍,时辰一样,物体甲与物体乙的行程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的行程跟为12×1,物体甲行的行程为12×=4,物体乙行的行程为12× =8,在BC边相遇;②第二次相遇物体甲与物体乙行的行程跟为12×2,物体甲行的行程为12×2×=8,物体乙行的行程为12×2×=16,在边相遇;③第三次相遇物体甲与物体乙行的行程跟为12×3,物体甲行的行程为12×3×=12,物体乙行的行程为12×3×=24,在点相遇;…现在甲乙回到原出发点,那么每相遇三次,两点回到出发点,因为 2 012÷3=670……2,故两个物体运动后的第2 012次相遇所在的是:第二次相遇所在,即物体甲行的行程为12×2×=8,物体乙行的行程为12×2×=16,在DE边相遇;现在相遇点的坐标为:〔-1,-1〕,应选:D.4.D 分析:因为点到两坐标轴的距离相当,因而,因而,当5.D 分析:因为点在轴上,因而纵坐标是0,即.又因为点位于原点的左侧,因而横坐标小于0,即,因而,应选D.6.D7.D 分析:过点作⊥轴于点,那么点的坐标为〔3,0〕.因为点到轴的距离为4,因而.又因为,因而由勾股定理得,因而点的坐标为〔6,0〕或〔0,0〕,应选D.8.A 分析:点变卦前的坐标为〔-4,6〕,将横坐标保持波动,纵坐标分波动为原本的,那么点的对应点的坐标是〔-4,3〕.应选A.9.C 分析:因为在象棋盘上树破直角坐标系,使“帅〞位于点〔-1,-2〕,“馬〞位于点〔2,-2〕,因而可得出原点位置在棋子“炮〞的位置,因而“兵〞位于点:〔-3,1〕,应选C.10.B11.分析:因为点是第二象限的点,因而解得.12.3 -4 分析:因为点与点关于轴对称,因而横坐标波动,纵坐标互为相反数,因而因而13.〔3,2〕分析:一只蚂蚁由〔0,0〕先向上爬4个单位长度,那么坐标变为〔0,4〕,再向右爬3个单位长度,坐标变为〔3,4〕,再向下爬2个单位长度,那么坐标变为〔3,2〕,因而它所在位置的坐标为〔3,2〕.14.一分析:因为≥0,1>0,因而纵坐标+1>0.因为点的横坐标2>0,因而点肯定在第一象限.15.关于原点对称分析:因为点跟点关于轴对称,因而点的坐标为;因为点与点关于轴对称,因而点的坐标为,因而,点跟点关于原点对称.16. -1 分析:因为点A在第二象限,因而,因而.又因为是整数,因而.17.〔3,5〕分析:因为正方形的边长为4,点的坐标为〔-1,1〕,因而点的横坐标为4-1=3,点的纵坐标为4+1=5,因而点的坐标为〔3,5〕.故答案为〔3,5〕.18.〔,6〕分析:由题意可知:白棋⑨在纵线对应,横线对应6的位置,故记作〔,6〕.19.解:设△A1B1C1的三个顶点的坐标分不为A1〔,将它的三个顶点分不向右平移4个单位,再向下平移3个单位,那么现在三个顶点的坐标分不为〔,由题意可得=2,.20. 解:〔1〕将线段向右平移3个小格〔向下平移4个小格〕,再向下平移4个小格〔向右平移3个小格〕,得线段.〔2〕将线段向左平移3个小格〔向下平移1个小格〕,再向下平移1个小格〔向左平移3个小格〕,掉掉落线段.第21题答图21. 解:〔1〕因为〔0,3〕跟〔3,3〕的纵坐标一样,的纵坐标也一样,因而BC∥AD,因为故四边形是梯形.作出图形如以下图.〔2〕因为,,高,故梯形的面积是.〔3〕在Rt △中,按照勾股定理得,同理可得,因而梯形的周长是.22.解:行程相当 .走法一:;走法二:;答案不唯一.23.解:〔1〕因为点〔1,1〕移动到点〔3,4〕处,如图,因而〔1,3〕;〔2〕向右平移2个单位长度,再向上平移3个单位长度即可掉掉落.24.分析:〔1〕按照坐标的确定方法,读出各点的纵、横坐标,即可得出各个顶点的坐标;〔2〕按照平移中点的变卦法那么是:横坐标右移加,左移减;纵坐标上移加,下移减,可得④不克不迭由第23题答图③通过平移掉掉落;〔3〕按照对称性,即可掉掉落①、②三角形顶点坐标.解:〔1〕〔-1,-1〕,〔-4,-4〕,〔-3,-5〕.〔2〕不克不迭,上面两个点向右平移5个单位长度,上面一个点向右平移4个单位长度.〔3〕三角形②顶点坐标为〔-1,1〕,〔-4,4〕,〔-3,5〕.〔三角形②与三角形③关于轴对称〕;三角形①顶点坐标为〔1,1〕,〔4,4〕,〔3,5〕•〔由③与①关于原点对称可得①的顶点坐标〕.。
人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、单选题(每题3分,共30分)1.若点P(a,b)在第二象限,则点Q(b+5,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限2.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)3.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,0)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣1,0)5. 如图,△PQR是△ABC向左平移2个单位长度,再向上平移3个单位长度得到的,若P、Q、R分别对应A、B、C,则点C的坐标是()A. (-1,4) B.(-3,1) C. (2,-3) D. (3,-2)6.如图1,在5×4的方格纸中,每个小正方形的边长均为1,点O,A,B在方格线的交点(格点)上.在第四象限内的格点上找一点C,使三角形ABC 的面积为3,则这样的点C 共有( )图1A.2个B.3个C.4个D.5个 7.到x 轴的距离等于2的点组成的图形是 ( )A.过点(0,2)且与x 轴平行的直线B.过点(2,0)且与y 轴平行的直线C.过点(0,-2)且与x 轴平行的直线D.分别过点(0,2)和点(0,-2)且与x 轴平行的两条直线8.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( ) A .114m -<<- B .74m -<<-C .7m <-D .4m >-9.点P()在平面直角坐标系的轴上,则点P 的坐标为( ) A .(0,2)B .(2,0)C .(0,-2)D .(0,-4)10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2020的面积是( )A .5052mB .504.52mC .505.52mD .10102m二、填空题(每题3分,共30分)11.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.12.如图,长方形ABCD 中AB=3,BC=4,且点A 在坐标原点,(4,0)表示D 点,那么C 点的坐标为______.13.将点(2,3)P -先向右平移2个单位,再向下平移3个单位,得到点P ',则点P '的坐标为__________.14.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果“士”所在位置的坐标为()1,2--,“相”所在位置的坐标为()2,2-,那么棋子“炮”的位置的坐标为________________________。
2021-2022学年人教版七年级数学下册《7-1平面直角坐标系》同步练习题(附答案)1.如图,在平面直角坐标系xOy中,点A的坐标可能是()A.(﹣1,2)B.(﹣2,﹣1)C.(﹣2,2)D.(﹣2,1)2.若点P(m,n)在第三象限,则点Q(﹣m,﹣n)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,点(0,4)的位置在()A.第一象限B.x轴正半轴上C.第二象限D.y轴正半轴上4.在平面直角坐标系坐标中,第二象限内的点A到x轴的距离是3,到y轴的距离是2,则A点坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)5.点P(m﹣3,m+1)在直角坐标系的x轴上,则点P坐标为()A.(﹣4,0)B.(0,4)C.(0,﹣3)D.(1,0)6.在如图所示的直角坐标系中,M,N的坐标分别为()A.M(2,﹣1),N(2,1)B.M(2,﹣1),N(1,2)C.M(﹣1,2),N(1,2)D.M(﹣1,2),N(2,1)7.在平面直角坐标系中,点M在第四象限,到x轴、y轴的距离分别为4和3,则点M的坐标为()A.(4,﹣3)B.(3,﹣4)C.(﹣3,4)D.(﹣4,3)8.已知点P坐标为(1﹣a,2a+4),且点P到两坐标轴的距离相等,则点P的坐标是()A.(2,2)B.(2,﹣2)C.(6,﹣6)D.(2,2)或(6,﹣6)9.若点M(a+3,2a﹣4)到y轴的距离是到x轴距离的2倍,则a的值为()A.或1B.C.D.或10.已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限11.若点M(2﹣a,3a+6)到两坐标轴的距离相等,则点M的坐标()A.(6,﹣6)B.(3,3)C.(﹣6,6)或(﹣3,3)D.(6,﹣6)或(3,3)12.已知点A(2x﹣4,x+2)在坐标轴上,则x的值等于()A.2或﹣2B.﹣2C.2D.非上述答案13.已知点P(m,n),且mn>0,m+n<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限14.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1)然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第2020秒时跳蚤所在位置的坐标是()A.(5,44)B.(4,44)C.(4,45)D.(5,45)15.已知点P的坐标为(2﹣a,a),且点P到两坐标轴的距离相等,求a的值.16.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.17.已知:点P(2m+4,m﹣1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过A(2,﹣3)点,且与x轴平行的直线上.18.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.19.在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.20.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知:A(1,3)、A1(2,3)、A2(4,3)、A3(8,3)、B(2,0)、B1(4,0)、B2(8,0)、B3(16,0).求:(1)A4、B4点的坐标;(2)A n、B n点的坐标.参考答案1.解:由题意可知,点A在第二象限,且到x轴的距离小于到y轴的距离,即可横坐标的绝对值大于纵坐标的绝对值.A.(﹣1,2)在第二象限,且到x轴的距离小于到y轴的距离,故本选项不符合题意;B.(﹣2,﹣1)在第三象限,故本选不项符合题意;C.(﹣2,2)在第二象限,且到x轴的距离等于到y轴的距离,故本选项不符合题意;D.(﹣2,1)在第二象限,且到x轴的距离小于到y轴的距离,即可横坐标的绝对值大于纵坐标的绝对值,故本选项符合题意.故选:D.2.解:∵点P(m,n)在第三象限,∴m<0,n<0,∴﹣m>0,﹣n>0,∴点Q(﹣m,﹣n)在第一象限.故选:A.3.解:∵点(0,4)的横坐标为0,纵坐标为正数,∴点(0,4)的位置在y轴正半轴上.故选:D.4.解:∵第二象限的点P到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:B.5.解:∵点P在x轴上,∴m+1=0,∴m=﹣1,∴m﹣3=﹣4,∴P(﹣4,0).故选:A.6.解:点M在第二象限,那么横坐标小于0,是﹣1,纵坐标大于0,是2,即M点的坐标为(﹣1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:D.7.解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为4,到y轴的距离为3,所以点M的坐标为(3,﹣4).故选:B.8.解:∵点P(1﹣a,2a+4)到两坐标轴的距离相等,∴|1﹣a|=|2a+4|,∴1﹣a=2a+4或1﹣a=﹣2a﹣4,解得a=﹣1或a=﹣5,a=﹣1时,1﹣a=2,2a+4=2,a=﹣5时,1﹣a=6,2a+4=6,所以,点P的坐标为(2,2)或(6,﹣6).故选:D.9.解:由题意得|a+3|=2|2a﹣4|,∴a+3=2(2a﹣4)或a+3=2(4﹣2a),解得a=或a=1,故选:A.10.解:∵m2≥0,∴m2+1>0,∴点A(m,m2+1)不在第三、四象限.故选:D.11.解:∵点M(2﹣a,3a+6)到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4,∴点M的坐标为(6,﹣6)或(3,3);故选:D.12.解:∵点A(2x﹣4,x+2)在坐标轴上,∴当2x﹣4=0时,x=2,当x+2=0时,x=﹣2,∴x的值为±2,故选:A.13.解:∵mn>0,∴m、n同号,∵m+n<0,∴m<0,n<0,∴点P(m,n)在第三象限.故选:C.14.解:由图可得,(0,1)表示1=12秒后跳蚤所在位置;(0,2)表示8=(2+1)2﹣1秒后跳蚤所在位置;(0,3)表示9=32秒后跳蚤所在位置;(0,4)表示24=(4+1)2﹣1秒后跳蚤所在位置;…∴(0,44)表示(44+1)2﹣1=2024秒后跳蚤所在位置,则(4,44)表示第2020秒后跳蚤所在位置.故选:B.15.解:由|2﹣a|=|a|得2﹣a=a,或a﹣2=a,解得:a=1.16.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8﹣2m|=|m﹣1|,∴8﹣2m=m﹣1或8﹣2m=1﹣m,解得:m=3或m=7,∴P(2,2)或(﹣6,6).17.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3);(2)令m﹣1=0,解得m=1,所以P点的坐标为(6,0);(3)令m﹣1=(2m+4)+3,解得m=﹣8,所以P点的坐标为(﹣12,﹣9);(4)令m﹣1=﹣3,解得m=﹣2.所以P点的坐标为(0,﹣3).18.解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).19.解:(1)∵点M在x轴上,∴2m+3=0解得:m=﹣1.5;(2)∵点M在第二象限内,∴,解得:﹣1.5<m<0;(3)∵点M在第一、三象限的角平分线上,∴m=2m+3,解得:m=﹣3.20.解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0).。
课题 7.1.1有序数对【达标测试】1.在电影院内,确定一个座位一般需要 个数据,其理由是 ;2.七年级⑵班座位有七排8列,张艳的座位在2排4列,简记为(2,4),班级座次表上写着王刚(5,8),那么王刚的座位在 ;3.如图2,若用(0,0)表示点A 的位置,试在方格纸中标出B (2,4)C (3,0),D (5,4),E (6,0),并顺次连接起来,是英文字母中的 ;1. 4. 如图,马所处的位置为(2,3).(1)你能表示出象的位置吗?(2)写出马的下一步可以到达的位置。
课题 7.1.2平面直角坐标系(1)【达标测试】请你写出图1中点B,C,D 的坐标:B(___,___),C(___,___),D(___,___).归纳:1.我们用___________表示平面上的点,这对数叫____。
表示方法为(a,b ).a是点对应______上的数值,b是点在______上对应的数值。
注意: 轴上的坐标写在前面。
2.思考:原点O 的坐标是( ___ ,___ ),x 轴上的纵坐标都是 , y 轴上的横坐标都是 。
3.新知运用:在平面直角坐标系(图2)中描出下列各点:A(4,5), B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4),A2课题7.1.2平面直角坐标系(2)【达标测试】1.点(-3,2)在第______象限;点(2,-3)在第______象限.2.点(p ,q )既在x 轴上,又在y 轴上,则p=______;q=_________.3.点M (a ,0)在___轴上;点N (0,b )在___轴上.4.坐标平面内下列各点中,在x 轴上的点是 ( )A 、(0,3)B 、)0,3(-C 、)2,1(-D 、)3,2(--5.在方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( )A .(-2,-5)B .(-2,5)C .(2,-5)D .(2,5)6.坐标平面内下列各点中,在x 轴上的点是 ( )A 、(0,3)B 、)0,3(-C 、)2,1(-D 、)3,2(--7.已知x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A (3,0)B (0,3)C (0,3)或(0,-3)D (3,0)或(-3,0)8.在平面直角坐标系中,点(-1,m 2+1)一定在( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图3式边长分别为8和6的长方形,试建立适当的坐标系表示顶点A 、B 、C 、D 的坐标。
人教版2020七年级数学下册第7章《平面直角坐标系》单元练习试题一.选择题(共9小题)1.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣52.如图,一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)3.根据下列表述,能确定一点位置的是()A.奥斯卡影院1号厅3排B.银川市贺兰山东路C.北偏东60°D.东经118°,北纬40°4.如图,右边坐标系中四边形的面积是()A.4B.5.5C.4.5D.55.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度6.在直角坐标系中,将点(2,﹣3)向左平移两个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)7.在平面直角坐标系中,将点A(1,3)向右平移3个单位长度,得到的点A′的坐标为()A.(4,3)B.(﹣2,3)C.(1,6)D.(1,0)8.在平面直角坐标系中,点P(2,3)先向左平移3个单位,再向下平移4个单位,得到点的坐标为()A.(5,7)B.(﹣1,﹣1)C.(﹣1,1)D.(5,﹣1)9.在平面直角坐标系中,将点(﹣3,2)向左平移5个单位长度,再向上平移1个单位长度后的坐标是()A.(2,1)B.(﹣8,1)C.(2,3)D.(﹣8,3)二.填空题(共9小题)10.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B点后,B 点的位置可以用数对表示为.11.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作.12.在平面直角坐标系中,线段AB=5且平行于y轴,点A(1,2),则点B坐标为.13.在直角坐标平面内,点A(﹣m,5)和点B(﹣m,﹣3)之间的距离为.14.已知点A(﹣3,5),将点A先向右平移4个单位长度,再向下平移6个单位长度,得到A′,则A′的坐标为.15.如图,圆A经过平移得到圆O.如果因A上一点P的坐标为(m,n),那么平移后的对应点P'的坐标为.16.如果将点A(1,3)先向下平移3个单位,再向右平移2个单位后,得到点B,那么点B的坐标是.17.如图,三角形ABC经过一定的平移变换得到三角形A'B'C',若三角形ABC上一点M的坐标为(m,n),那么M点的对应点M'的坐标为.18.在平面直角坐标系中,将点M(﹣1,5)先向右平移3个单位,之后又向下平移4个单位,得到点N,则点N的坐标为.三.解答题(共10小题)19.已知点M(3|a|﹣9,4﹣2a)在y轴的负半轴上.(1)求M点的坐标;(2)求(2﹣a)2019+1的值.20.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知:A(1,3)、A1(2,3)、A2(4,3)、A3(8,3)、B(2,0)、B1(4,0)、B2(8,0)、B3(16,0).求:(1)A4、B4点的坐标;(2)A n、B n点的坐标.21.小李、小明、小刚、小强、小华、小亮是很要好的伙伴,他们家的位置如图所示.一天,小李说:“如果以我家为中心,你们各自家的位置在哪儿知道吗?”其余小伙伴说到:“当然知道了.”小李说:“这样吧,你们若回答出下列问题,就证明你们知道.”(1)南偏东60°的方向上有谁的家?怎样确定小刚家的位置?请你表示出来.(2)小明家在什么位置?(3)距小李家图上距离为0.9cm处的地方有谁的家?(4)想确定他们每个小伙伴的家的位置,各需要哪些数据?22.△ABC在直角坐标系中如图所示,请写出点A、B、C的坐标.23.先阅读下列一段文字,再解答问题:已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为;同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,4),B(﹣2,1),则AB=;(2)已知点C,D在平行于y轴的直线上,点C的纵坐标为4,点D的纵坐标为﹣2,则CD=;(3)已知点P(3,1)和(1)中的点A,B,判断线段P A,PB,AB中哪两条线段的长是相等的?并说明理由.24.如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C与点C'分别对应,观察点与点坐标之间的关系,解答下列问题.(1)分别写出点A、点B、点C、点A'、点B'、点C'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)若点M(a+2,4﹣b)是点N(2a﹣3,2b﹣5)通过(1)中的平移变换得到的,求(b﹣a)2的值.25.如图,已知Q点的坐标为(﹣3,0),将点Q向上平移一个单位长度,再向右平移5个单位长度,得到点P.(1)写出点P的坐标;(2)若A是y轴上一点,当△OP A的面积为4时,求A的坐标.26.如图,四边形A'B'C'D'可以由四边形ABCD经过怎样的平移得到?对应点的坐标有什么关系?27.(1)把图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),写出另外6个“顶点”的对应点的坐标;(2)图(2)与图(1)对应“顶点”的坐标之间有什么样的关系?它可以由图(1)如何变化而来?(3)图(3)与图(1)对应“顶点”的坐标之间有什么样的关系?它可以由图(1)如何变化而来?28.三角形ABC与三角形A'B'C'在平面直角坐标系中的位置如图所示,三角形A'B'C'是由三角形ABC经过平移得到的(1)分别写出点A',B',C'的坐标;(2)说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的?(3)若点P(a,b)是三角形ABC内的一点,则平移后三角形A'B'C'内的对应点为P′,写出点P'的坐标.参考答案与试题解析一.选择题(共9小题)1.A.2.C.3.D.4.C.5.D.6.C.7.A.8.B.9.D.二.填空题(共9小题)10.(1,6).11.(3,5).12.(1,7)或(1,﹣3).13.814.(1,﹣1).15.(m+2,n﹣1)16.(3,0).17.(m+4,n+2).18.(2,1).三.解答题(共10小题)19.解:(1)由M(3|a|﹣9,4﹣2a)在y轴的负半轴上,得:,解得:a=3,故M点的坐标(0,﹣2);(2)(2﹣a)2019+1=(2﹣3)2019+1=﹣1+1=0.20.解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0).21.解:(1)南偏东60°的方向上有小刚家和小亮家;要确定小刚家的位置,还需要知道小刚家与小华家的距离;(2)小明家在小李家的北偏东60°的方向;(3)距小李家图上距离为0.9cm处的地方有小华家、小刚家和小强家;(4)确定他们每个小伙伴的家的位置,需要各家相对于小李家的方向和与小李家的距离.22.解:如图所示:A(2,2),B(﹣1,1),C(﹣2,﹣2).23.解:(1)依题意,AB=,故答案为5;(2)∵CD平行于y轴∴CD=|4﹣(﹣2)|=6;(3)P A==∵点P与点B的纵坐标相同∴PB平行于x轴∴PB=|3﹣(﹣2)|=5由(1)知AB=5∴AB=PB∴线段PB,AB两条线段的长是相等的.24.解:(1)由图知,A(0,3),B(2,1),C(3,4),A′(﹣3,0),B′(﹣1,﹣2),C′(0,1),且△ABC向左平移3个单位,向下平移3个单位可以得到△A′B′C′;(2)由(1)中的平移变换的2a﹣3﹣3=a+2,2b﹣5﹣3=4﹣b,解得a=8,b=4,则(b﹣a)2=(4﹣8)2=(﹣4)2=16.25.解:(1)∵Q点的坐标为(﹣3,0),将点Q向上平移一个单位长度,再向右平移5个单位长度,得到点P,∴点P的坐标为(2,1);(2)设A点坐标为(0,y),∵△OP A的面积为4,∴×|y|×2=4,∴y=±4,∴A点坐标为(0,4)或(0,﹣4).26.解:四边形A'B'C'D'可以由四边形ABCD经过向右平移7个单位,向下平移6个单位得到.对应点的坐标关系为:四边形ABCD各点的横坐标加上7,纵坐标减去6,即为四边形A'B'C'D'的各点的坐标.27.解:(1)把图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),即图形向下平移4个单位,所以另外6个“顶点”的对应点的坐标分别为:(1,﹣2),(2,﹣2)(2,﹣4),(6,﹣4),(6,﹣2),(7,﹣2);(2)图(2)与图(1)对应“顶点”的坐标之间关系为:横坐标不变,纵坐标减少5,它可以由图(1)向下平移5个单位得到;(3)图(3)与图(1)对应“顶点”的坐标之间关系为:横坐标减去8,纵坐标不变,它可以由图(1)向左平移8个单位得到.28.解:(1)由图知A'(﹣3,1),B'(﹣2,﹣2),C'(﹣1,﹣1);(2)三角形A'B'C'是由三角形ABC先向左平移4个单位,再向下平移2个单位长度得到的;(3)平移后三角形A'B'C'内的对应点为P′坐标为(a﹣4,b﹣2).。
第七章平面直角坐标系一、选择题1.若线段CD 是由线段AB 平移获取的,点A(-1,3)的对应点为C(2,2),则点 B(-3,-1)的对应点 D 的坐标是 ()A . (0,- 2)B . (1,- 2)C. (- 2,0)D . (4,6)2.如图,点A、点B的坐标分别为(2,0),(0,1) ,若将线段AB平移至A1B1,若A1(1,b ),B1(a,- 2),则 3a2()- b 的值为A .-3B . 3C. 1D.-13.以下各点中位于第四象限的点是()A . (3,4)B . (- 3,4)C. (3,- 4)D . (- 3,- 4)4.若是P(m+3,2m+4) 在y轴上,那么点P 的坐标是()A . (- 2,0)B . (0,- 2)C. (1,0)5.如图,一方队正沿箭头所指的方向前进, A 的地址为三列三行,表示为(3,3), (5,4)表示的地址是()A. AB. BC.CD .D6.在平面直角坐标系中,线段BC∥ x 轴,则()A .点B与点C的横坐标相等B .点B与点C的纵坐标相等C.点B与点C的横坐标与纵坐标分别相等D.点 B 与点 C 的横坐标、纵坐标都不相等7.当m为任意实数时,点A(m 2+1,-2)在第几象限()A .第一象限B .第二象限C.第三象限D .第四象限8.如图,一个矩形的两边长分别是 4 和 2,建立直角坐标系,则以下不在矩形上的点为()A . (4,0)B . (2,4)C. (0,2)D . (4,2)9.如图,在国际象棋的棋盘上,左右两边标有数字 1 至 8,上下两边标有字母 a 至 h,若是黑色的国王棋子的地址用 (d,3) 来表示,白色的马棋子的地址用(g, 5)来表示,请你分别写出棋盘中其他三个棋子的地址,分别是________________ .10.已知 AB∥x 轴, A 点的坐标为(-3,2),并且 AB =4,则 B 点的坐标为______________.11.同学们玩过五子棋吗?它的比赛规则是只要同色 5 子先成一条直线就算胜.如图,是两人玩的一盘棋,若白①的地址是 (0,1) ,黑②的地址是 (1,2),现轮到黑棋走,你认为黑棋放在________地址就成功了.12. 若图中的有序数对(4,1) 对应字母 D ,有一个英文单词的字母序次对应图中的有序数对为(1,1) 、 (2,3) 、(2,3) 、 (5,2)、(5,1) ;则这个英文单词是________.(大小写均可 )13.点 M (-1,5)向下平移 4 个单位得N点坐标是 ________.14.点 Q(5,-3)到两坐标轴的距离之和为________.15.点 P(,-)到x轴距离为 ________,到y轴距离为 ________.16.如图,小华用手遮住的点向上平移 3 个单位获取的点的坐标为(2,1) ,则小明用手遮住的那个点的坐标为________ .17.如图,在平面直角系统中,描出下各点: A (-2,1), B(2,3), C(-4,-3), D(1,2), E(0,-3), F(-3,0),G(0,0), H(0,4),J(2,2),K(-3,-3).18.已知:点P(0, a)在 y 轴负半轴上,问点M (- a2-1,- a+1)在第几象限?19.正方形ABCD的边长为4,请你建立合适的平面直角坐标系,写出各个极点的坐标.20.已知 |x- 2|+ (y+ 1)2= 0,求P(x,y)的坐标,并说出它在第几象限内.21.以下列图,是某城市植物园周围街巷的表示图, A 点表示经 1 路与纬 2 路的十字路口,B点表示经 3 路与纬5路的十字路口,若是用(1,2) → (2,2) → (3,2) → (3,3)→ (3,4)→ (3,5)表示由 A 到 B 的一条路径,那么你能用同样的方式写出由 A 到 B 的尽可能近的其他几条路径吗?答案剖析1.【答案】 A(-1,3)(2,2),可知横坐标由-1变为2,向右搬动了3个单位,3变为2【剖析】点 A的对应点为 C,表示向下搬动了1个单位,于是(3,-1)的对应点 D 的横坐标为-3 30D的纵坐标为-112,故B-+=,点-=-D (0,-2).2.【答案】 B【剖析】由题意可得线段AB 向左平移1个单位,向下平移了 3个单位,因为 A、 B 两点的坐标分别为(2,0)、 (0,1),所以点 A1、 B1的坐标分别为(1,-3),(-1,-2),所以3a-2b =3.3.【答案】 C【剖析】第四象限的点的坐标的符号特点为(+,- ),观察各选项只有 C 吻合条件.4.【答案】 B【剖析】因为(3,2m +4)303,24=-2 P m +在 y 轴上,所以 m +=,解得 m =-m +,所以点 P 的坐标是(0,-2).5.【答案】 D【剖析】一方队正沿箭头所指的方向前进, A 的地址为三列三行,表示为(3,3), (5,4) 表示的地址是 D.6.【答案】 B【剖析】依照线段BC∥ x 轴,则点 B 与 C 的纵坐标相等.7.【答案】 D【剖析】因为m 2≥0,所以 m 2+1≥1,所以点 A(m 2+1,-2)在第四象限.8.【答案】 B【剖析】因为矩形的两边长分别是 4 和 2,所以矩形上点的横坐标在0~4 之间,纵坐标在0~ 2 之间,所以 A 、 C、D 正确, B 错误.9. 【答案】 (d, 5), (f,5), (g, 2)【剖析】因为黑色的国王棋子的地址用( d,3) 来表示,白色的马棋子的地址用(g, 5)来表示,所以棋盘中其他三个棋子的地址,分别是(d, 5), (f,5), (g,2) .【剖析】因为AB∥ x 轴,所以点 B 纵坐标与点 A 纵坐标相同,为2,又因为 AB =4,可能右移,横坐标为-3+4=- 1;可能左移横坐标为-3- 4=- 7,所以 B 点坐标为(1,2)或(-7,2),11. 【答案】 (1,6)或 (6,1)【剖析】建立平面直角坐标系如图,黑棋的坐标为(1,6) 或 (6,1).12. 【答案】 APPLE【剖析】有序数对(1,1)、 (2,3) 、 (2,3)、 (5,2) 、 (5,1) 分别对应的字母为: A , P, P, L , E;所以这个英文单词是APPLE.13.【答案】 (- 1,1)【剖析】点M (-1,5)向下平移4个单位得 N 点坐标是(-1,5-4),即为(-1,1).14.【答案】 8【剖析】因为点Q(5,-3),所以点 Q 到 y 轴的距离为|5|=5;到 x 轴的距离为|-3|=3,所以距离之和为3+5= 8.15.【答案】【剖析】点P(,-)到x轴距离为,到y轴距离为.16.【答案】 (2,- 2)【剖析】小华用手遮住的点向上平移 3 个单位获取的点的坐标为(2,1),则小明用手遮住的那个点的坐标为(2 ,- 2).17.【答案】解:以下列图【剖析】注意描点法正确的找到点的地址.18.【答案】解:因为点 P(0, a)在 y 轴负半轴上,所以 a<0,所以- a2-1<0,- a+1>0,所以点 M 在第二象限.【剖析】先判断出 a 是负数,再求出点 M 的横坐标与纵坐标的正负情况,尔后依照各象限内点的坐标特点解答.19. 【答案】解: (这是开放题,答案不唯一)以AB所在的直线为x 轴, AD 所在的直线为y 轴,并以点 A 为坐标原点,建立平面直角坐标系,以下列图,则点 A、 B、C、 D 的坐标分别是(0,0)、(4,0)、(4,4)、(0,4).【剖析】可以以正方形中互相垂直的边所在的直线为坐标轴,建立平面直角坐标系,再依照点的地址和线段长表示坐标.20.【答案】解:由题意得, x-2=0, y +1=0,解得 x=2,y =-1,所以,点 P(2,-1)在第四象限.【剖析】依照非负数的性质列式求出x、y,再依照各象限内点的坐标特点解答.21.【答案】解:还有两条路线,一是:(1,2)→ (1,3)→ (1,4)→ (1,5)→; (2,5)→ (3,5)二是:(1,2)→ (2,2)→ (2,3)→ (2,4),5)→. (2,5)→ (3【剖析】依照已知的路线可以知道由 A 到 B 的一条路径只能向东,向北,所以依照这个方向即可确定其他的路径.。
人教版七年级第七章平面直角坐标系单元测试精选(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.一个n边形削去一个角后变成(n+1)边形,其内角和变为2 520°,则原多边形的边数是( )A.7 B.10 C.14 D.15【来源】2019年春人教版七年级数学下册《平面图形认识二》单元测试【答案】D2.如图为小杰使用手机内的微信跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为()A.向北直走700米,再向西直走100米B.向北直走100米,再向东直走700米C.向北直走300米,再向西直走400米D.向北直走400米,再向东直走300米【来源】[同步]2014年北师大版初中数学八年级上第三章3.1练习卷(带解析)【答案】A3.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7) B.(2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7) D.(2,-2),(4,3),(1,7)【来源】2019春冀教版七年级下册数学练习:第7章达标检测试题【答案】C4.已知点A(-1,-4),B(-1,3),则()A.A,B关于x轴对称B.A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴【来源】2018年秋北师大版八年级数学上册第三章位置与坐标检测卷【答案】C5.如图所示,将点A向右平移( )个单位长度可得到点BA.3个单位长度B..4个单位长度;C.5个单位长度D.6个单位长度【来源】2012年人教版七年级下第六章第二节用坐标表示平移(1)练习题(带解析)【答案】B6.若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【来源】福建省闽侯大湖中学人教版七年级数学下册:7平面直角坐标系测试题【答案】C7.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 018个点的坐标为( )A.(45,9) B.(45,11) C.(45,7) D.(46,0)【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】C8.象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是( )A.(-2,1) B.(2,-2) C.(-2,2) D.(2,2)【来源】人教版七年级下册数学章末复习:第7章平面直角坐标系【答案】C9.如图,将正整数按下图所示规律排列下去,若用有序数对(n,m)表示n排从左到右第m个数.如(4,3)表示9,则(10,3)表示()A.46 B.47 C.48 D.49【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】C10.如果用(2,3)表示电影院中的第2排3号位,那么(5,4)表示的意义是()A.4排5号B.5排4号C.4排或5排D.4号或5号【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】B11.长方形OABC中,AB=3,BC=2,芳芳建立了如图所示的平面直角坐标系,则点B的坐标是( )A.(3,2) B.(2,3) C.(-3,2) D.(-2,3)【来源】2017-2018学年浙教版八年级数学上册习题:单元测试【答案】C12.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【来源】浙教版九年级数学下册第一章解直角三角形单元检测试题【答案】A13.下列说法中正确的有( )①在同一平面内,不相交的两条直线必平行;②在同一平面内,不相交的两条线段必平行;③相等的角是对顶角;④两条直线被第三条直线所截,所得到的同位角相等;⑤两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个【来源】2015-2016学年广东普宁华侨管理区中学七年级下第一次段考数学卷(带解析)【答案】B14.点M(x,y)在第四象限,且|x|=2,y2=4,则点M的坐标是( )A.(2,2) B.(-2,-2) C.(2,-2) D.(-2,2)【来源】江西省崇仁县第二中学2016-2017学年八年级上学期期中考试数学试题【答案】C15.如图,三角形ABC经过平移得到三角形DEF,其中A点(-2,4)平移到D点(2,2),则B点(a,b)平移后的对应点E的坐标是()A.(a+2,b)B.(a+4,b-2)C.(a+2,b-2)D.(a+4,b+2)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】B二、填空题16.已知点P的坐标为(m,n),那么先向右平移2各单位长度,再向下平移1个单位长度后的对应点P′的坐标为__________.【来源】2018-2019学年七年级下(人教版)数学单元练习卷:第七章平面直角坐标系【答案】(m+2,n-1)17.如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为.【来源】2015届江苏省南京市江宁区中考一模数学试卷(带解析)【答案】(3,0)或(9,0)18.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是 .【来源】2014届上海市普陀区中考二模数学试卷(带解析)【答案】(5,-2).19.已知点N的坐标为(a,a-1),则点N一定不在第________象限.【来源】2018春冀教版七年级数学下册练习:第7章达标检测卷【答案】二20.写出平面直角坐标系中一个第三象限内点的坐标:________.【来源】2017年秋北师大版八年级数学上册章末检测卷:第3章?位置与坐标【答案】(-1,-1)(答案不唯一)21.已知点A的坐标(x,y)(y+3)2=0,则点A的坐标是________.【来源】2018春冀教版七年级数学下册练习:第7章达标检测卷【答案】(2,-3)22.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,3点A1、A2、A3,…在x轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.【来源】2017年广西贵港市港南区中考数学二模试卷【答案】23.已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是______,点B的坐标是______,点C的坐标是______.【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】(-5,0) (-5,-3) (0,-3)24.如图,点A0(0,0),A1(1,2),A2(2,0),A3(3,-2),A4(4,0),….根据这个规律,探究可得点A2 019的坐标是_______.【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】(2019,-2)25.在平面直角坐标系中,已知点P在第二象限,距离x轴3个单位长度,距离y轴2个单位长度,则点P的坐标为________.【来源】海南省临高县美台中学 2017-2018学年七年级下册期末模拟试卷数学试题【答案】(﹣2,3).26.如图,在直角坐标系中,设一动点M自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设P n(x n,y n),n=1,2,3,…求x1+x2+…+x99+x100的值.【来源】安徽省芜湖市南陵县黄浒初中2017-2018学年度第二学期七年级数学期中复习试卷【答案】5027.在如图所示的雷达定位系统上,如果约定A点位置表示为(60°,1),B点的位置表示为(300°,2),那么C点的位置可以表示为____________.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】(150°,3)28A(a在第______象限.【来源】人教版八年级数学下册第16章二次根式综合测试题【答案】二29.在平面直角坐标系中,点P(2,-2)和点Q(2,4)之间的距离等于________个单位长度.线段PQ的中点的坐标是________.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】6 (2,1)30.若点A(a,2a+1)在第一、三象限的两坐标轴夹角的平分线上,则a=________.(注:在角的内部,角平分线上的点到角两边的距离相等)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】-131.如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为________.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(2,1.5)32.若点P(2x-2,-x+4)到两坐标轴的距离相等,则点P的坐标为________.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(2,2)或(-6,6)三、解答题33.将一幅三角板拼成如图的图形,过点C作CF平分∠DCE交DE于点F.试说明CF∥AB的理由.【来源】2017年秋北师大版八年级数学上册章末检测卷:第7章平行线的证明(一)【答案】CF∥AB.理由见解析.34.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420 m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系.(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.【来源】2018春冀教版七年级数学下册练习:第7章达标检测卷【答案】(1) 张明同学是以中心广场为原点、正东方向为x 轴正方向、正北方向为y 轴正方向建立平面直角坐标系(2) 牡丹园的位置的35.如果规定北偏东30°的方向记作30°,从O 点出发沿这个方向走50米记作50,图中点A 记作(30°,50);北偏西45°的方向记作-45°,从O 点出发沿着该方向的反方向走20米记作-20,图中点B 记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).【来源】2019春冀教版七年级下册数学练习:第7章达标检测试题【答案】(1)(-75°,-15)表示南偏东75°距O 点15米处,(10°,-25)表示南偏西10°距O 点25米处;(2)详见解析.36.如图 平面内有四个点,它们的坐标分别是 (1,A (3,B CD(1)依次连接A 、B 、C 、D ,围成的四边形是什么图形?并求它的面积(2)将这个四边形向下平移【来源】青岛版八年级下册第七章实数单元测试【答案】(1)梯形,(2)A (1,0) B (3,0) C (4,)D (1,) 37.在平面直角坐标系中表示下面各点:A (0,3)B (1,-3)C (3,-5)D (-3,-5)E (3,5).连接CE ,CD .(1)A 点到原点的距离是___个单位长度;B 点到直线CD 的距离是____个单位长度;(2)将点C 向x 轴的负方向平移6个单位,它与点_______重合;(3)直线CE 与y 轴的位置关系是_______;直线CE 与x 轴的位置关系是_______.【来源】人教版七年级数学下第七章平面直角坐标系单元检测数学试题【答案】(1)3,2;(2)D;(3)平行;垂直.38.坐标平面内有4个点A(0,2),B(-2,0),C(1,-1),D(3,1).(1)建立坐标系,描出这4个点;(2)顺次连接A,B,C,D,组成四边形ABCD,求四边形ABCD的面积.(3)线段AB,CD有什么关系?请说明理由.【来源】人教版七年级数学下第七章平面直角坐标系单元检测数学试题【答案】(1)见解析;(2)8;(3)AB∥CD,理由见解析.39.在如图所示的平面直角坐标系中,描出下列各点,并将各点用线段依次连接起来:(0,-4),(3,-5),(6,0),(0,-1),(-6,0),(-3,-5),(0,-4).【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】画图见解析.40.下图是某动物园平面示意图的一部分(图中小正方形的边长代表100米).(1)在大门东南方向有哪些景点?(2)从大门径直向东走300米,再向北走200米,到达哪个景点?(3)以大门为坐标原点,向东方向为x轴正方向,向北方向为y轴正方向建立平面直角坐标系,写出蛇山、水族馆及大象馆的坐标.【来源】人教版数学七年级下册第七章平面直角坐标系单元综合提升卷【答案】(1)猴山,大象馆;(2)蛇山;(3)蛇山的坐标为(300,200);水族馆的坐标为(500,0);大象馆的坐标为(300,-300).41.已知点O(0,0),B(1,2).(1)若点A在y轴的正半轴上,且三角形OAB的面积为2,求点A的坐标;(2)若点A(3,0),BC∥OA,BC=OA,求点C的坐标;(3)若点A(3,0),点D(3,-4),求四边形ODAB的面积.【来源】人教版数学七年级下册第七章平面直角坐标系单元提优训练【答案】(1)A(0,4);(2)C(4,2)或(-2,2);(3)S四边形ODAB=9.42.若点M(a-3,a+1)到x轴的距离是3,且它位于第三象限,求点M的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(-7,-3)43.小强放学后,先向东走了300米,再向北走路200米,到书店A买了一本书,然后向西走了500米,再向南走了100米,到快餐店B买了零食,又向南走了400米,再向东走了800米,回到他家C,如图,以学校为原点建立坐标系,图中的每个单位长度表示100米.(1)请在图中的坐标系中标出A,B,C的位置,并写出A,B,C三点的坐标;(2)如果超市D的坐标为(-1,-3),邮局E的坐标为(4,2),请在图中标出超市和邮局的位置;(3)请求出小强家到超市的实际距离.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(1)A(3,2),B(-2,1),C(6,-3)(2)见解析(3)70044.已知三角形ABC的三个顶点坐标分别是A(-4,-1),B(-1,4),C(1,1),点A经过平移后对应点为A1(-2,1),将三角形ABC作同样的平移得到三角形A1B1C1,写出B1、C1两点的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】B1(1,6),C1(3,3)45.如果点P(m+3,m-2)在坐标轴上,求m的值和点P的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】P(0,-5)或(5,0)46.已知:P(3m25-,m13+)点在y轴上,求P点的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】点P坐标为(0,59 ).47.已知点P(2a-6,-3b+2)在第二象限,到x轴的距离为5,到y轴的距离为8,求a、b的值.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】a=-1,b=-1.48.点A在第一象限,当m为何值时,点A(m+2,3m-5)到x轴的距离是它到y轴距离的一半.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】m=12 5.49.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示.(2)请你在图中标出秋千的位置,秋千在大门以东400m,再往北300m处.【来源】人教版七年级下册第七章平面直角坐标系单元测试题【答案】(1)(2,4);(5,1);(5,4);(2)见解析.50.在平面直角坐标中描出下列各点.A(1,1),B(-3,3),C(1,3),D(-1,3),E(1,-4),F(3,3).由描出点你发现了什么规律?【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】见解析。
人教版七年级下册数学第七章平面直角坐标系评卷人得分一、单选题1.如图,下列各点在阴影区域内的是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)2.点A的坐标是(-2,5),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(-200,-150)B.(200,150)C.(200,-150)D.(-200,150)4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C 的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.若点P(m,n)在第二象限,则点Q(m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,若在象棋盘上建立直角坐标系xOy,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“炮”位于点()A.(-2,-1)B.(0,0)C.(1,-2)D.(-1,1)7.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,-b)在第二象限,则点B(-a,b)在第四象限D.若点P的坐标为(a,b),且a·b=0,则点P一定在坐标原点8.如果点P(a-4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(-4,0)D.(0,-4)9.点P(-|a|-1,b2+2)一定在()A.第一象限B.第二象限C.第三象限D.第四象限10.一个学生方队,B的位置是第8列第7行,记为(8,7),则学生A在第二列第三行的位置可以表示为()A.(2,1)B.(3,3)C.(2,3)D.(3,2)评卷人得分二、填空题11.如图,把“QQ”笑脸放在平面直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是___.12.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母依次对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是________.13.平面直角坐标系中,点P(3,-4)到x轴的距离是________.14.如图是中国象棋棋盘的一部分.马在第2列第1行,表示为(2,1).请写出其它几枚棋子的位置:兵(_____________)、将(_____________)、相(_____________)、炮(_____________)、車(______________)15.若以A(1,2),B(-1,0),C(2,0)三点为顶点要画平行四边形,则第四个顶点坐标为________.16.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为6,则点P的坐标是________.17.若点P(m,n)在第三象限,则点Q(mn,m+n)在第________象限.18.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是_____.19.点M (-1,5)向下平移4个单位得N 点坐标是________.20.点(2,-1)向左平移3个单位长度得到的点在第________象限.评卷人得分三、解答题21.请写出点A ,B ,C ,D 的坐标.22.已知平面直角坐标系中A 、B 两点,根据条件求符合条件的点B 的坐标.(1)已知点A (2,0),AB =4,点B 和点A 在同一坐标轴上,求点B 的坐标;(2)已知点A (0,0),AB =4,点B 和点A 在同一坐标轴上,求点B 的坐标.23.已知点P (2m+4,m -1),请分别根据下列条件,求出点P 的坐标.(1)点P 在x 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 在过点A (2,-4)且与y 轴平行的直线上.24.如图所示,ABC 三个顶点A ,B ,C 的坐标分别为()1,2A ,()4,3B ,()3,1C ,把111A B C 向右平移4个单位,再向下平移3个单位,恰好得到ABC ,试写出111A B C 三个顶点.25.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.26.在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:(1)填表:P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是________个.(3)当P点从点O出发________秒时,可得到整数点(10,5)27.如图,A、B两点的坐标分别为(2,3)、(4,1).(1)求△ABO的面积;(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.28.在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.参考答案1.A【解析】试题分析:应先判断出阴影区域在第一象限,进而判断在阴影区域内的点.解:观察图形可知:阴影区域在第一象限,A、(3,2)在第一象限,故正确;B、(﹣3,2)在第二象限,故错误;C、(3,﹣2)在第四象限,故错误;D、(﹣3,﹣2)在第三象限,故错误.故选A.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A的坐标是(−2,5),则点A在第二象限.故选B.【点睛】本题考查了象限内点的坐标特征.3.C【解析】【分析】根据题意可以用相应的有序数对表示出小敏家的位置.【详解】解:∵小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,∴小敏家用有序数对表示为(200,-150),故选C.【点睛】本题考查坐标确定位置,解答本题的关键是明确题意,用相应的有序数对表示出小敏家的位4.C【解析】【分析】由点C在x轴的上方,在y轴左侧,判断点C在第二象限,符号为(-,+),再根据点C到x轴的距离决定纵坐标,到y轴的距离决定横坐标,求C点的坐标.【详解】解:∵点C在x轴上方,y轴左侧,∴点C的纵坐标大于0,横坐标小于0,点C在第二象限;∵点C距离x轴2个单位长度,距离y轴3个单位长度,∴点的横坐标是-3,纵坐标是2,故点C的坐标为(-3,2).故选C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C【解析】【分析】应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【详解】解:∵点P(m,n)在第二象限,∴m<0,n>0,∴-n<0,∴Q(m,-n)在第三象限.故选C.【点睛】本题考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.【解析】【分析】先根据“帥”的位置确定原点的坐标,建立平面直角坐标系,从而可以确定“炮”的位置.【详解】解:根据条件建立平面直角坐标系:由图得“炮”的坐标为:(0,0).故选B.【点睛】本题考查了平面坐标系的建立,在平面直角坐标系中确定点的位置,本题难度较小.7.D【解析】【分析】根据各象限内点的坐标特征、有序实数对与平面的关系,解答即可.【详解】解:A、点(0,0)是坐标原点,正确,故不符合题意;B、对于坐标平面内的任一点,都有唯一的一对有序实数与它对应,正确,故不符合题意;C、点A(a,-b)在第二象限,得a<0,-b>0,则-a>0,b<0,点B(-a,b)在第四象限,故不符合题意;D、若点P的坐标为(a,b),且a•b=0,则点P一定在坐标轴上,故D符合题意;故选D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.B【解析】由点P(a−4,a)在y轴上,得a−4=0,解得a=4,P的坐标为(0,4),故选B.9.B【解析】【分析】先判断出点P的横坐标为负数,纵坐标为正数,然后根据各象限内点的坐标特征求解即可.【详解】解:∵|a|>0,∴-|a|-1<0,∵b2>0,∴b2+2>0.∴点P的横坐标是负数,纵坐标是正数,∴点P在第二象限.故选B.【点睛】本题考查了点的坐标,解答本题的关键在于记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.C【解析】【分析】数对表示位置的方法是:第一个数字表示列,第二个数字表示行,据此即可解答.【详解】根据题干分析可得:B的位置是第8列第7行,记为(8,7),学生A在第二列第三行的位置可以表示为:(2,3).故选C.【点睛】本题考查了数对表示位置的方法,根据已知得出列与行的意义是解题的关键.11.(0,3)【解析】【分析】根据A点坐标作出直角坐标系,然后可写出B点坐标.【详解】解:画出直角坐标系为,则笑脸右眼B的坐标(0,3).故答案为(0,3).【点睛】本题考查了坐标确定位置,关键是根据点A和点C的坐标建立平面直角坐标系.12.APPLE【解析】有序数对(1,1)、(2,3)、(2,3)、(5,2)、(5,1)分别对应的字母为:A,P,P,L,E;所以这个英文单词是apple.故答案是:APPLE.13.4【解析】【分析】根据点的坐标表示方法得到点P(3,-4)到x轴的距离是纵坐标的绝对值即|-4|,然后去绝对值即可.【详解】解:点P(3,-4)到x轴的距离为|-4|=4.故答案为:4.【点睛】本题考查了在平面直角坐标系中点到坐标轴的距离.14.(3,6)(6,1)(8,1)(9,4)(10,1)【解析】【分析】马在第2列第1行,表示为(2,1).可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.【详解】解:兵在第3列第6行,则兵表示为(3,6),将在第6列第1行,则将表示为(6,1),相在第8列第1行,则相表示为(8,1),炮在第9列第4行,则炮表示为(9,4),車在第10列第1行,则車表示为(10,1).故答案为(3,6),(6,1),(8,1),(9,4),(10,1).【点睛】本题主要考查了学生用数对表示位置的知识,正确掌握坐标的表示方法是解题的关键. 15.(﹣1,2)或(4,2)或(0,﹣2)【解析】试题分析:知道A,B,C三点的坐标,根据平行四边形两组对边分别平行可得D点的坐标.解:根据平行四边形的两组对边分别平行,可得D点有三种情况,所以D点坐标为(﹣1,2)或(4,2)或(0,﹣2).故答案是(﹣1,2)或(4,2)或(0,﹣2).点评:本题考查了平行四边形的性质,坐标与图形性质.根据平行四边形的性质,结合坐标画出图形,找出D点坐标的三种情况.16.(-2,4)【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列方程求出a的值,再求解即可.【详解】解:∵点P(2a,1−3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为6,∴−2a+1−3a=6,解得a=−1,∴2a=2×(−1)=−2,1−3a=1−3×(−1)=1+3=4,所以点P的坐标为(−2,4).故答案为(−2,4).【点睛】本题考查了平面直角坐标系中点的坐标特征.17.四【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】由题意,得:n<0,m<0,∴mn>0,m+n<0,点Q(mn,m+n)在第四象限.故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).18.(2,-1).【解析】试题分析:如图,根据A(-2,1)和B(-2,-3)确定平面直角坐标系,然后根据点C在坐标系中的位置确定点C的坐标为(2,-1).考点:根据点的坐标确定平面直角坐标系.19.(-1,1)【解析】点M(-1,5)向下平移4个单位得N点坐标是(-1,5-4),即为(-1,1).20.三【解析】原来点的横坐标是2,纵坐标是-1,向左平移3个单位长度得到新点的横坐标是2-3=-1,纵坐标不变.坐标为(-1,-1),点在第三象限.21.A(3,2),B(-3,4),C(-4,-3),D(3,-3)【解析】【分析】根据各点所在的象限,对应的横坐标、纵坐标,分别写出点的坐标.【详解】解:各点的坐标分别为:A(3,2),B(-3,4),C(-4,-3),D(3,-3).故答案为:A(3,2),B(-3,4),C(-4,-3),D(3,-3)【点睛】本题考查了点的坐标确定的方法,正确把握横纵坐标对应数字是解题关键.22.(1)点B的坐标为(-2,0)或(6,0);(2)点B的坐标为(-4,0)或(4,0)或(0,4)或(0,-4)【解析】【分析】(1)由点A的坐标可知点A在x轴上,点B可以再点A的左右两侧,根据AB=4可求得点B的坐标;(2)由点A的坐标可知点A在x轴和y上,符合条件的点B共有4个,根据AB=4可求得点B的坐标.【详解】(1)∵点A的坐标为(2,0),∴点A在x轴上.当点B在点A的左侧时,点B的坐标为(-2,0),当点B在点A的右侧时,点B的坐标为(6,0).(2)∵点A的坐标为(0,0),∴点A在x轴上也在y轴上.当点A在x轴上时,点B的坐标为(-4,0)或(4,0);当点A在y轴上时,点B的坐标为(0,4)或(0,-4).【点睛】本题主要考查的是点的坐标的定义,掌握点的坐标的定义是解题的根据.23.(1)(6,0);(2)(-12,-9);(3)(2,-2)【解析】试题分析:(1)让纵坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标-横坐标=3得m的值,代入点P的坐标即可求解;(3)让横坐标为2求得m的值,代入点P的坐标即可求解.试题解析:(1))点P在x轴上,故纵坐标为0,所以m-1=0,m=1,点P的坐标(6,0);(2)因为点P的纵坐标比横坐标大3,故(m-1)-(2m+4)=3,m=-8,点P的坐标(-12,-9);(3)点P在过A(2,-4)点,且与y轴平行的直线上,所以点P横坐标与A(2,-4)相同,即2m+4=2,m=-1,点P的坐标(2,-2)24.(1)A1(﹣3,5),B1(0,6),C1(﹣1,4);(2)2.5.【解析】试题分析:(1)按题意规范的画出平移后的三角形即可;(2)结合△ABC三个顶点的坐标计算出该三角形的面积即可.(1)△A1B1C1如图所示,A1(﹣3,5),B1(0,6),C1(﹣1,4);(2)△A1B1C1的面积=3×2﹣12×1×2﹣12×1×2﹣12×1×3=6﹣1﹣1﹣1.5=6﹣3.5=2.5.25.狮子(1,10);马(2,2);南门(5,5);飞禽(8,9);两栖动物(9,6).【解析】试题分析:适当建立平面直角坐标系,确定原点及各个景点位置坐标.试题解析:如图:以左下角的点为原点建立平面直角坐标系,每格规定为一个单位长度,确定各景点的坐标:狮子(1,10);马(2,2);南门(5,5);飞禽(8,9);两栖动物(9,6).考点:适当建立平面直角坐标系并确定各点坐标.26.(1)详见解析;(2)11;(3)15.【分析】(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10个单位,用10秒;再向上移动5个单位用5秒.【详解】解:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P 从O 点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒(0,2)、(2,0)、(1,1)33秒(0,3)、(3,0)、(2,1)、(1,2)4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x 轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.故答案为:(1)详见解析;(2)11;(3)15.【点睛】解决本题的关键是掌握所给的方法,得到相应的可能的整数点的坐标.27.(1)S △ABO =5;(2)A′(2,0),B′(4,-2),O′(0,-3).【解析】试题分析:(1)利用面积的割补法求解,(2)根据点的平移规律,向下平移,横坐标不变,纵坐标减去平移得单位长度即可求解.试题解析:(1)如图所示:S △ABO =3×4-12×3×2-12×4×1-12×2×2=5,(2)A ′(2,0),B ′(4,-2),O ′(0,-3).28.(1)3;(2)D ;(3)垂直;(4)直线CD 与CE 垂直,直线CD 与FG 垂直.【分析】(1)根据A点坐标可得出A点在y轴上,即可得出A点到原点的距离;(2)根据点的平移的性质得出平移后的位置;(3)利用图形性质得出直线CE与坐标轴的位置关系;(4)利用图形性质得出互相垂直的直线.【详解】解:由题意得,如图所示:(1)A点到原点的距离是3.(2)将点C向x轴的负方向平移6个单位,它与点D重合.(3)直线CE与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.故答案为:(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.【点睛】此题主要考查了点的坐标性质以及平移的性质,根据坐标系得出各点的位置是解题关键.。
初中数学七年级下册第七章平面直角坐标系同步测评(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、若 P 的坐标为(21a +,21a --),则 P 点在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限2、将点()2,3P -向右平移3个单位,再向下平移2个单位后得到的点P '的坐标为( ) A .(-5,1)B .(-4,6)C .(1,1)D .(1,5)3、如图,每个小正方形的边长为1,在阴影区域的点是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(1,﹣2)4、岚山根——袁家村·运城印象全民健身游乐场,位处运城市黄金旅游路线上,南靠中条山,东临九龙山,西临凤凰谷和死海景区,是运城盐湖区全域旅游中项目最全,规模最大的标志性综合游乐场(图1).若利用网格(图2)建立适当的平面直角坐标系,表示冲浪乐园的点的坐标为()2,1A ,表示特色小吃米线的坐标为()4,2B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()6,2--D .()5,1--5、平面直角坐标系中,将点A (2m ,1)沿着x 的正方向向右平移(23m +)个单位后得到B 点,则下列结论:①B 点的坐标为(223+m ,1);②线段AB 的长为3个单位长度;③线段AB 所在的直线与x 轴平行;④点M (2m ,23m +)可能在线段AB 上;⑤点N (22m +,1)一定在线段AB 上.其中正确的结论有( ) A .2个B .3个C .4个D .5个6、点P 的坐标为(﹣3,2),则点P 位于( ) A .第一象限B .第二象限C .第三象限D .第四象限7、如图是济南市地图简图的一部分,图中“济南西站”、“雪野湖”所在区域分别是( )A .E 4,E 6B .D 5,F 5C .D 6,F 6D .D 5,F 68、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为()A.(3,2) B.(3-,2)C.(3,2-) D.(3-,2-)9、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( )A.在中国的东南方 B.东经12129',北纬3114'C.在中国的长江出海口D.东经121.510、若点P的坐标为(−3,2022),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(5小题,每小题4分,共计20分)1、已知点A、点B都x轴上,且AB=3,点C在y轴上,以A、B、C三点为顶点的三角形的面积等于6,则点C的坐标为_______.2、如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2021秒点P所在位置的坐标是 ___.-向右平移3个单位长度再向下平移1个单位得到的点的坐标是3、在平面直角坐标系中,点P(1,2)___.4、若点(,)P a b 在第三象限,则(,)M ab a --应在第_________象限.5、已知线段MN =5,MN ∥x 轴,若点M 坐标为(-1,2),则N 点的坐标为_____. 三、解答题(5小题,每小题10分,共计50分) 1、已知平面直角坐标系中一点()4,21P m m -+ (1)当点P 在y 轴上时,求出点P 的坐标;(2)当点P 在过点A (—4,—3)、且与x 轴平行的直线上时,求出点P 的坐标; (3)当点P 到两坐标轴的距离相等时,求出m 的值. 2、如图为上海世博园区的一部分.(1)你能向你的同学介绍如何才能找到土库曼斯坦馆和澳门馆吗? (2)小明现在正在等候广场,他想到亚洲广场,你能告诉他该如何走吗? (3)小颖想从中国国家馆到摩洛哥馆,她该如何走呢?3、长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为()2,3--.与同伴进行交流,你们的答案相同吗?4、在平面直角坐标系中,M (a ,b ),N (c ,d ),对于任意的实数0k ≠,我们称P (ka +kc ,kb +kd )为点M 和点N 的k 系和点.例如,已知M (2,3),N (1,2-),点M 和点N 的2系和点为K (6,2).横、纵坐标都为整数的点叫做整点,已知A (1,2),B (2,0).(1)点A 和点B 的12系和点的坐标为________(直接写出答案);(2)已知点C (m ,2),若点B 和点C 的k 系和点为点D ,点D 在第一、三象限的角平分线上. ①求m 的值;②若点D 为整点,且三角形BCD 的内部(不包括边界)恰有3个整点,求k 的值.5、在平面直角坐标系中,点A 的坐标是(2x -,1y +)2(2)0y -=.求点A 的坐标.---------参考答案----------- 一、单选题 1、D 【分析】根据非负数的性质判断出点P 的横坐标是正数,纵坐标是负数,再根据各象限内点的坐标的特征即可解答. 【详解】20a ≥211a ∴+≥,211--≤-a∴点P (21a +,21a --)在第四象限故选:D 【点睛】本题考查了各象限内点的坐标的符号特征,熟记各象限内点的坐标的符号是解题关键. 2、C 【分析】根据平面直角坐标系中点的平移规律求解即可. 【详解】解:将点()2,3P -向右平移3个单位,得到坐标为(1,3),再向下平移2个单位后得到的点P '的坐标为()1,1. 故选:C . 【点睛】此题考查了平面直角坐标系中点的平移,解题的关键是熟练掌握平面直角坐标系中点的平移规律. 3、C 【分析】根据平面直角坐标系中点的坐标的表示方法求解即可. 【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意. 故选:C . 【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负. 4、C 【分析】根据浪乐园的点的坐标为()2,1A ,特色小吃米线的坐标为()4,2B -建立直角坐标系即可求解. 【详解】解:根据浪乐园的点的坐标为()2,1A ,表示特色小吃米线的坐标为()4,2B -建立平面直角坐标系,得,儿童游乐园所在的位置C 的坐标应是(-6,-2) 故选:C . 【点睛】本题考查平面内点的坐标特点;能够根据已知的点确定原点的位置,建立正确的平面直角坐标系是解题的关键. 5、B【分析】根据平移的方式确定平移的坐标即可求得B点的坐标,进而判断①,根据平移的性质即可求得AB的长,进而判断②,根据平移的性质可得线段AB所在的直线与x轴平行,即可判断③,根据纵坐标的特点即可判断④⑤【详解】解:∵点A(2m,1)沿着x的正方向向右平移(23m+)个单位后得到B点,∴B点的坐标为(2m,1);23+故①正确;则线段AB的长为23m+;故②不正确;∵A(2m,1),B(2+m,1);纵坐标相等,即点A,B到x轴的距离相等23∴线段AB所在的直线与x轴平行;故③正确若点M(2m,23m+)在线段AB上;则231m=-m+=,即21m=-,不存在实数21故点M(2m,23m+)不在线段AB上;故④不正确同理点N(22m+,1)在线段AB上;故⑤正确综上所述,正确的有①③⑤,共3个故选B【点睛】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.6、B【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.7、D【分析】观察已知表格,由行列定位法确定位置即可知道答案.【详解】解:由行列定位法知,图中“济南西站”、“雪野湖”所在区域分别是:D5,F6故选:D【点睛】本题考查行列定位法确定位置,熟记相关的知识点是解题的关键.8、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9、B【分析】根据有序数对的性质解答.【详解】解:能准确表示上海市地理位置的是东经12129',北纬3114',故选:B.【点睛】此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.10、B【分析】根据平面直角坐标系中点的坐标符号可得答案.【详解】解:点P(-3,2022)在平面直角坐标系中所在的象限是第二象限,故选:B.【点睛】本题主要考查了点的坐标,关键是掌握平面直角坐标系中个象限内的点的坐标符号,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).二、填空题1、(0,-4)或C(0,4)【解析】【分析】设C点坐标为(0,x),然后根据三角形ABC的面积等于6,AB=3,列方程即可求出点C的坐标.【详解】解:∵点A、点B都在x轴上,且AB=3,以A、B、C三点为顶点的三角形的面积等于6,设C点坐标为(0,x),∴根据题意得:13=62x⨯⨯,解得:4x=±,∴点C的坐标为(0,-4)或C(0,4).故答案为:(0,-4)或C(0,4).【点睛】此题考查了三角形面积,平面直角坐标系中点的表示方法,解题的关键是设出点C的坐标,根据三角形的面积列出方程求解.2、(44,3)【解析】【分析】分析点P的运动路线及所处位置的坐标规律,进而求解.【详解】解:由题意分析可得,动点P第8=2×4秒运动到(2,0),动点P第24=4×6秒运动到(4,0),动点P第48=6×8秒运动到(6,0),以此类推,动点P第2n(2n+2)秒运动到(2n,0),∴动点P第2024=44×46秒运动到(44,0),2024-2021=3,∴按照运动路线,差3个单位点P到达(44,0),∴第2021秒点P所在位置的坐标是(44,3),故答案为:(44,3).【点睛】本题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.3、(2,1)【解析】【分析】将点P 的横坐标加3,纵坐标减1即可求解.【详解】解:点P (﹣1,2)向右平移3个单位长度再向下平移1个单位得到的点的坐标是(﹣1+3,2-1),即(2,1),故答案为:(2,1).【点睛】此题主要考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.4、二【解析】【分析】由点(,)P a b 在第三象限,可以分析得到0,0a b <<,从而知道0,0ab a -<->,由此即可知道点M 所在的象限.【详解】解:∵点(,)P a b 在第三象限∴0,0a b <<∴0,0ab a -<->∴(,)M ab a --在第二象限故答案为:二【点睛】本题考查平面直角坐标系中点的坐标特征,牢记相关知识点是解题的关键.5、(4,2)或(−6,2)##(-6,2)或(4,2)【解析】根据线段MN =5,MN ∥x 轴,若点M 的坐标为(−1,2),可知点N 的纵坐标为2;横坐标与-1的差的绝对值等于5,从而可以得到点N 的坐标.【详解】解:∵线段MN =5,MN ∥ x 轴,若点M 的坐标为(−1,2),∴设点N 的坐标为(x ,2),∴|x −(-1)|=5,解得,x =4或x =−6,∴点N 的坐标为:(4,2)或(−6,2),故答案为:(4,2)或(−6,2).【点睛】本题考查坐标与图形的性质,解题的关键是明确与x 轴平行的直线上所有点的横坐标都相等.三、解答题1、(1)点P 的坐标为(0,9);(2)点P 的坐标为(-6,-3);(3)5m =-或1m =【解析】【分析】(1)根据在y 轴上点的坐标特征:横坐标为0进行求解即可;(2)根据点P (m -4,2m +1)在过点A (-4,-3),且与x 轴平行的直线上,即点P (m -4,2m +1)在直线y =-3上,由此求解即可;(3)根据当点P (m -4,2m +1)到两坐标轴的距离相,可以得到421m m -=+,由此求解即可.【详解】解:(1)∵点P (m -4,2m +1)在y 轴上,∴m =4,∴点P 的坐标为(0,9);(2)点P (m -4,2m +1)在过点A (-4,-3),且与x 轴平行的直线上,∴点P (m -4,2m +1)在直线y =-3上,∴2m +1=-3,∴m =-2,∴点P 的坐标为(-6,-3);(3)∵当点P (m -4,2m +1)到两坐标轴的距离相等时, ∴421m m -=+,∴421m m -=+或()421m m -=-+,∴5m =-或1m =.【点睛】本题主要考查了解一元一次方程,点到坐标轴的距离,在y 轴上点的坐标特征,平行与x 轴的直线的特征,解题的关键在于熟练掌握相关知识进行求解.2、(1)先找到中国国家馆, 澳门馆在中国国家馆的西南方向上; 沿中国国家馆东北方向走, 经过巴基斯坦馆、以色列馆,即可到土库曼斯坦馆.(2)在等候广场西南方有一个阿联酋馆, 沿阿联酋馆西北方向直走, 经过土库曼斯坦馆, 然后可到达亚洲广场·(3)小颖沿中国国家馆东北方向走, 经过巴基斯坦馆、以色列馆,找到土库曼斯坦馆,沿着该方向继续走即可到达摩洛哥馆·【解析】【分析】(1)根据题意由图中所示的方向以中国国家馆为中心结合土库曼斯坦馆和澳门馆所在的相对位置进行分析即可;(2)根据题意由图中所示的方向以等候广场为中心结合亚洲广场所在的相对位置进行分析即可;(3)根据题意由图中所示的方向以中国国家馆为中心结合摩洛哥馆所在的相对位置进行分析即可.【详解】解:(1)由图可知先找到中国国家馆, 澳门馆在中国国家馆的西南方向上; 沿中国国家馆东北方向走, 经过巴基斯坦馆、以色列馆,即可到土库曼斯坦馆.(2)由图可知在等候广场西南方有一个阿联酋馆, 沿阿联酋馆西北方向直走, 经过土库曼斯坦馆, 然后可到达亚洲广场·(3)小颖沿中国国家馆东北方向走, 经过巴基斯坦馆、以色列馆,找到土库曼斯坦馆,沿着该方向继续走即可到达摩洛哥馆·【点睛】本题考查位置与坐标,熟练掌握描述相对位置的方法是解题的关键.3、见解析【解析】【分析】先建立直角坐标系,找到点()2,3--,再以这个点为顶点做长方形即可,符合题意就可以了,答案很多.【详解】如图,建立直角坐标系,则四个点的坐标分别为A (-2,3),B (-2,-3),C (2,-3),D (2,3)以点()2,3--为圆心,4或6为半径做出一条长方形边长,最后可以做出无数个符合条件的长方形,故答案有无数个.【点睛】本题考查了坐标与图形性质,确定出坐标原点的位置是解题的关键.4、(1)3,12⎛⎫ ⎪⎝⎭;(2)①0;②32或12- 【解析】【分析】(1)根据题意计算即可;(2)①根据题意可得()2,2D k mk k +,再根据点D 在第一、三象限的角平分线上计算即可;②根据题意作出图形,得到当()3,3D 或()1,1D '--时满足条件,计算即可;【详解】(1)由题意得:()131222+=,()12012+=, ∴点A 和点B 的12系和点的坐标为3,12⎛⎫ ⎪⎝⎭;故答案为:3,12⎛⎫ ⎪⎝⎭. (2)∵(),D x y 为B (2,0)和C (m ,2)的k 系和点,∴2x k mk =+,2y k =,即()2,2D k mk k +,∵D 在第一、三象限的角平分线上,∴22k mk k +=,∴0mk =,∵0k ≠,∴0m =;②如图,由题意可知,当()3,3D 或()1,1D '--时满足条件,∵()0,2C ,()2,0B ,∴()023k +=或()021k +=-,∴32k 或12-; 【点睛】本题主要考查了平面直角坐标系的有关计算,准确计算是解题的关键. 5、()5,3-【解析】【分析】2(2)0y -=得出30x +=,20y -=,解出x ,y 即可得出点A 的坐标.【详解】30x +≥,2(2)0y -≥2(2)0y -=,30x ∴+=,20y -=,解得:3x =-,2y =,2325x ∴-=--=-,1213y +=+=,(5,3)A ∴-.【点睛】本题考查非负数的性质,几个非负数之和等于零,则每一个非负数都为0.。
人教版七年级数学下册第七章平面直角坐标系期中复习检测试题一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,2)在( B )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( B )A.经过原点 B.平行于x轴C.平行于y轴D.无法确定3.若y轴上的点P到x轴的距离为3,则点P的坐标是( D )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1) B.B(1,7)C.(1,1) D.(2,1)5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使三角形ABC的面积为3,则这样的点C共有( B )A.2个B.3个C.4个D.5个6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2) C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是(A)A.(11,3)B.(3,11)C.(11,9)D.(9,11)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.在平面直角坐标系xOy中,对于点,我们把点叫做点伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(2,4),点的坐标为( D )A. (-3,3)B.(-2,-2)C.(3,-1)D.(2,4)二、填空题(每空3分,共18分)11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是(﹣3,4)。
第七章 平面直角坐标系
一、单选题
1.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( )
A.(2,1) B.(3,3) C.(2,3) D.(3,2)
2.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是5,则点P
的坐
标是( )
A.(﹣4,5) B.(4,﹣5) C.(﹣5,4) D.(5,﹣4)
3.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为( )
A.(﹣1,﹣1). B.(﹣1,1) C.(1,1) D.(1,﹣1)
4.如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2 , 90°)、B
的位
置为(4 ,210°),则C的位置为
( )
A.(-2 ,150°) B.(150°,3) C.(4 , 150°) D.(3 ,150°)
5.若2,2Amnmn关于x轴对称点是15,5A,则P,mn的坐标是( )
A.1,3 B.1,3 C.1,3 D.1,3
6.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是( )
A.2 B.3 C.4 D.5
7.如图,中国象棋中的“象”在图中的坐标为(10),,若“象”再走一步(象在中国象棋中走“田”
字),下一步它可能走到的位置的坐标是( )
A.(32), B.(2)2, C.(12), D.(0)2,
8.气象台为预报台风,给出台风位置的几种说法:①北纬46,东经142;②
上海东北方
向10km处;③日本与韩国之间;④渤海;⑤大连正东方向;其中能确定台风位置的有( )
A.1个 B.2个 C.3个 D.4个
9.点P(﹣1,2)是由点Q(0,﹣1)经过( )而得到的.
A.先向右平移1个长度,再向下平移3个单位长度
B.先向左平移1个长度,再向下平移3个单位长度
C.先向上平移3个长度,再向左平移1个单位长度
D.先向下平移1个长度,再向右平移3个单位长度
10
.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点
1,1
,第2次接着运动到点2,0,第3次接着运动到点3,2,···,按这样的运动规律,
经过第2020次运动后,动点P的坐标是( )
A.2020,1 B.2020,0 C.2020,2 D.2019,0
二、填空题
11.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为_____.
12.点P(1,3﹣2)到x轴的距离是_____.
13.ABC的三个顶点坐标分别是(3,3)A,(21)B,,(51)C,.将ABC先向下平移2
个单
位得到111ABC,再向左平移1个单位得到222ABC,则顶点C的像点2C的坐标是
________.
14.如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.
向右的方向依次
平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点
A
2016
的坐标为
________.
三、解答题
15.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:
(1)猴园和鹿场分别位于水族馆的什么方向?
(2)与水族馆距离相同的地方有哪些场地?
(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么
区?
,
16.如图,在平面直角坐标系中,正方形ABCD和正方形EFGC面积分别为64和16.
(1)请写出点A,E,F的坐标;
(2)求
S
△BDF
.
17.在平面直角坐标系中.
(1)已知点P(2a﹣4,a+4)在y轴上,求点P的坐标;
(2)已知两点A(﹣2,m﹣3),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,
并确定n的取值范围.
18.在平面直角坐标系中,ABC经过平移得到三角形ABC,位置如图所示:
(1)分别写出点A、A的坐标:A______________,A_____________;
(2)若点,Mmn是ABC内部一点,则平移后对应点M的坐标为_____________;
(3)求ABC的面积.
答案
1.C
2.C
3.C
4.C
5.C
6.A
7.A
8.B
9.C
10.B
11.(5,9).
12.2﹣3.
13.4,1)(
14.(1008,0)
15.(1)猴园在水族馆东偏北方向,鹿场在水族馆北偏西方向;(2)孔雀园和鹿场;(3
)猛
兽区用(9,7)表示,(7,5)表示鸟类区
16.(1)A(0,8),E(8,4),F(12,4);(2)S
△BDF
=
32
17.(1)(0,6);(2)n>﹣1.
18.(1)1,0A;'4,4A;(2)'5,4Mmn;(3)7