电动汽车蓄电池的充电方案
- 格式:doc
- 大小:16.00 KB
- 文档页数:4
几种常见的纯电动汽车动力电池的充电方法纯电动汽车的电能补充可以划分为两种模式,即充电模式和换电模式。
其中换电又被称为机械充电,是通过直接更换已充电的动力蓄电池来达到电动汽车电能补充的目的。
纯电动汽车动力蓄电池放电后,用直流电源连接动力蓄电池,将电能转化为动力蓄电池的化学能,使它恢复工作能力,这个过程称为动力蓄电池充电。
动力蓄电池充电时,动力蓄电池正极与充电电源正极相连,动力蓄电池负极与充电电源负极相连,充电电源电压必须高于动力蓄电池的总电动势。
合适的充电方式不仅能够最大限度地发挥电池的容量,而且可以延长电池的使用寿命。
纯电动汽车的充电方法包括常规充电方式和快速充电方式。
常规充电方式有恒电流充电方法、恒电压充电方法和阶段充电方法等几种.常规充电方式以较低的充电电流对电动车进行充电,一般充电时间较长,可达10~20h;常规充电方式的充电器安装成本比较低,电动汽车家用充电设施(车载充电机)和汽车充电站多采用这种充电方式。
充电时段可以充分利用电力低谷时段进行充电,降低充电成本,提高充电效率,并延长电池的使用寿命。
快速充电方式有脉冲式充电法、变电流间歇充电方法、变电压间歇充电方法等几种,这里介绍常见的和基本的充电方法.快速充电方式以较高的充电电流在短时间内为蓄电池充电,充电时间短,可在10-30min完成,快速充电方式的充电器安装成本相对较高,充电效率较低,对电池寿命也有一定的影响。
(1)恒压充电方法恒压充电是最基本的控制方式,电池端电压和电流的关系如图1所示。
开始时,给定一个期望电压值,系统开始充电,充电电流随充电的进行不断减小;当充电电流小于一定值后,充电过程结束。
恒压充电的最大特点就是控制简单,由于充电终期只有很小的电流流过,所以析气量小,能耗低;但由于充电初期充电电流过大,容易对电池极板造成冲击,严重时会损坏电池;恒压充电方式一般用于电池中途的补给充电,在开始充电阶段,一定要加。
蓄电池充放电方案摘要:蓄电池是一种能够将化学能转换为电能的装置,广泛应用于各种移动设备和能源储存系统中。
在日常生活和工业应用中,蓄电池的充放电方案对其性能和寿命起着重要作用。
本文将介绍基本的蓄电池充放电原理、常见的充放电方案,并探讨其优缺点以及适用场景。
1. 蓄电池充电原理蓄电池是由一个或多个电池单元组成的装置,通过在化学反应中储存和释放电能。
常见的蓄电池类型包括铅酸蓄电池、锂离子电池、镍氢电池等。
不同类型的蓄电池有不同的充电原理,但基本原理是相同的:在充电过程中,外部电源提供电流,通过化学反应将电能储存到蓄电池中;在放电过程中,蓄电池的化学反应将储存的电能转化为电流输出。
2. 常见的蓄电池充放电方案2.1 恒定电流充电方案恒定电流充电是一种常见的充电方式,其原理是在充电过程中保持恒定的充电电流。
典型的恒定电流充电方案包括恒定电流充电、恒定电流恒定电压充电等。
恒定电流充电方案适用于大容量蓄电池和长时间充电的情况。
通过控制恒定的充电电流,可以有效地充满电池,并保护电池免受过充放电的损害。
然而,这种充电方案可能会导致电池表面温度升高,需要注意散热和安全问题。
2.2 脉冲充电方案脉冲充电是一种将脉冲电流注入到蓄电池中进行充电的方案。
这种充电方案通常在短时间内提供高电流,然后在休息时间内停止充电,电池可以在这段时间内恢复。
脉冲充电方案可以提高充电效率和充电速度,减少充电时间,并且对电池的性能和寿命影响较小。
但是,应注意脉冲充电的电流和频率,以免对电池产生过大的压力和损害。
2.3 恒定功率放电方案恒定功率放电方案是一种通过控制放电电流或电压来使电池以恒定功率放电的方案。
这种放电方案适用于需要稳定输出功率的设备或系统。
恒定功率放电方案可以有效地保持电池的电压稳定,防止电压过低引起设备故障。
然而,这种方案也可能导致电池容量及续航时间的减少,需要权衡电池的可用能量和使用时间。
3. 蓄电池充放电方案的优缺点3.1 优点蓄电池充放电方案具有以下优点:- 可以实现电能的储存和释放,满足不同应用的需求;- 充电方案多样,根据实际情况选择合适的充电方式;- 放电方案灵活,可以根据不同负载要求进行调整;- 充放电过程中不产生有害物质,对环境友好。
蓄电池快速充电技术研究1. 本文概述随着现代科技的发展,移动设备和电动汽车的普及,对蓄电池快速充电技术的研究显得尤为重要。
本文旨在探讨蓄电池快速充电技术的原理、发展现状、关键技术以及未来的发展趋势。
文章将简要介绍蓄电池的基本原理和快速充电的基本概念。
接着,我们将深入分析目前市场上主要的快速充电技术,包括其工作原理、优缺点以及在不同应用场景下的适用性。
本文还将讨论快速充电技术对蓄电池寿命、安全性以及环境影响等方面的影响。
我们将探讨快速充电技术的发展趋势,包括潜在的新型快速充电技术以及其在未来能源系统中的角色。
通过本文的研究,我们期望为蓄电池快速充电技术的进一步发展提供理论支持和实践指导。
2. 蓄电池快速充电技术概述蓄电池快速充电技术是在传统充电方式基础上发展起来的一种高效能量补充手段,旨在解决传统小电流慢充方式所导致的充电耗时长、效率低以及资源浪费等问题。
该技术的核心在于精确控制充电过程中的电流、电压及温度,使得蓄电池能够在短时间内安全地吸收并储存大量电能,同时减小极化效应、抑制析气反应和防止过热等副反应的发生。
自20世纪60年代中期开始,快速充电技术的研究取得了重大突破。
美国科学家马斯的研究成果揭示了通过调控充电电流,使其接近或等于蓄电池在特定阶段可接受的最小析气率对应的充电电流,能够有效地加速充电进程。
这一理论奠定了现代快速充电技术的基础,即在充电过程中,动态调整充电参数以遵循最优充电曲线,确保既能实现快速充电,又能最大程度地保护电池寿命和性能。
现代蓄电池快速充电技术涵盖了多种类型电池,包括但不限于铅酸蓄电池、镍氢电池以及锂离子电池等。
对于铅酸蓄电池而言,快速充电需要精细控制充电末期的电压上限以及监测电解液比重和温度变化而在锂离子电池中,除了电压管理外,还需结合电池内部状态参数,如电池荷电状态(SOC)和健康状态(SOH),实施更为复杂的多阶恒流、恒压充电策略。
随着微电子技术的发展,尤其是单片机和智能控制算法的应用,快速充电系统能够实时监测并调整充电参数,实现了对不同类型的蓄电池进行智能、高效的快速充电。
电动汽车蓄电池的充电方案装备20 kWh蓄电池的电动汽车每行驶100 km耗电15 kWh的情况下,理论上每行驶133 km 就要充一次电。
若保险系数为25%的话,其最大行程只有100 km。
根据电动汽车蓄电池的不同电容量,不久的将来,市场上将会出现功率范围在3〜50 kW的充电设备。
基于充电速度的快慢,人们设想将充电功率提升至200kW。
电动汽车的电压一般为300〜700 V,而蓄电池也可以减轻电网系统的负担,改善电网供电重量。
例如,利用合适的控制软件避开用电高峰时的充电,以便使电网负荷更加均衡。
若停车场有很多车辆同时充电,电动汽车的蓄电池还可以用作“电网缓冲器”。
必要时还可以把蓄电池中存储的电力回馈到电网中。
在这种V2G(车辆到电网)的应用中,电网管理将会更加有效,可以更好地平衡用电高峰。
从电网方面来讲,目前给电动汽车充电的能源通常为230 V 16 A 、3 kW 的直流低压电和400 V 32 A/ 64 A、22 kW/ 44 kW 的三相交流电。
采用直流电充电可实现很高的充电功率。
AC 直流充电时,充电站中配备了把交流电转换为电动汽车所需直流电的转换装置。
为提高充电性能而研发的充电设备避免了电动汽车只能在固定充电站充电的限制,使得转换成直流电的电动汽车动力能够经过充电电缆方便地把直流驱动动力传输到电动汽车的蓄电池中,而车辆只需配备充电保护和充电监控装置即可。
性能可靠的16 A家用充电设施的充电功率已经达到了大约3 kW的水平。
容量为30 kWh蓄电池的充电时间只需8 h,充满电后可连续行驶200km。
这一最大行驶里程对于通常市内驾驶基本足够。
若长途行驶,则应及时再次充电, 可使用的充电设备包括家用充电设备和专用充电电缆等。
电缆中有用于传送数据的导线, 也有用于传送电力的导线和电缆识别的导线。
根据充电时是否有通信需求, 可以规定不同的充电工作方式。
在22/44 kW 的柱式充电站中,电动汽车可在90/45 min 内完成充电, 但快速充电给蓄电池带来的负担较重,如蓄电池中的功率损耗增大、发热以及使用寿命缩短等。
版本 A/0 充电曲线及说明
页次 1/2 受控状态
受控 生效日期
2015.1.3
1、充电曲线
2、充电过程说明
1)、预充电阶段(S 1):蓄电池接入充电器后,检测蓄电池电压,对于电压2V/单体以下的蓄电池以0.05C 3A 的电流进行恒流充电,在蓄电池电压达到2V/单体(或时间达到2小时)时转入S 2阶段充电; 2)、恒流充电阶段:以0.15C 3-0.2C 3A 的电流恒流充电,在充电电压达到2.4V/单体(或时间达到5小时)时,转入S 3阶段充电; 3)、恒流充电阶段:以0.1-0.12C 3A 的电流恒流充电,在充电电压达到2.47V/单体(或时间达到2小时)时,转入S 4阶段充电; 4)、恒压限流充电阶段:最大充电电流为0.05C 3A ,恒压充电电压为2.47V/单体,充电至电流降至0.01C 3A (或充电时间达到2小时)时,
版本 A/0 充电曲线及说明
页次 2/2 受控状态
受控 生效日期
2015.1.3
转入S 5阶段充电;
5)、限电压限电流充电阶段:限电压2.67V/单体,限电流0.01C 3A ,充电2小时转入S 6阶段充电;
6)浮充电阶段:浮充电压为2.30V/单体,充电时间为4
小时。
充电标准温度为25℃,随着温度的降低或升高,电压调整为升高或降低3mv/℃.单体。
编制 冷文江 审核 严如意 批准 田广才 日期
2015.1.1
日期
2015.1.2
日期
2015.1.2。
新的蓄电池投入使用后,必须定期地进行充电和放电。
充电的目的是使蓄电池贮存电能及时地恢复容量,以满足用电设备的需要。
放电的目的是及时地检验蓄电池容量参数,及促进电极活性物质的活化反应。
蓄电池充电和放电状况的好坏,将直接影响到蓄电池的电性能及使用寿命。
目前对蓄电池充电的方法很多,选择科学合理的充电方法将会大大提高蓄电池的维护效果。
1 蓄电池常用的充电方法1)恒定电流充电法在充电过程中充电电流始终保持不变,叫做恒定电流充电法,简称恒流充电法或等流充电法。
在充电过程中由于蓄电池电压逐渐升高,充电电流逐渐下降,为保持充电电流不致因蓄电池端电压升高而减小,充电过程必须逐渐升高电源电压,以维持充电电流始终不变,这对于充电设备的自动化程度要求较高,一般简陋的充电设备是不能满足恒流充电要求的。
恒流充电法,在蓄电池最大允许的充电电流情况下,充电电流越大,充电时间就可以缩短。
若从时间上考虑,采用此法有利的。
但在充电后期若充电电流仍不变,这时由于大部分电流用于电解水上,电解液出气泡过多而显沸腾状,这不仅消耗电能,而且容易使极板上活性物质大量脱落,温升过高,造成极板弯曲,容量迅速下降而提前报废。
所以,这种充电方法很少采用。
2)恒定电压充电法在充电过程中,充电电压始终保持不变,叫做恒定电压充电法,简称恒压充电法或等压充电法。
由于恒压充电开始至后期,电源电压始终保持一定,所以在充电开始时充电电流相当大,大大超过正常充电电流值。
但随着充电的进行,蓄电池端电压逐渐升高,充电电流逐渐减小。
当蓄电池端电压和充电电压相等时,充电电流减至最小甚至为零。
由此可见,采用恒压充电法的优点在于,可以避免充电后期充电电流过大而造成极板活性物质脱落和电能的损失。
但其缺点是,在刚开始充电时,充电电流过大,电极活性物质体积变化收缩太快,影响活性物质的机械强度,致使其脱落。
而在充电后期充电电流又过小,使极板深处的活性物质得不到充电反应,形成长期充电不足,影响蓄电池的使用寿命。
NEW ENERGY AUTOMOBILE | 新能源汽车 时代汽车 电动汽车蓄电池智能充电系统研究张金军奇瑞新能源汽车技术有限公司 安徽省芜湖市 241000摘 要: 针对电动汽车静态电流大、蓄电池容量小,导致电动汽车安全存放天数短问题。
考虑在蓄电池电压低时,由T-BOX在预设时间点唤醒整车CAN网络,检测并对比蓄电池的电压值,判断是否需要进行进行充电,在需要进行充电时,对蓄电池进行充电。
关键词:蓄电池亏电;蓄电池充电、智能充电1 引言随着汽车保有量的增加,对能源的消耗将会越来越大,如果不加以节制,将会造成不可逆转的影响。
传统的机动车会消耗大量的不可再生能源,产生大量污染气体,并且产生很多噪音。
技术的发展促进了电动汽车的发 展,电动汽车可以利用可再生的光能、风能等转换而来的电能,不会产生污染气体,而且噪音小,因此电动汽车得以获得国家的支持从而快速的发展。
由于电动汽车采用了更多的控制模块,静态电流相对于传统汽油车增加了许多,更容易导致汽车的蓄电池亏电。
本文针对这一问题,提出在夜间电动车电压低时,由T-BOX在预设时间点唤醒整车CAN网络,检测并对比蓄电池的电压值,判断是否需要进行充电,在需要进行充电时,对蓄电池进行充电。
2 静态电流的产生及计算1.1 静态电流静态电流是指车辆处于静止状态,所有用电设备及控制模块处于关闭状态,并已经进入设防状态,整车网络进入休眠时各零部件消耗的电流值。
1.2 静态电流的计算I静=C20×(90%-20%-1‰×T)÷(T×24)I静——电动车静态电流值,45mA;90%——整车下线时,蓄电池的实际容量与额定容量的百分比;20%——确保车辆正常起动的蓄电池最低实际容量与额定容量的百分比;1‰——蓄电池一天的自损耗率;T——储运时间;C20——蓄电池的20h率额定功率,本电动车为36Ah。
使用以上公式计算出,在某款36AH的蓄电池车型上,静态电流为45mA的情况下,该车型只能停放11天左右,超过11天后去启动车辆有可能会由于蓄电池亏电导致无法开车。
E行+,焦Industry Focus新能源电动汽车低压蓄电池自充电策略优化徐柏兴!路高磊!王景松!卢军豪!李军营!王丹凤(郑州比克新能源汽车有限公司,河南郑州451450)摘要:电动汽车的电气架构通常包括动力电池、整车控制器VCU、蓄电池、DC/DC转换器、高压箱PDU、电池管理系统BMS、充电系统以及高压附件等,在电动汽车未启动或长期放置时,作为其内部的低压用电设备,如收音机、点烟器、仪表灯光系统、整车控制器、BMS等工作电源,对于电动汽车的正常起动起着至关重要的作用%但是,在实际使用过,蓄电池电,整车高压%种在各种工况下的技术控制策略,避免因蓄电池亏电车辆无法起动,车辆使用的有效性。
关键词:电动汽车;蓄电池;电中图分类号:U469.72文献标志码:A文章编号:1003-7639(2021)01-0023-02Optimization of Self-charging Strategy for Low Voltage Battery of Electric VehicleXU Bo-xing,LU Gao-lei#WANG Jing-song,LU Jun-hao,LI Jun-ying#WANG Dan-feng(Zhengzhou BAK New Energy Vehicle Co.,Ltd.,Zhengzhou451450,China) Abstract:The electric structure of electric vehicle usually includes power battery,vehicle controller VCU, battery,DC/DC converter,high-voltage box PDU,Battery Management System BMS,charging system and high-voltage accessories.When the electric vehicle is not started or placed for a long time,its internal low-voltage electrical equipment,such as radio,cigarette lighter,instrument lighting system,vehicle controller,BMS and others play important roles in the normal start-up of electric vehicles.However,in the real world situation,occasionally due to the battery power loss,the vehicle can not be on the high voltage.This paper will elaborate a technical control strategy under various working conditions,to avoid the problem that the vehicle can not be started due to the battery power loss,to ensure the effectiveness of vehicle use.Key words:BEV;battery;power loss徐柏兴(1974-),男,主要从事电控系统设计工作。
电动汽车蓄电池如何充电
新能源时代到了,电动汽车也走进了各家个户,电动汽车虽然更加环保但是出行也变得更加不方便,由于蓄电池是汽车的主要动力能源,需要正确规范的给蓄电池充电,方便出行的更加顺利,最近冬天到了在室外电动汽车蓄电池的充电也变的很不方便,我们需要正确规范的给电动汽车蓄电池充电,正确的充电方式是保养蓄电池的主要方式,也能延长蓄电池的使用寿命,如何正确的给蓄电池充电也变得非常重要,然后将电流降为1/2初充电电流,继续充到电解液放出剧烈的气泡,比征和电压连续3h稳定不变为止。
全部充电时间约为
45~65h。
充电过程中应常测量电解液温度用电流减半、停止充电或冷却的方法,将温度控制在35~40℃,初充电完毕时,若电解液比重不合规定,应用蒸馏水或比重为1.4的电解液进行调整。
调整后再充电2h,直至比重符合规定时为止。
新蓄电池第一次充电后往往达不到容量,应进行放电循环。
用20hh时放电率放电(即用额定容量1/20的电流放电至单格电压降到1.75V为止),然后再补充充电电流充足,经过一次充、放电循环若容量仍低于额定容量的90%时,应再进行一次充、放电循环。
这样充
电可以延长蓄电池的使用寿命,以后的充电也需要规范的充电,这样对蓄电池的损害也会变得更小。
以上就是关于电动汽车蓄电池如何充电的介绍,希望对你有所帮助。
想了解更多的汽车蓄电池的使用维护知识和车辆保养小知识吗?敬请继续关注。
电动汽车慢充原理
电动汽车慢充原理,简单来说就是通过外部充电设备将电能传输到电动汽车的蓄电池中。
慢充是一种通过交流电源将电能传输到电动汽车中的充电方式,通常需要数小时的充电时间。
慢充的原理基于电力技术中的交流电传输原理,首先需要将市电转化为符合电动汽车蓄电池要求的电压和电流。
然后通过充电连接器和电动汽车中的充电控制系统连接,将电能传输到电动汽车的蓄电池中进行充电。
通常,电动汽车慢充的充电时间比较长,这主要是因为充电时通过充电连接器传输的电压和电流都比较低,充电速度相对较慢。
但这样的慢充方式对于蓄电池的寿命有好处,可以延长蓄电池的使用寿命,避免快速充电对蓄电池的负面影响。
在电动汽车慢充的过程中,充电连接器和充电控制系统也起到了非常重要的作用。
充电连接器需要与电动汽车中的充电系统功能对接,通过检测电动汽车系统的状态和控制充电流量等参数。
而充电控制系统则根据充电流量和蓄电池状态等信息,实时调节充电电力输出,确保充电过程中电动汽车系统的稳定和安全。
总之,慢充是一种相对较慢但对蓄电池寿命影响较小的充电方式,通过市电转换为电动汽车蓄电池所需的电压和电流,通过充电连接器和充电控制系统将电能传输到电动汽车蓄电池中进行充电。
在实际的充电中,需要注意充电连接器的对接和接触状态,以及充电控制系统对充电过程的监控和调节。
通过优化慢充充电技术,可以进一步提高电动汽车的使用效率和电池寿命,为人们提供更加环保和高效的出行方式。
电动汽车低压蓄电池自充电策略优化发布时间:2021-07-08T11:28:55.777Z 来源:《基层建设》2021年第11期作者:李锟[导读] 摘要:在电动汽车当中,除了动力电池之外,还有一个低压压蓄电池,其作用在于为车内的低压用电设备进行供电。
身份证号码:2107271989****XXXX摘要:在电动汽车当中,除了动力电池之外,还有一个低压压蓄电池,其作用在于为车内的低压用电设备进行供电。
但在实际使用过程中,低压蓄电池经常会出现亏电的现象,进而导致整车无法上高压等情况出现。
尤其是针对纯电动车当中,低压蓄电池出现馈电的现象,发生的频率会更高一些,为避免因为低压蓄电池亏电而影响到车辆使用,探究优化其自充电策略,非常具有实用价值。
关键词:电动汽车;低压蓄电池;自充电策略随着如今环保越来越被重视,车辆的使用逐渐的受到了限制,在北京等交通拥堵并且城市空气环境恶劣的部分城市中,已经逐渐的开始限号等措施。
不仅如此,现今全球石油储量也在不断降低,在这一背景下,电动车受到了更广泛的欢迎。
在使用过程中,为避免因为低压电池的影响,导致汽车使用过程中出现问题,需要对低压蓄电池自充电进行优化,避免因为低压蓄电池亏电故障,为客户带来麻烦,同时对电动汽车的品牌形象造成负面的影响。
对电动汽车质量的提升,品牌形象的树立都具有一定的帮助作用。
1 纯电动汽车低压蓄电池亏电原因分析1.1电动汽车低压蓄电池充电方式纯电动汽车的能源功能全部由电力供应,整个电力系统的能源组成部分,被分为高压和低压两套系统。
其中高压部分,主要是为大功率元器件进行供电,其中包括驱动电机以及空调的压缩机等。
汽车的娱乐系统以及各种控制仪表,这些是低压设备,主要的能源来源是低压蓄电池。
两套系统根据用电功率以及电压的不同,分别对不同的设备供电。
高低压两套电力系统之间,通过DC/DC桥接,低压蓄电池的充电功能,主要是通过整车充电或运行状态中,通过利用高压系统中的电能进行充点。
车辆蓄电池的搭配方案车辆蓄电池可以说是汽车重要的配件之一,是为汽车提供电能的重要装置。
在使用过程中,要注意到蓄电池的电能储存和使用的效率,为了延长蓄电池的使用寿命,车辆蓄电池的搭配方案是非常重要的。
1. 车辆蓄电池的作用车辆蓄电池主要是为燃油发动机和汽车电子设备提供电源。
车辆的发动机需要电能来启动,在启动时向发动机供电,同时,车辆内部的电子设备,包括车载音响、空调等等,也需要电源来提供驱动力。
车辆蓄电池在这些方面都担负着至关重要的角色。
2. 车辆蓄电池的型号车辆蓄电池的型号多种多样,主要分为免维护型、深循环型、起动型等等。
在进行车辆蓄电池的搭配时,需要注意到它们的区别,从而选择最合适的蓄电池。
1.免维护型免维护型蓄电池,也就是常说的“干蓄电池”。
它与普通蓄电池最大的不同就是免除了人工充电以及液态电解质的添加。
免维护型蓄电池不需要进行其他特别的保养,使用起来非常方便,也拥有着比较长的使用寿命。
2.深循环型深循环型蓄电池是专门为电动车而设计的,常用于驱动车辆的电动机。
它能够在短时间内快速地放电,然后又能迅速地充电。
充电后,它能够提供很长时间的电能支持。
3.起动型起动型蓄电池也叫快速充电型蓄电池,一般用于车辆启动时快速将电能提供给发动机。
这种蓄电池的特点是能够快速地充电,并能在短时间内快速放电。
3. 车辆蓄电池的搭配方案在车辆蓄电池的搭配方案上,需要根据车型和用途的不同,来进行不同的选择。
1.汽油车和混合动力车对于汽油车和混合动力车而言,起动型蓄电池就显得尤为重要。
这种类型的蓄电池能够快速为车辆提供必要的电能,以便迅速启动发动机。
此外,车载音响、空调,在车辆启动后需要不断地提供电源,而起动型蓄电池也能够很好地为这些设备供电。
2.电动车对于电动车而言,深循环型蓄电池是更好的选择。
电动车需要更长时间的电能支持,因此需要一种能够连续持久提供电源的蓄电池。
此外,电动车的电机负载较重,且没有发动机的缓冲支持,因此需要一个能够承受粗糙路面运动和长期振动的蓄电池。
探析电动汽车低压蓄电池自充电策略优化发布时间:2021-04-12T01:47:39.384Z 来源:《中国科技人才》2021年第6期作者:徐子福[导读] 动力电池是电动汽车的能量来源,同时也是电动汽车驱动系统重要组成部分,其性能的好坏将决定电动汽车性能的优劣。
安普瑞斯(无锡)有限公司 214101摘要:在电动汽车未启动或长期放置时,作为其内部的低压用电设备,如收音机、点烟器、仪表灯光系统、整车控制器、BMS等工作电源,对于电动汽车的正常起动起着至关重要的作用。
但是,在实际使用过程中,偶尔会因蓄电池亏电,导致整车无法上高压。
本文阐述一种在各种工况下的技术控制策略,避免因蓄电池亏电而导致车辆无法起动,保证车辆使用的有效性。
关键词:电动汽车;蓄电池;亏电引言动力电池是电动汽车的能量来源,同时也是电动汽车驱动系统重要组成部分,其性能的好坏将决定电动汽车性能的优劣。
由于单体电池生产工艺的差异,产品一致性很难得到保障;另外,电池工作温度过高或过低也会影响电池的整体性能,因此电池管理系统的开发一直是国内外学者研究的热点。
1电动汽车配备BMS的必要性BMS是连接车载动力电池和电动汽车的重要纽带。
从硬件上说,动力电池系统结构的最小单元是电池单体,基本单位是模组,模组再组装成电池箱,电池箱连接起来为电池系统。
从构成结构上说,电池对外是一个完整的产品,但是内部结构连接起来,工艺十分复杂,除了电池单体、模组、电池箱等硬件本身的连接外,还有电池恒温系统、安全防火系统等。
这些子系统与动力电池之间也要交换信息,必须有机协调起来。
如何能协调好呢?自然就提出了管理要求,这里管理是指计算机管理系统,于是就产生了BMS。
2锂电池管理系统的特点分析电动汽车的电池管理系统连接着车载动力电池和电动汽车的重要纽带。
他的任务就是监测电池的使用状态,对电池某些参数进行分析诊断,对充电放电和预充控制,能进行均衡管理和热管理。
二次电池存在着很多的缺点,比如说它能够储存的能量较少,电池的使用寿命很短,串并联容易出现问题等,在其使用的安全性和电池电量估算进行起来都十分的困难。
电动汽车蓄电池的充电方案
装备20 kWh蓄电池的电动汽车每行驶100 km耗电15 kWh的情况下,理论上每行驶133 km就要充一次电。
若保险系数为25%的话,其最大行程只有100 km。
根据电动汽车蓄电池的不同电容量,不久的将来,市场上将会出现功率范围在3~50 kW的充电设备。
基于充电速度的快慢,人们设想将充电功率提升至200kW。
电动汽车的电压一般为300~700 V,而蓄电池也可以减轻电网系统的负担,改善电网供电重量。
例如,利用合适的控制软件避开用电高峰时的充电,以便使电网负荷更加均衡。
若停车场有很多车辆同时充电,电动汽车的蓄电池还可以用作“电网缓冲器”。
必要时还可以把蓄电池中存储的电力回馈到电网中。
在这种V2G(车辆到电网)的应用中,电网管理将会更加有效,可以更好地平衡用电高峰。
从电网方面来讲,目前给电动汽车充电的能源通常为230 V 16 A、3 kW的直流低压电和400 V 32 A/ 64 A、22 kW/ 44 kW的三相交流电。
采用直流电充电可实现很高的充电功率。
AC直流充电时,充电站中配备了把交流电转换为电动汽车所需直流电的转换装置。
为提高充电性能而研发的充电设备避免了电动汽车只能在固定充电站充电的限制,使得转换成直流电的电动汽车动力能够经过充电电缆方便地把直流驱动动力传输到电动汽车的蓄电池中,而车辆只需配备充电保护和充电监控装置即可。
性能可靠的16 A家用充电设施的充电功率已经达到了大约3 kW的水
平。
容量为30 kWh蓄电池的充电时间只需8 h,充满电后可连续行驶200km。
这一最大行驶里程对于通常市内驾驶基本足够。
若长途行驶,则应及时再次充电,可使用的充电设备包括家用充电设备和专用充电电缆等。
电缆中有用于传送数据的导线,也有用于传送电力的导线和电缆识别的导线。
根据充电时是否有通信需求,可以规定不同的充电工作方式。
在22/44 kW的柱式充电站中,电动汽车可在90/45 min内完成充电,但快速充电给蓄电池带来的负担较重,如蓄电池中的功率损耗增大、发热以及使用寿命缩短等。
各个充电站都是按照IEC标准提出的不同要求进行建造的。
这些要求都是根据充电站运用管理者的经营模式提出来的。
这一基于有利于用户使用、有着很高的日常使用可靠性的解决方案还应在实践中接受检验。
另一种电动汽车电力能源补充的方法是更换蓄电池,即用已经充满电的蓄电池换下需要充电的整块蓄电池。
Better Place公司提供的这一解决方案有着很短的蓄电池更换时间,可保持原有的燃油加油站,但这需要型号规格统一的标准化蓄电池,对车辆的个性化设计也有很大的限制。
另外,原来的加油站也要投资购置蓄电池更换时所需的操作仪器和设备。
而把电动汽车的充电和蓄电池更换两种方式结合在一起的电力补充方式,将是一种不错的电力能源补充模式:它既可满足每天行驶100km左右的市内行驶,也可满足长途行驶。
与使用电缆充电技术相比,感应充电技术的最大优点是有利于用户的使用。
在充电时无需电缆,蓄电池无需接触即可完成充电。
这就省略
了所有涉及到电缆、插头和插座的操作。
人们只要将电动车辆停靠在感应充电设备旁,即可自动完成充电。
由于没有电力接触的零部件,因此这种充电方式也满足了最高的安全要求,同样也不会存在因电缆绝缘层受损而带来潜在的风险。
而充电时所产生的磁场也非常弱,仅在充电线圈上才有微弱的磁场,而且电磁场的辐射也符合法律法规的标准规定,绝不会影响健康。
传送到电动汽车中的电力由插座输出的高频交流电进入到车辆底盘的充电线圈中,并形成了交流磁场。
安装在电动汽车中的受电线圈也感应出高频交流电压。
电动汽车的充电器把感应生成的交流电压转换成电动汽车驱动用的直流电压。
虽然感应充电技术比电力充电的解决方案技术上要复杂一些,但它的最大优点是充电站的操作舒适性、安全性和充电设施的简化。
感应充电站没有可见的暗线盒,或者充电柱;相反,感应线圈也安装在地下。
另外,不仅在试验模型中,在实际应用中也已有电动车辆在行驶过程中进行感应充电的实例。
若车辆底盘上安装的线圈朝着车辆行驶方向伸出时,也可以在电动车辆行驶过程中完成感应充电。
在引入这种感应充电方式之后,原则上电动汽车的最大行驶里程不再有任何限制,也可以把蓄电池的电容量设计的更小一些,使其体积更小、重量更轻,成本低。
要做到这一点,首先要满足的前提是道路基础设施的建设。
这一应用听起来有点“将来时”,但在企业内部生产车间的无人驾驶运输设备中以及在没有架空电缆的有轨电车中已经实现了。
由Bombardier公司研发的Primove无架空电缆轻轨电车受电技术是一种利用铁轨间充电线圈系统产生电磁场的感应充电技术,其充电线圈按一定间距配置在两条铁轨之间,安装在轻轨列车底部的受电线圈从轻轨电车刚刚行驶到的充电电磁场中获取能量。
电动汽车对能源供应提出了很高的要求,但上述方案到底哪一种可以在实践中得到落实并发展,我们拭目以待。