高中数学选修2-2-2-3知识点
- 格式:doc
- 大小:793.00 KB
- 文档页数:6
高二数学排列组合知识点高二数学排列组合易错知识点1.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。
解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。
2.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。
二项式系数最大项与展开式中系数最大项易混。
二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.3.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。
)4.求分布列的解答题你能把步骤写全吗?5.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。
)6.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)高二数学学习方法(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
《高中排列组合知识点高二数学选修2-3排列组合易错知识点总结》摘要:()()()(+)!()!(规定0!),()()!!(()!!);()();,()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)排列组合是高二数学选修3教学重要容了助高二学生掌握排列组合容下面编给带高二数学选修3排列组合易错知识希望对你有助高二数学排列组合错知识排列组合问题依据是分类相加分步相乘有序排列无序组合排列组合问题规律是相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排排法;至多至少问题接法二项式系数与展开式某项系数易混r+项二项式系数二项式系数项与展开式系数项易混二项式系数项项或两项;展开式系数项法要用不等式组确定r3你掌握了三种常见概率公式吗?(①等可能事件概率公式;②斥事件有发生概率公式;③相独立事件发生概率公式)分布列答题你能把步骤写全吗?5如何对总体分布进行估计?(用样估计总体是研究统计问题基思想方法般地样容量越这种估计就越精确要能画出频率分布表和频率分布直方图;理频率分布直方图矩形面积几何义)6你还记得般正态总体如何化标准正态总体吗?(对任正态总体说取值x概率其表示标准正态总体取值概率)高二数学选修3知识排列及计算公式从不元素任取()元素按照定顺序排成列叫做从不元素取出元素排列;从不元素取出()元素所有排列数叫做从不元素取出元素排列数用()表示()()()(+)!()!(规定0!)组合及计算公式从不元素任取()元素并成组叫做从不元素取出元素组合;从不元素取出()元素所有组合数叫做从不元素取出元素组合数用()表示()()!!(()!!);()();3其他排列与组合公式从元素取出r元素循环排列数(r)r!r(r)!元素被分成k类每类数分别是k这元素全排列数!(!!k!)k类元素每类数无限从取出元素组合数(+k)排列((下标上标))()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)组合((下标上标));!!()!;(两分别上标和下标);(下标上标);公式是指排列从元素取R进行排列公式是指组合从元素取R不进行排列元素总数R参与选择元素数!阶乘如9!987653从倒数r表达式应该()()(r+);因从到(r+)数(r+)r高二数学学习方法()记数学笔记特别是对概念理不侧面和数学规律教师课堂拓展课外知识记录下你觉得有价值思想方法或例题以及你还存问题以便今将其补上()建立数学纠错把平容易出现错误知识或推理记下以防再犯争取做到错、析错、改错、防错达到能从反面入手深入理正确东西;能由朔因把错误原因弄水落石出、以便对症下药;答问题完整、推理严密(3)熟记些数学规律和数学结论使己平运算技能达到了动化或半动化熟练程()常对知识结构进行梳理形成板块结构实行整体集装如表格化使知识结构目了然;常对习题进行类化由例到类由类到多类由多类到统;使几类问题归纳知识方法(5)数学课外籍与报刊参加数学学科课外活动与讲座多做数学课外题加学力拓展己知识面(6)及复习强化对基概念知识体系理与记忆进行适当反复巩固消灭前学忘(7)学会从多角、多层次地进行总结归类如①从数学思想分类②从题方法归类③从知识应用上分类等使所学知识系统化、条理化、专题化、络化(8)常做题进行定反思思考下题所用基础知识数学思想方法是什么什么要这样想是否还有别想法和法题分析方法与法其它问题是否也用到(9)无论是作业还是测验都应把准确性放位通法放位而不是味地追速或技巧这是学数学重要问题猜你感兴趣高二数学排列与组合知识总结高二数学选修知识总结3高二上学期数学复习知识归纳高二数学排列组合题技巧5高二上数学知识总结607高二数学排列组合公式知识总结。
高中数学选修2-2知识点总结第一章、导数1.函数的平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,平均变化率 可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000.3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若()g x均可导(可积),则有:f x,().用导数求函数单调区间的步骤:①求函数f(x)的导数'()f x②令'()f x>0,解不等式,得x的范围就是递增区间.③令'()f x<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2) 求函数f(x)的导数'()f x(3)求方程'()f x=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值8.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
分步要做到“步骤完整”。
n元集合A={a1,a2⋯,a n}的不同子集有2n个。
1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。
从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。
排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。
从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。
组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。
(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。
高中数学必修2知识点第3章 直线与方程 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如:平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系 (ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。
2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。
通项公式可以是一个数学式子,也可以是一个算法。
3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。
递推公式是数列中相邻两项之间的关系式。
4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。
- 奇数列:数列中的每一项都是奇数。
- 偶数列:数列中的每一项都是偶数。
- 单调递增数列:数列中的每一项都比前一项大。
- 单调递减数列:数列中的每一项都比前一项小。
- 正项数列:数列中的每一项都是正数。
- 负项数列:数列中的每一项都是负数。
3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。
- 利用数列的性质,进行数学推理和证明。
- 利用数列的规律,设计算法解决问题。
典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。
解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。
第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。
用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。
用符号 表示。
6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质: m n A m n A ()()()()!!121m n n m n n n n A m n -=+---=Λ.,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=Λ.,,*n m N m n ≤∈并且mn n m nC C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x ,则可以得到公式:2、性质:02413512n n n n n n nC C C C C C -=+++=+++=L L 奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+C C C C C 求值:。
高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。
那么完成这件事情共有M1+M2+。
+MN种不同的方法。
2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。
那么完成这件事情共有XXX种不同的方法。
3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。
从n个不同元素中取出m个元素的一个排列数,用符号An表示。
An=m!/(n-m)!(m≤n,n,m∈N)。
5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。
*(n-m+1)=n!/(n-m)。
6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。
8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。
+C(n,n)*a^0*b^n。
9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。
10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。
11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。
高中数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. '4.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:无 知识点:二.导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=,4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln xf x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•<3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'=3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )~319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() ° ° ° ° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:!在某个区间(,)a b内,如果()0f x'>,那么函数()y f x=在这个区间单调递增;如果()0f x'<,那么函数()y f x=在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x=的极值的方法是:(1)如果在x附近的左侧()0f x'>,右侧()0f x'<,那么()f x是极大值;(2)如果在x附近的左侧()0f x'<,右侧()0f x'>,那么()f x是极小值;4.函数的最大(小)值与导数`函数极大值与最大值之间的关系.求函数()y f x=在[,]a b上的最大值与最小值的步骤(1)求函数()y f x=在(,)a b内的极值;(2)将函数()y f x=的各极值与端点处的函数值()f a,()f b比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用<3、导数在极值、最值中的应用4、导数在恒成立问题中的应用一、题型一:导数在切线方程中的运用★1.曲线3xy=在P点处的切线斜率为k,若k=3,则P点为()A.(-2,-8)B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★2.曲线53123+-=xxy,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为()A.6πB.4πC.3πD.π43*二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x=-+是减函数的区间为( )A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=xxxf,下列说法不正确的是()A.在区间(∞-,0)内,)(xf为增函数B.在区间(0,2)内,)(xf为减函数C.在区间(2,∞+)内,)(xf为增函数D.在区间(∞-,0)),2(+∞⋃内,)(xf为增函数★★3.(05江西)已知函数()y xf x'=的图象如右图所示(其中'()f x是函数()f x的导函数),下面四个图象中()y f x=的图象大致是()(★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(Raxaaxnxxf∈--+-={(Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1fxfya=-=(Ⅱ)当12a≤时,讨论()f x的单调性.A B C D三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) , - 15 , 4 4 , - 15 , - 16★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.、(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
高二数学选修 2-3 知识点第一章 计数原理 知识点:1、分类加法计数原理 :做一件事情,完成它有 N 类办法,在第一类办法中有M 1 种不同的方法,在第二类办法中有 M 2 种不同的方法, ⋯⋯ ,在第 N 类办法中有 M N 种不同的方 法,那么完成这件事情共有M 1+M 2+⋯⋯ +M N 种不同的方法。
2、分步乘法计数原理 :做一件事,完成它需要分成 N 个步骤,做第一 步有 m1 种不同的方法,做第二步有M 2不同的方法, ⋯⋯ ,做第 N 步有 M N 不同的方法 .那么完成这件事共有 N=M 1M 2 ...M N 种不同的方法。
3、排列 :从 n 个不同的元素中任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从 n 个......不同元素中取出 m 个元素的一个排列4、排列数 : Amn(n 1) ( n m 1)(nn! (m n, n, m N )m)!5、组合 :从 n 个不同的元素中任取m ( m ≤n ) 个元素并成一组, 叫做从 n 个不同元素中取出m 个元素的一个组合。
m A m n mn( n 1)1) (n m m 1) 1) mn! n!6、组合数:C n mA nn( n(n C n mCn A m mmm!C nm! (nm)!A mm!m! (n m)!C m n Cn mn ;C m 1mmnC nCn 1n0 n1 n 12 n 2 2⋯r n r r⋯n n7、二项式定理:( a b)C n aC n abC n ab C n a bC n b展开8、式二的项式通通项项公式 : T r1C n r an rb r(r 0, 1⋯⋯ n)第二章 随机变量及其分布 知识点:1、随机变量 :如果随机试验可能出现的结果可以用一个变量 X 来表示,并且 X 是随着试 验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ 、 η 等表示。
高中数学重难点知识点高中数学重难点知识点高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。
选修数学2-3知识点总结本文将对选修数学2-3中的几个重要知识点进行总结和介绍。
选修数学2-3是高中数学课程中的一部分,主要涉及到高中数学中的几个重要概念和方法。
在本文中,我将按照以下顺序进行介绍:函数的定义和性质、指数函数和对数函数、三角函数。
一、函数的定义和性质在选修数学2-3中,我们首先学习了函数的定义和性质。
函数是一种关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数可以用图像、表格或公式来表示。
函数的性质包括定义域、值域、单调性、奇偶性等。
我们学会了如何通过观察图像和计算来分析函数的性质,并解决与函数相关的问题。
二、指数函数和对数函数在选修数学2-3中,我们还学习了指数函数和对数函数。
指数函数是形如y=a^x的函数,其中a是一个正实数。
对数函数是指数函数的逆运算,由y=loga(x)表示,其中a是一个大于1且不等于1的实数。
我们学习了指数函数和对数函数的基本性质,如指数函数的增长特性和对数函数的性质。
这些函数在实际问题中有广泛的应用,如利息计算和指数增长问题等。
三、三角函数在选修数学2-3中,我们还学习了三角函数。
三角函数是以圆上的点坐标为基础定义的函数。
我们学习了正弦函数、余弦函数和正切函数的定义和性质。
我们了解了三角函数的周期性、奇偶性、对称性等性质,并学会了通过图像和计算来分析三角函数的特性。
三角函数在物理、工程和计算机图形学等领域有广泛的应用。
以上就是选修数学2-3中的几个重要知识点的总结和介绍。
通过学习这些知识点,我们可以更好地理解数学的基本概念和方法,并在实际问题中应用数学知识解决问题。
希望本文对你在学习选修数学2-3时有所帮助。
第一章 计数原理1.1 分类加法计数与分步乘法计数分类加法计数原理: 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有 N=m+n 种不同的方法。
分类要做到“不重不漏”。
分步乘法计数原理:完成一件事需要两个步骤。
做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N=m ×n 种不同的方法。
分步要做到“步骤完整”。
n 元集合A={a 1,a 2⋯,a n }的不同子集有2n 个。
1.2 排列与组合 1.2.1 排列一般地,从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement)。
从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A n m 表示。
排列数公式:n 个元素的全排列数规定:0!=11.2.2 组合一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合(combination)。
从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C n m 或(n m )表示。
组合数公式:∵ A n m =C n m ∙A m m∴规定:C n 0组合数的性质:1.3 二项式定理1.3.1 二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。
1.3.2 “杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律! (1) 对称性(2) 当n 是偶数时,共有奇数项,中间的一项C n n 2+1取得最大值;当n 是奇数时,共有偶数项,中间的两项C n n−12,C n n+12同时取得最大值。
高中数学选修2-3知识点总结Mathematics Elective 2-3 Chapter 1 Counting Principles Must-Know1.What is the principle of n n counting?Answer: To do something。
there are n ways to complete it。
In the first way。
there are m1 different methods。
in the second way。
there are m2 different methods。
in the nth way。
there are mn different methods。
Then there are N=m1+m2+。
+mn different ways to XXX.2.What is the principle of step-by-step n counting?Answer: To do something。
it requires n steps。
There are m1 different methods for the first step。
m2 different methods for the second step。
and mn different methods for the nth step。
Then there are N=m1×m2×。
×mn different ways to XXX.3.What is the n of n?Answer: Generally。
taking m (m≤n) different elements from n different elements。
XXX order。
is called a n of taking m elements from n different XXX.4.What is the n of n?Answer: Generally。
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.2 条件概率与事件的独立性一、学习任务1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题.2. 能通过实例理解相互独立事件的定义及概率乘法公式,并能综合利用互斥事件的概率加法公式及独立事件的概率乘法公式.3. 理解独立重复试验的概率及意义,理解事件在 次独立重复试验中恰好发生 次的概率公式,并能利用 次独立重复试验的模型模拟 次独立重复试验.二、知识清单事件的独立性与条件概率独立重复试验与二项分布三、知识讲解1.事件的独立性与条件概率条件概率的概念一般地,设 ,为两个事件,且 ,称为在事件 发生的条件下,事件 发生的条件概率(conditional probability).读作 发生的条件下 发生的概率.条件概率的性质①条件概率具有概率的性质,任何事件的条件概率都在 和 之间,即.②如果 和 是两个互斥事件,则相互独立事件的概念设 ,为两个事件,若 ,则称事件 与事件 相互独立(mutually independent).相互独立事件同时发生的概率:如果事件 ,,, 相互独立,那么这 个事件同时发生的概率等于每个事件发生概率的积,即n k n n A B P (A )>0P (B |A )=P (AB )P (A )A B P (B |A )A B 0 1 0≤P (B|A)≤1 B CP (B ∪C |A )=P (B |A )+P (C |A ).A B P (AB )=P (A )P (B )A B A 1A 2⋯A n n P (⋯)=P ()P ()⋯P ().A 1A 2A n A 1A 2A n 甲、乙两地都位于长江下游,根据一百多年气象记录,知道甲、乙两地一年中雨天占的比例分别20%18%12%为 和 ,两地同时下雨的比例为 ,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”, “ 乙地为雨天”,则根据题意有(1)乙地为雨天时甲地也为雨天的概率(2)甲地为雨天时乙地也为雨天的概率是20%18%12%A =B =P (A )=0.20,P (B )=0.18,P (AB )=0.12.P (A |B )==≈0.67.P (AB )P (B )0.120.18P (B |A )===0.60.P (AB )P (A )0.120.20如图,四边形 是以 为圆心,半径 的圆内接正方形,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在正方形 内”, 表示事件“豆子落在扇形 (阴影部分)内”,则(1)______;(2)______.解:;圆 的面积是,正方形 的面积是 ,扇形 的面积是 ,由几何概型概率公式得 ,由条件概率公式得EFGH O 1A EFGH B OHE P (A )=P (B |A )=2π14O πEF GH 2OHE π4P (A )=2πP (B |A)===.P (AB )P (A)12π2π14掷一枚正方体骰子一次,设事件 :“出现偶数点”,事件 :“出现 点或 点”,则事件 , 的关系是( )A.互斥但不相互独立 B.相互独立但不互斥 C.互斥且相互独立 D.既不相互独立也不互斥解:B事件 ,事件 ,事件 ,基本事件空间 .所以,,,即 ,因此,事件 与 相互独立.当“出现 点”,事件 , 同时发生,所以 , 不是互斥事件.A B 36A B A ={2,4,6}B ={3,6}AB ={6}Ω={1,2,3,4,5,6}P (A )==3612P (B )==2613P (AB )==×161213P (AB )=P (A )P (B )A B 6A B A B 甲、乙两人在罚球线投球命中的概率分别为与 .(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球均不命中的概率.解:记“甲投一次命中”为事件 ,“乙投一次命中”为事件 ,则 ,1225A B P (A )=12213,,.(1)恰好命中一次的概率为(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 ,则2P (B )=25P ()=A ¯¯¯12P ()=B ¯¯¯35P =P (A ⋅)+P (⋅B )B ¯¯¯A ¯¯¯=P (A )⋅P ()+P ()⋅P (B )B ¯¯¯A ¯¯¯=×+×12351225=.12P 1P 1=P (∩∩∩)A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=P ()⋅P ()⋅P ()⋅P ()A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=(1−(1−12)225)2=9100在一个选拔项目中,每个选手都需要进行 轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;解:设事件 ( ,,, )表示“该选手能正确回答第 轮问题”,由已知得,,,.(1)设事件 表示“该选手进入第三轮才被淘汰”,则(2)设事件 表示“该选手至多进入第三轮考核”,则456453413A i i =1234i P ()=A 156P ()=A 245P ()=A 334P ()=A 413B P (B )=P ()A 1A 2A ¯¯¯3=P ()P ()P ()A 1A 2A ¯¯¯3=××(1−)564534=.16C P (C )=P (++)A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=P ()+P ()+P ()A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=+×+××(1−)165615564534=.12描述:例题:2.独立重复试验与二项分布独立重复试验一般地,在相同条件下重复做的 次试验,称为次独立重复试验(independent andrepeated trials).二项分布一般地,在 次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,则此时称随机变量服从二项分布(binnomial distribution),记作 ),并称为成功概率.n n n X A A p P (X =k )=(1−p ,k=0,1,2,⋯,n .C kn pk )n −k X X ∼B (n ,p ) p 下列随机变量 的分布列不属于二项分布的是( )A.投掷一枚均匀的骰子 次, 表示点数 出现的次数B.某射手射中目标的概率为 ,设每次射击是相互独立的, 为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手举行了 局乒乓球比赛, 表示甲获胜的次数D.某星期内,每次下载某网站数据后被病毒感染的概率为 , 表示下载 次数据后电脑被病毒感染的次数解:B选项 A,试验出现的结果只有两个:点数为 和点数不为 ,且点数为 的概率在每一次试验都为 ,每一次试验都是独立的,故随机变量 服从二项分布;选项 B,,故随机变量 不服从二项分布;选项 C,甲、乙的获胜率都相等,举行 次比赛,相当于进行了 次独立重复试验,故 服从二项分布;选项 D,由二项分布的定义可知,被感染次数 .X 5X 6p X 5X 0.3X n 66616X P (X =1)=p ,P (X =2)=(1−p )p ,P (X =k )=(1−p p )(k −1)X 55X X ∼B (n ,0.3)口袋中有 个白色乒乓球, 个黄色乒乓球,从中选取 次,每次取 个后又放回,则 次中恰有 次取到白球的概率是( )A. B. C. D . 解:D任意取球 次,取得白球 次的概率是5551531235C 35C 510⋅C 350.5553P (X =3)=(1−0.5=⋅C 350.53)5−3C 350.55甲、乙两名同学进行三分球投篮比赛,甲每次投中的概率为 ,乙每次投中的概率为 ,每人分别进行三次投篮.(1)设甲投中的次数为 ,求 的分布列;(2)求乙至多投中 次的概率;(3)求乙恰好比甲多投中 次的概率.1312ξξ221四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:(1), 的可能取值为 ,,,. 的分布列为:(2)设“乙至多投中 次”为事件 ,则(3)设“乙比甲多投中 次”为事件 ,“乙恰投中 次且甲恰投中 次”为事件,“乙恰投中 次且甲恰投中 次”为事件 ,则 ,, 为互斥事件,则所以乙恰好比甲多投中 次的概率为.ξ∼B (3,)13ξ0123P(ξ=0)=(=,C 0323)3827P (ξ=1)=()(=,C 131323)249P (ξ=2)=(()=,C 2313)22329P (ξ=3)=(=.C 3313)3127ξξP082714922931272A P (A )=1−(=.C 3312)3782A 120B 131B 2=∪A 1B 1B 2B 1B 2P (A )=P ()+P ()=×+×=.B 1B 282738491816216答案:解析:1. 某一批花生种子,如果每 粒发芽的概率为 ,那么播下 粒种子恰有 粒发芽的概率是 A .B .C .D .B 概率为 .14542()1662596625192625256625=C 24()452(1−)45296625答案:2. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是 ,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .B .C .D .A0.750.6()0.80.750.60.453. 某厂生产电子元件,其产品的次品率为 ,现从一批产品中任意地连续取出 件,其中次品数 的5%2ξ高考不提分,赔付1万元,关注快乐学了解详情。
导数的应用二------函数的极值与最值【学习目标】 1. 理解极值的概念和极值点的意义。
2. 会用导数求函数的极大值、极小值。
3. 会求闭区间上函数的最大值、最小值。
4. 掌握函数极值与最值的简单应用。
【要点梳理】 知识点一:函数的极值(一)函数的极值的定义:一般地,设函数)(x f 在点0x x =及其附近有定义,(1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作)(0x f y =极大值;(2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作)(0x f y =极小值.极大值与极小值统称极值.在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释:由函数的极值定义可知:(1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小.(3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.(二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';③求方程0)(='x f 的根;④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法)要点诠释:①可导函数的极值点一定是导函数为0的点,但导数为0的点不一定是极值点.即0()0f x '=是可导函数)(x f 在点0x 取得极值的必要非充分条件.例如函数y=x 3,在x=0处,'(0)0f =,但x=0不是函数的极值点.②可导函数)(x f 在点0x 取得极值的充要条件是0()0f x '=,且在0x 两侧)(x f '的符号相异。
高二数学选修2-3二项式知识点二项式是数学中一个重要的概念,广泛应用于代数、概率等领域。
在高二数学选修2-3中,学生将会学习有关二项式的重要知识点。
本文将介绍二项式的定义、展开、性质以及应用等内容。
1. 二项式的定义二项式是由两个代数项相加(或相减)而成的表达式,一般形式为:(a+b)^n,其中a和b为实数或变量,n为非负整数。
其中,a和b被称为二项式的项,n被称为二项式的指数。
2. 二项式的展开二项式展开是指将一个二项式表达式展开为多项式的过程。
根据二项式定理,当n为非负整数时,二项式(a+b)^n可以展开为多项式的形式。
二项式定理的表达式为:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1 b^(n-1) + C(n,n)a^0 b^n其中,C(n,r)表示从n个元素中取r个元素的组合数,计算公式为:C(n,r) = n! / [(n-r)!r!]3. 二项式的性质- 二项式展开后的多项式的项数为n+1,其中n为二项式的指数。
- 二项式展开后的多项式的各项系数由组合数C(n,r)决定。
- 二项式展开后的多项式中的各项次数之和为n。
4. 二项式的应用二项式在数学中有广泛的应用。
以下是一些常见的应用场景:- 概率计算:二项式系数可以用于计算二项分布的概率。
- 代数运算:二项式的展开可以应用于多项式的乘法运算。
- 公式推导:二项式展开后的多项式可以推导出各种数学公式,如二次方程的求根公式等。
- 组合数学:二项式系数在组合数学中有着重要的地位,用于解决组合问题。
总结:高二数学选修2-3中的二项式知识点包括了二项式的定义、展开、性质以及应用等内容。
掌握了这些知识,可以为学生在数学或其他相关领域的学习中提供帮助,并广泛应用于实际问题的解决中。
高二数学选修二知识点归纳1.高二数学选修二知识点归纳篇一不等式对于含有参数的一元二次不等式解的讨论1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
2.高二数学选修二知识点归纳篇二(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率。
3.高二数学选修二知识点归纳篇三(1)总体和样本:①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。
-可编辑-高中数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:无 知识点:二.导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln xf x a a '=6 若()xf x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x'= 2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90°★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;-可编辑-(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤(1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用 一、题型一:导数在切线方程中的运用★1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数★★3.(05江西)已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性. 三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
(1)求b a ,的值; (2)讨论)(x f 的单调性;第二章 推理与证明 知识点:1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳). 简言之,归纳推理是由部分到整体、由特殊到一般的推理。
归纳推理的一般步骤:•通过观察个别情况发现某些相同的性质;-可编辑-•从已知的相同性质中推出一个明确表述的一般命题(猜想); •证明(视题目要求,可有可无).2、类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:•找出两类对象之间可以确切表述的相似特征;•用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; •检验猜想。
3、合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理. 4、演绎推理从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理. 简言之,演绎推理是由一般到特殊的推理. 演绎推理的一般模式———“三段论”,包括⑴大前提-----已知的一般原理; ⑵小前提-----所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断. 5、直接证明与间接证明⑴综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止. 要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法. 反证法法证明一个命题的一般步骤: (1)(反设)假设命题的结论不成立;(2)(推理)根据假设进行推理,直到导出矛盾为止; (3)(归谬)断言假设不成立;(4)(结论)肯定原命题的结论成立. 6、数学归纳法数学归纳法是证明关于正整数n 的命题的一种方法. 用数学归纳法证明命题的步骤;(1)(归纳奠基)证明当n 取第一个值*00()n n N ∈时命题成立;(2)(归纳递推)假设*0(,)n k k n k N =≥∈时命题成立,推证当1n k =+时命题也成立. 只要完成了这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立.考点:无第三章 数系的扩充与复数的引入 知识点:一:复数的概念(1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部.(2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数. (3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.(4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.(5) 复平面:建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴除去原点的部分叫做虚轴。
(6) 两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。
2.相关公式⑴d c b a di c bi a ==⇔+=+且, ⑵00==⇔=+b a bi a ⑶22b a bi a z +=+=⑷z a bi =-z z ,指两复数实部相同,虚部互为相反数(互为共轭复数). 3.复数运算⑴复数加减法:()()()()i d b c a di c bi a ±+±=+±+; ⑵复数的乘法:()()()()a bi c di ac bd bc ad i ++=-++;⑶复数的除法:()()()()a bi c di a bi c di c di c di +-+=++- ()()222222ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++(类似于无理数除法的分母有理化→虚数除法的分母实数化) 4.常见的运算规律(1);(2)2,2;z z z z a z z bi =+=-=2222(3);(4);(5)z z z z a b z z z z z R ⋅===+==⇔∈41424344(6),1,,1;n n n n ii iii i++++==-=-=()2211(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+)9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω考点:复数的运算★山东理科1 若cos sin z i θθ=+(i 为虚数单位),则21z =-的θ值可能是-可编辑-111--++=⋅+=m nm nm nm mm nmn mA A C A A A (A )6π (B ) 4π (C )3π (D ) 2π ★山东文科1.复数43i1+2i+的实部是( )A .2-B .2C .3D .4★山东理科(2)设z 的共轭复数是z ,若z +z =4, z ·z =8,则zz等于 (A )i (B )-i (C)±1 (D) ±i高中数学 选修2-3知识点第一章 计数原理 知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。