无功补偿装置技术及原理..共26页
- 格式:ppt
- 大小:3.26 MB
- 文档页数:26
无功补偿原理电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。
在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。
无功补偿的节电原理查看原图返回词条无功补偿的基本原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流滞后于电压90°.而电流在电容元件中作功时,电流超前电压90°.在同一电路中,电感电流与电容电流方向相反,互差180°.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,无功补偿的具体实现方式:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。
这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿⑴补偿无功功率,可以增加电网中有功功率的比例常数。
⑵减少发、供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cosΦ=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW对原有设备而言,相当于增大了发、供电设备容量。
因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。
⑶降低线损,由公式ΔΡ%=(1-cosΦ/cosΦ)×100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则:cosΦ>cosΦ,所以提高功率因数后,线损率也下降了,减少设计容量、减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益。
前言《国家电网公司农网“十一五电压质量和无功电力规划纲要》提出,纲要指导思想为:以公司“新农村、新电力、新服务农电发展战略为指导,以安全、质量、效益为核心,坚持科技进步,全面提高农网电压无功综合管理水平,持续改善供电质量,降低电能损耗,为社会主义新农村建设提供优质、经济、可靠的电力供应。
切实达到《国家电网公司电力系统电压质量和无功电力管理规定》的“无功补偿配制应按照分散就地补偿与变电站集中补偿相结合,以分散为主;高压补偿与低压补偿相结合,以低压为主;调压与降损相结合,以降损为主”的要求。
无功补偿的原理在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。
有功功率是保持用电设备正常运行所需的电功率,是将电能转换为其他形式能量(机械能、光能、热能)的电功率。
无功功率比较抽象,它是电路内电场与磁场的交换,在电气设备中建立和维持磁场的电功率。
它不对外作功,而是转变为其他形式的能量。
凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。
无功功率决不是无用功率,它的用处很大。
电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。
变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。
因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。
(打个比方,农村修水利需要开挖土方运土,运土时用竹筐装满土,挑走的土好比是有功功率,挑空竹筐就好比是无功功率,竹筐并不是没用,没有竹筐泥土怎么能运到堤上?)在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。
如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。
但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。
无功补偿原理:电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。
在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。
基本信息∙中文名称∙无功补偿原理∙∙简介∙在大系统中,无功补偿还用于调整电网的电压,提高电网的稳定性;小系统中,通过恰当的无功补偿方法还可以调整三相不平衡电流。
∙∙原理∙一是有功功率;二是无功功率∙∙装置特点∙高压动态无功补偿装置主要由输人开关柜、变压器框、功率柜、控制框等组成。
∙∙产品特点∙安装、设定、调试简便∙目录1简介2基本原理3其他相关4斯威尔5装置特点6产品特点在小系统中,通过恰当的无功补偿方法还可以调整三相不平衡电流。
按照wangs定理:在相与相之间跨接的电感或者电容可以在相间转移有功电流。
因此,对于三相电流不平衡的系统,只要恰当地在各相与相之间以及各相与零线之间接入不同容量的电容器,不但可以将各相的功率因数均补偿至接近1,而且可以使各相的有功电流达到平衡状态。
基本原理折叠编辑本段无功补偿折叠电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能,只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流滞后于电压90°.而电流在电容元件中作功时,电流超前电压90°.在同一电路中,电感电流与电容电流方向相反,互差180°.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,实现方式折叠把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。
无功补偿的基本原理及应用1. 引言无功补偿是电力系统中的一个重要问题,它对于提高电能质量、降低电力损耗和稳定电力系统运行具有重要意义。
本文将介绍无功补偿的基本原理及其在电力系统中的应用。
2. 无功补偿的基本原理无功补偿的基本原理是通过控制电力系统中的电容器和电感器来实现。
电容器和电感器可以分别用于补偿电力系统中的感性无功和容性无功,从而达到提高功率因数、减小谐波、降低电压波动等目的。
2.1. 电容器补偿电容器可以用于补偿电力系统中的容性无功。
当电力系统中存在电感性负载时,电流和电压之间会存在一定的相位差,导致功率因数较低。
通过将电容器接入电力系统中,可以提供一个反向的电感,并产生与负载的电感相抵消的电流,从而提高功率因数。
电容器补偿的关键是选择合适的电容器容量和补偿电压的控制方式。
电容器的容量应根据负载的特性和需要补偿的无功功率来确定,同时还需要根据电压波动及系统谐波情况进行综合考虑。
控制电容器的方式可以根据负载的变化情况采用手动控制或自动控制。
2.2. 电感器补偿电感器可以用于补偿电力系统中的感性无功。
感性无功主要由电力系统中的电感性元件(如电感器、变压器等)引起,导致电流滞后于电压,功率因数较低。
通过将电感器接入电力系统中,可以提供与负载的电感相抵消的电感,从而提高功率因数。
电感器补偿的关键是选择合适的电感器容量和补偿电压的控制方式。
电感器的容量应根据负载的特性和需要补偿的无功功率来确定,同时还需要根据电压波动及系统谐波情况进行综合考虑。
控制电感器的方式可以根据负载的变化情况采用手动控制或自动控制。
3. 无功补偿的应用无功补偿在电力系统中有广泛的应用,以下是几个常见的应用场景:3.1. 工业电力系统工业电力系统中常常存在大量的感性负载,如电动机、变压器等。
这些感性负载会导致电力系统的功率因数较低,使用无功补偿装置可以提高功率因数,减小谐波,提高电力质量,降低电能损耗。
3.2. 城市电力系统城市电力系统中常常存在大量的容性负载,如电容器、电子设备等。
3.1SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图1。
它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置图1TCR+TSC型SVC基本拓扑结构TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。
图1中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。
α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。
导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量。
TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。
这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。
在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。
用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。
由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。
TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。
图2给出了该控制方式下稳定系统电压时采用的控制框图,控制器所需信号为系统线电压和线电流。
如果用于补偿系统无功功率或校正系统功率因数,只需将电压设定值改为相应的无功设定值或功率因数设定值即可。
无功补偿的原理及补偿方法无功补偿的原理在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。
有功功率是保持用电设备正常运行所需的电功率,是将电能转换为其他形式能量(机械能、光能、热能)的电功率。
无功功率比较抽象,它是电路内电场与磁场的交换,在电气设备中建立和维持磁场的电功率。
它不对外做功,而是转变为其他形式的能量。
凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。
无功功率决不是无用功率,它的用处很大。
电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。
变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。
因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。
在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。
如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。
但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。
无功补偿是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。
这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。
采用无功补偿可以收到以下效果:1)根据用电设备的功率因数,可测算输电线路的电能损失。
通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。
2)采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。
3)无功补偿,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量,稳定设备运行。
什么是无功补偿无功补偿的原理1. 交流电在通过纯电阻的时候,电能都转成了热能,而在通过纯容性或者纯感性负载的时候,并不做功。
也就是说没有消耗电能,即为无功功率。
当然实际负载,不可能为纯容性负载或者纯感性负载,一般都是混合性负载,这样电流在通过它们的时候,就有部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿。
电网中的电力负荷如电动机、变压器等,大部分属于感性电抗,在运行过程中需要向这些设备提供相应的无功功率。
在电网中安装并联电容器、同步调相机等容性设备以后,可以供给感性电抗消耗的部分无功功率小电网电源向感性负荷提供无功功率。
也即减少无功功率在电网中的流动,因此可以降低输电线路因输送无功功率造成的电能损耗,改善电网的运行条件。
这种做法称为无功补偿。
2. 无功补偿的原理无功功率过大的危害:( 1 )降低发电设备有功功率的输出。
(2 )降低电线设备的供电能力。
(3 )造成线路上电压损的增加和电能损失的增加。
( 4 )造成电器设备在低功率下运行效率低下,电压下降乃至不能正常工作。
采取人为的方法设置无功补偿装置,来保证用电设备所需要的无功功率,减少线路上提供的无功功率。
无功补偿是把具有容性功率的装置和感性功率负荷并联在同一线路上6、无功补偿的方法:(1 )集中补偿:把容性功率负荷装置集中起来对所有电器设备进行补偿的方法。
(2 )就地补偿:针对单个电器设备我们的节电器是运用无功补偿的原理就地对单个或局部用电设备进行无功补偿,提高用电设备的功率因数,降低线路提供的无功功率,从而减少由于无功功率造成的视在功率电流形成有功损耗,达到节约用电的目的。
3. 无功补偿该怎样实施1、合理分组。
高压补偿一般采用等容分组,考虑成本,分组不宜过多,具体按负荷性质和要求的补偿精度决定。
2、合理选用电抗器。
为了避开谐波和限制合闸涌流,高压电容器组一般应配串联电抗器,如13%、6%、3%、0.1%等等,如装设点没有明显的谐波分量,可只设0.1%的电抗(单组可不装)以降低造价。
电工知识:一文搞懂无功补偿的原理、作用及使用方法!一、功率的概念功率(英语:power)是单位时间内做功的大小或能量转换的大小。
1、视在功率:视在功率是指发电机发出的总功率,其中可以分为有功部分和无功部分。
2、有功功率:有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。
3、无功功率:是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率,它不对外作功,而是转变为其他形式的能量。
凡是有电磁线圈的电气设备,建立磁场,就要消耗无功功率。
无功功率不做功,但要保证有功功率的传导必须先满足电网的无功功率。
二、需要无功补偿的原因在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。
如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。
但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。
无功补偿是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换,这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。
三、无功补偿的一般方法无功补偿通常采用的方法主要有3种:低压个别补偿、低压集中补偿、高压集中补偿。
下面简单介绍3种补偿方式的适用范围及使用该种补偿方式的优缺点。
1、低压个别补偿低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器,通过控制、保护装置与电机同时投切。
随机补偿适用于补偿个别大容量且连接运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。
低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停动时,补偿设备也退出,因此不会造成无功倒送,具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。
无功补偿原理
无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接同一电路,能量在两种负荷之间相互交换。
这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。
采纳无功补偿措施后,电源输送的无功功率削减了,相应的也使电网和变压器中的功率损耗的下降,从而提高了供电效率。
电力网中的变压器和电动机是依据电磁感应原理工做的。
磁场所具有的磁场能是由电源供应的。
电动机和变压器在能量转换过程中建立交变磁场,在一个周期内汲取的功率和释放的功率相等,这种功率称为感性无功功率。
接在沟通电网中的电容器,在一个周期内上半周的充电功率与下半周的放电功率相等,这种充电功率叫做容性无功功率。
所以无功功率被使用于建立磁场和静电场,它存储于电感和电容中,通过电力网来回于电源和电感、电容之间。
无功功率在电力网元件中流淌,将会在电力网元件中引起电压损耗和功率损耗,降低电网的电压质量,增加电网的线损率。
由上述分析可见,要削减电力网中的电压损耗和电网的线损率,提高用户端的电压质量的重要措施之一,是削减电力网元件中的无功传输,可以从提高负荷的自然功率因数和进行无功补偿两方面来解决这个问题。
1。
无功补偿的工作原理无功补偿交流电在通过纯电阻的时候,电能都转成了热能,而在通过纯容性或者纯感性负载的时候,并不做功.也就是说没有消耗电能,即为无功功率。
当然实际负载,不可能为纯容性负载或者纯感性负载,一般都是混合性负载,这样电流在通过它们的时候,就有部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿. 无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
一、按投切方式分类: 1。
延时投切方式延时投切方式即人们熟称的”静态”补偿方式。
这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。
当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。
通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。
下面就功率因数型举例说明.当这个物理量满足要求时,如cos Φ超前且>0。
98,滞后且>0。
95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。
当检测到cosΦ不满足要求时,如cosΦ滞后且<0.95,那么将一组电容器投入,并继续监测cosΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。
无功补偿装置的基本原理是什么?分相补偿装置可以补偿不平衡的无功电流,但是对于不平衡的有功电流无能为力。
实际上,经过恰当设计的无功补偿装置,不但可以将三相的功率因数均补偿至1,而且可以将三相间的不平衡有功电流调整至平衡。
怎样调整不平衡电流在很久以前,电学奇才XX就已经找到了利用无功补偿来平衡三相电流的解决办法。
在《电力系统无功功率控制》一书中有比较详细的介绍,有兴趣的读者不妨一读。
XX的办法有两个缺点:其一是计算过程比较繁复,读者很难从计算过程中领会这种调整不平衡电流方法的物理意义。
其二是只能适用于三相三线系统,当应用于三相四线系统时,如果零线电流不为零,就会出现较大的误差。
笔者在多年研究无功补偿技术的基础上,总结出了一套简明易懂的调整不平衡电流理论与计算方法,下面就进行介绍。
调整不平衡电流的基本原理要了解首调整不平衡电流的基本原理,首先要了解wangs定理,读者可以参见本博客中的Wangs定理一文。
在了解wangs定理的前提下,这里具体介绍一下怎样调整不平衡有功电流。
设有一个电阻连接在A相与B相两端,这是一个典型的不平衡负荷,调整不平衡电流的目标就是将这个电阻的电流平均分配到三相当中去,具体的方法如图1所示:利用wangs定理的基本概念,在A相与C相之间接入一个适当的电感L将A相有功电流的1/3转移到C相,这时电感L在A相产生的感性无功电流恰好将电阻在A相产生的容性无功电流抵消掉。
在B相与C相之间接入一个适当的电容C 将B相有功电流的1/3转移到C相,这时电容C在B相产生的容性无功电流恰好将电阻在B相产生的感性无功电流抵消掉。
电感L在C相产生的感性无功电流恰好将电容C在C相产生的容性无功电流抵消掉。
这样三相电流完全平衡,并且三相的功率因数全等于1。
设有一个电阻连接在A相与零线之间,这是另一个典型的不平衡负荷,调整不平衡电流的目标就是将这个电阻的电流平均分配到三相当中去,具体的方法如图2所示:在A相与C相之间接入一个适当的电感L1将A相有功电流的1/3转移到C相,在A相与B相之间接入一个适当的电容C1将A相有功电流的1/3转移到B相,这时电感L1在A相产生的感性无功电流恰好将电容C1在A相产生的容性无功电流抵消掉。
无功补偿柜工作原理
无功补偿柜是电力系统中用于优化无功功率的重要设备。
其工作原理主要分为三个阶段。
第一阶段是检测阶段。
无功补偿柜通过电力仪表来检测电力系统中的无功功率,包括电流、电压、功率因数等参数。
通过对这些数据进行采集和分析,判断电力系统中是否存在无功功率过大或过小的情况。
第二阶段是计算阶段。
在检测到电力系统中存在无功功率不平衡或过大过小的情况后,无功补偿柜通过内部的控制算法进行计算,确定需要进行无功补偿的数量和方式。
根据计算结果,无功补偿柜会发出命令,控制无功补偿器的动作,以实现对无功功率的调节。
第三阶段是补偿阶段。
根据计算结果,无功补偿柜会控制无功补偿器进行运行。
无功补偿器可以采用电容器、电感器等元件,通过接入或剔除这些元件来实现对无功功率的补偿。
无功补偿器的运行可以通过接触器、断路器或开关等设备来实现。
通过这三个阶段的工作,无功补偿柜可以实现对电力系统中的无功功率的优化,提高系统的功率因数,降低电网的无功损耗,改善供电质量,提高电网的稳定性。