李春喜《生物统计学》第三版 课后作业答案知识分享
- 格式:doc
- 大小:751.50 KB
- 文档页数:62
《生物统计学》习题集总参考答案第一章绪论一、名词解释1、总体:根据研究目的确定的研究对象的全体称为总体。
2、个体:总体中的一个研究单位称为个体。
3、样本:总体的一部分称为样本。
4、样本含量:样本中所包含的个体数目称为样本含量(容量)或大小。
5、随机样本:从总体中随机抽取的样本称为随机样本,而随机抽取是指总体中的每一个个体都有同等的机会被抽取组成样本。
6、参数:由总体计算的特征数叫参数。
7、统计量:由样本计算的特征数叫统计量。
8、随机误差:也叫抽样误差,是由于许多无法控制的内在和外在的偶然因素所造成,带有偶然性质,影响试验的精确性。
9、系统误差:也叫片面误差,是由于一些能控制但未加控制的因素造成的,其影响试验的准确性。
10、准确性:也叫准确度,指在调查或试验中某一试验指标或性状的观测值与真值接近的程度。
11、精确性:也叫精确度,指调查或试验研究中同一试验指标或性状的重复观测值彼此接近的程度。
二、简答题1、什么是生物统计?它在畜牧、水产科学研究中有何作用?答:(1)生物统计是数理统计的原理和方法在生物科学研究中的应用,是一门应用数学。
(2)生物统计在畜牧、水产科学研究中的作用主要体现在两个方面:一是提供试验或调查设计的方法,二是提供整理、分析资料的方法。
2、统计分析的两个特点是什么?答:统计分析的两个特点是:①通过样本来推断总体。
②有很大的可靠性但也有一定的错误率。
3、如何提高试验的准确性与精确性?答:在调查或试验中应严格按照调查或试验计划进行,准确地进行观察记载,力求避免认为差错,特别要注意试验条件的一致性,即除所研究的各个处理外,供试畜禽的初始条件如品种、性别、年龄、健康状况、饲养条件、管理措施等尽量控制一致,并通过合理的调查或试验设计,努力提高试验的准确性和精确性。
4、如何控制、降低随机误差,避免系统误差?答:随机误差是由于一些无法控制的偶然因素造成的,难以消除,只能尽量控制和降低;主要是试验动物的初始条件、饲养条件、管理措施等在试验中要力求一致,尽量降低差异。
07级研究生《生物统计学》试题2008年6月3日一、试题:1.15个数据的标准差未知的单个样本平均数的t检验。
2.每组15个数据的标准差未知的两个样本平均数成组数据的t检验。
3.每组15个数据的配对数据的t检验。
4.是否符合孟德尔定律的拟合优度检验。
5. 2 x 2 列联表检验。
6.单因素方差分析(单因素设定为4水平,每组n均大于15,且不相等)。
7.一元线性回归方程。
各15个数据。
画散点图,求a、b和r。
二、要求:1. 自己根据基本知识,编写具体试题内容。
2. 每个人数据不能相同,与书上数据也不能相同。
3. 按书上的检验程序、计算公式进行计算,写出计算过程。
1-7题均手写。
4. 使用B5或A4大小的纸张、单面书写,周边留有空余。
5. 以上的任意两道题再使用SPSS计算。
打印出数据输入后以及计算结果的页面。
一、某批水培的植物,平均株重μ0=302g,更换培养液后,从中抽取出15株,株重分别为:320、321、300、298、305、294、315、305、308、296、309、312、307、299、319(单位:克)问:更换培养液后与更换培养液前相比,植株株重的差异是否显著,差异是否极显著?解:根据检验的基本程序:①已知植物株重是服从正态分布的随机变量,σ未知。
②假设:H0:μ=μ0(300g)H A:μ≠μ0(300g)关于备择假设的说明:因为问题要求检验的是“株重差异是否显著”,并没有明确说明到底是株重增加还是减少,因此备择假设为H A:μ≠μ0(300g)。
③显著性水平:根据试验的要求(差异是否“极显著”)规定在α=0.05,α=0.01两个水平上判别。
④统计量的值:由于α未知,需使用t检验。
t=2.27785t临界值0.05=2.131t临界值0.01=2.602⑤建立H0的拒绝域,因H A:μ≠μ0(300g),所以是双侧检验。
当|t|>t0.05(双侧)时,拒绝H0。
α=0.05的双侧临界值可以从附表中查处,t15,0.05(双侧)=2.131。
生物统计学课后习题解答李春喜SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。
第二章试验资料的整理与特征数的计算习题某地 100 例 30 ~ 40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:计算平均数、标准差和变异系数。
【答案】=, s=, CV = %试计算下列两个玉米品种 10 个果穗长度 (cm) 的标准差和变异系数,并解释所得结果。
24 号: 19 , 21 , 20 , 20 , 18 , 19 , 22 , 21 , 21 , 19 ;金皇后: 16 , 21 , 24 , 15 , 26 , 18 , 20 , 19 , 22 , 19 。
【答案】 1 =20, s 1 =, CV 1 =% ; 2 =20, s 2 =, CV 2 =% 。
某海水养殖场进行贻贝单养和贻贝与海带混养的对比试验,收获时各随机抽取 50 绳测其毛重(kg) ,结果分别如下:单养 50 绳重量数据: 45 , 45 , 33 , 53 , 36 , 45 , 42 , 43 , 29 , 25 ,47 , 50 , 43 , 49 , 36 , 30 , 39 , 44 , 35 , 38 , 46 , 51 , 42 , 38 ,51 , 45 , 41 , 51 , 50 , 47 , 44 , 43 , 46 , 55 , 42 , 27 , 42 , 35 ,46 , 53 , 32 , 41 , 48 , 50 , 51 , 46 , 41 , 34 , 44 , 46 ;混养 50 绳重量数据: 51 , 48 , 58 , 42 , 55 , 48 , 48 , 54 , 39 , 58 ,50 , 54 , 53 , 44 , 45 , 50 , 51 , 57 , 43 , 67 , 48 , 44 , 58 , 57 ,46 , 57 , 50 , 48 , 41 , 62 , 51 , 58 , 48 , 53 , 47 , 57 , 51 , 53 ,48 , 64 , 52 , 59 , 55 , 57 , 48 , 69 , 52 , 54 , 53 , 50 。
《生物统计学》习题集答案一、填空题:1.统计假设测验中犯第一类错误是正确的假设被否定。
(附统计假设测验中犯第二类错误是错误的假设被肯定。
)2.有共同性质的个体所组成的集团称为总体。
从总体中抽取部分个体进行观测,用以估计总体的一般特性,这部分被观测的个体总称为样本。
3.由总体中包含的全部个体求得的能够反映总体性质的特征数称为参数;由样本的全部观察值求得的用以估计总体参数的特征数叫统计数。
4.试验误差可以分为系统(片面)误差和偶然(随机)误差两种类型。
5.一般而言,在一定范围内,增加试验小区的面积,试验误差将会降低。
6.在试验中重复的主要作用是估计试验误差和降低试验误差。
7.田间试验设计的基本原则是重复、随机排列、局部控制。
8.田间试验可按试验因素的多少分为单因素试验和多因素试验。
9.样本平均数显着性测验接受或者否定假设的根据是“小概率事件实际上不可能发生”原理。
10.从总体中抽取的样本要具有代表性,必须是随机抽取的样本。
11.从一个正态总体中随机抽取的样本平均数,理论上服从正态分布。
12.数据1、3、2、4、5、6、3、3的算术平均数是3.375,众数是3。
13.常用的变异程度(变异)指标有极差、方差、标准差、变异系数。
14.小麦品种A每穗小穗数的平均数和标准差值为18和3(厘米),品种B为30和4.5(厘米),根据CV A_(或A品种的变异系数)_大于_CV B(或B品种的变异系数),品种__A_____的该性状变异大于品种B___。
15.要比较单位不同或者单位相同但平均数大小相差较大的两个样本资料的变异度宜采用变异系数。
16.试验资料按所研究的性状、特性可以分为质量性状资料和数量性状资料。
17.样本根据样本容量的多少可以分为小样本和大样本。
18.二项总体是非此即彼的两项构成的总体,此事件以变量“1”表示,彼事件以变量“0”表示,也可以称为0,1总体。
19.标准正态分布是参数?=0__,_?2_=1_的一个特定正态分布,记作N(0,1)。
.. 生物统计学习题集参考答案第一章概论一、填空1 变量按其性质可以分为 连续 变量和 非连续 变量。
2 样本统计数是总体 参数 的估计量。
3 生物统计学是研究生命过程中以样本来推断 总体 的一门学科。
4 生物统计学的基本内容包括_试验设置、统计分析_两大部分。
5 统计学的发展过程经历了 古典记录统计学、 近代描述统计学现代推断统计学 3个阶段。
6 生物学研究中,一般将样本容量 n大于等于 30称为大样本。
7 试验误差可以分为__随机误差 、系统误差 两类。
二、判断(-)1 对于有限总体不必用统计推断方法。
(-)2 资料的精确性高,其准确性也一定高。
(+) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
(+)4 统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的若干个体所构成的集合称为样本。
总体:具有相同的个体所构成的集合称为总体。
连续变量:是指在变量范围内可抽出某一范围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
精确性:也称精确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章 试验资料的整理与特征数的计算一、填空1 1 资料按生物的性状特征可分为资料按生物的性状特征可分为资料按生物的性状特征可分为_________数量性状资料数量性状资料数量性状资料__变量和变量和______变量性变量性状资料状资料__变量。
2 2 直方图适合于表示直方图适合于表示直方图适合于表示______计量计量计量 、、 连续变量连续变量__资料的次数分布。
3 3 变量的分布具有两个明显基本特征,即变量的分布具有两个明显基本特征,即变量的分布具有两个明显基本特征,即__集中性集中性__和____离散性离散性离散性__。
4 4 反映变量集中性的特征数是反映变量集中性的特征数是反映变量集中性的特征数是______平均数平均数平均数______,反映变量离散性的特征,反映变量离散性的特征数是数是______变异数(标准差)变异数(标准差)变异数(标准差)__。
生物统计学习题集参考答案第一章概论一、填空1 变量按其性质可以分为连续变量和非连续变量。
2 样本统计数是总体参数的估计量。
3 生物统计学是研究生命过程中以样本来推断总体的一门学科。
4 生物统计学的基本内容包括_试验设置、统计分析_两大部分。
5 统计学的发展过程经历了古典记录统计学、近代描述统计学现代推断统计学3个阶段。
6 生物学研究中,一般将样本容量n大于等于30称为大样本。
7 试验误差可以分为__随机误差、系统误差两类。
二、判断(-)1 对于有限总体不必用统计推断方法。
(-)2 资料的精确性高,其准确性也一定高。
(+) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
(+)4 统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的若干个体所构成的集合称为样本。
总体:具有相同的个体所构成的集合称为总体。
连续变量:是指在变量范围内可抽出某一范围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
精确性:也称精确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章试验资料的整理与特征数的计算一、填空1 资料按生物的性状特征可分为___数量性状资料_变量和__变量性状资料_变量。
2 直方图适合于表示__计量、连续变量_资料的次数分布。
3 变量的分布具有两个明显基本特征,即_集中性_和__离散性_。
4 反映变量集中性的特征数是__平均数__,反映变量离散性的特征数是__变异数(标准差)_。
5 样本标准差的计算公式s= √∑(x-x横杆)平方/(n-1)。
二、判断( - ) 1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
( - ) 2 条形图和多边形图均适合于表示计数资料的次数分布。
( +)3 离均差平方和为最小。
( + )4 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
统计学第三版课后答案第一章1.什么是统计学?统计学是一门研究如何收集、分析和解释数据的学科。
它涉及到收集数据的方法、数据的描述和分析、以及通过数据来进行推断和预测。
2.数据可以分为哪两种类型?数据可以分为定量数据和定性数据。
定量数据是可以用数字表示的,例如身高、体重等;定性数据是描述性的,例如颜色、性别等。
3.描述性统计与推论统计有什么区别?描述性统计是对收集到的数据进行总结、整理和展示的过程,主要通过统计指标如平均数、中位数等来描述数据的特征。
推论统计则是通过对样本数据进行推断,从而对整个总体进行推断和预测。
4.什么是样本?样本是从总体中选取出来的一部分个体。
通过对样本进行统计分析,我们可以对整个总体进行推断和预测。
5.什么是抽样误差?抽样误差是指由于样本选择的随机性所导致的样本统计量与总体参数之间的差异。
第二章1.总体和样本的区别是什么?总体是指研究对象的全体个体,而样本是从总体中选取出来的一部分个体。
2.简单随机抽样和分层抽样的区别是什么?简单随机抽样是指每个个体被抽中的概率相等且相互独立的抽样方法,适用于总体中各个个体之间没有明显分层的情况。
而分层抽样是将总体分为若干层次,然后从每个层次中分别抽取样本,适用于总体中各个层次之间存在明显差异的情况。
3.什么是系统抽样?系统抽样是指根据某种规则,从总体中以一定间隔选取样本的抽样方法。
例如,每隔k个个体选取一个个体作为样本。
4.方便抽样和判断抽样的特点是什么?方便抽样是指通过方便快捷的方法选取样本,例如通过问卷调查、网络调研等。
方便抽样的特点是样本选择的随机性不足,很容易导致样本与总体之间存在偏差。
判断抽样则是基于研究者的判断来选取样本,因此也可能存在主观性和偏见。
5.什么是多阶段抽样?多阶段抽样是指将总体分为若干个阶段,先从每个阶段中按一定方法抽取较小的样本,然后再从这些小样本中抽取最终的样本。
第三章1.什么是频率?频率是指某个数值或范围在样本或总体中出现的次数。
第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。
第二章试验资料的整理与特征数的计算习题2.1 某地 100 例 30 ~ 40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.124.56 4.375.396.30 5.217.22 5.54 3.93 5.21 6.515.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.694.38 4.89 6.255.32 4.50 4.63 3.61 4.44 4.43 4.254.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.975.16 5.10 5.85 4.79 5.34 4.24 4.32 4.776.36 6.384.885.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.094.52 4.38 4.31 4.585.726.55 4.76 4.61 4.17 4.034.47 3.40 3.91 2.70 4.60 4.095.96 5.48 4.40 4.555.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90计算平均数、标准差和变异系数。
【答案】=4.7398, s=0.866, CV =18.27 %2.2 试计算下列两个玉米品种 10 个果穗长度 (cm) 的标准差和变异系数,并解释所得结果。
24 号: 19 , 21 , 20 , 20 , 18 , 19 , 22 , 21 , 21 , 19 ;金皇后: 16 , 21 , 24 , 15 , 26 , 18 , 20 , 19 , 22 , 19 。
生物统计学习题集参考答案第一章概论一、填空1 变量按其性质可以分为连续变量和非连续变量。
2 样本统计数是总体参数的估计量。
3 生物统计学是研究生命过程中以样本来推断总体的一门学科。
4 生物统计学的根本内容包括_试验设置、统计分析_两大局部。
5 统计学的开展过程经历了古典记录统计学、近代描述统计学现代推断统计学3个阶段。
6 生物学研究中,一般将样本容量n大于等于30称为大样本。
7 试验误差可以分为__随机误差、系统误差两类。
二、判断〔-〕1 对于有限总体不必用统计推断方法。
〔-〕2 资料的准确性高,其准确性也一定高。
(+) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
〔+〕4 统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的假设干个体所构成的集合称为样本。
总体:具有一样的个体所构成的集合称为总体。
连续变量:是指在变量X围内可抽出某一X围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
准确性:也称准确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章试验资料的整理与特征数的计算一、填空1 资料按生物的性状特征可分为___数量性状资料_变量和__变量性状资料_变量。
2 直方图适合于表示__计量、连续变量_资料的次数分布。
3 变量的分布具有两个明显根本特征,即_集中性_和__离散性_。
4 反映变量集中性的特征数是__平均数__,反映变量离散性的特征数是__变异数〔标准差〕_。
5 样本标准差的计算公式s=√∑〔x-x横杆〕平方/(n-1)。
二、判断( - ) 1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
( - ) 2 条形图和多边形图均适合于表示计数资料的次数分布。
〔+〕3 离均差平方和为最小。
〔+ 〕4 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
生物统计学习题集参考答案生物统计学习题集参考答案第一章概论一、填空1 变量按其性质可以分为连续变量和非连续变量。
2 样本统计数是总体参数的估计量。
3 生物统计学是研究生命过程中以样本来推断总体的一门学科。
4 生物统计学的基本内容包括_试验设置、统计分析_两大部分。
5 统计学的发展过程经历了古典记录统计学、近代描述统计学现代推断统计学3个阶段。
6 生物学研究中,一般将样本容量n大于等于30称为大样本。
7 试验误差可以分为__随机误差、系统误差两类。
二、判断(-)1 对于有限总体不必用统计推断方法。
(-)2 资料的精确性高,其准确性也一定高。
(+) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
(+)4 统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的若干个体所构成的集合称为样本。
总体:具有相同的个体所构成的集合称为总体。
连续变量:是指在变量范围内可抽出某一范围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
精确性:也称精确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章试验资料的整理与特征数的计算一、填空1 资料按生物的性状特征可分为___数量性状资料_变量和__变量性状资料_变量。
2 直方图适合于表示__计量、连续变量_资料的次数分布。
3 变量的分布具有两个明显基本特征,即_集中性_和__离散性_。
4 反映变量集中性的特征数是__平均数__,反映变量离散性的特征数是__变异数(标准差)_。
5 样本标准差的计算公式s= √∑(x-x横杆)平方/(n-1)。
二、判断( - ) 1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
( - ) 2 条形图和多边形图均适合于表示计数资料的次数分布。
( +)3 离均差平方和为最小。
第一章习题及答案(来源:《生物统计学学习指导》李春喜等,科学出版社,2008:p5)
一、填空
1. 变量按其性质可以分为变量和变量。
2. 样本统计数是总体的估计值。
3. 生物统计学是研究生命过程中以样品来推断的一门学科。
4. 生物统计学研究中,一般将样本容量称为大样本。
二、判断
1. 对于有限总体不必采用统计推断方法。
()
2. 资料的精确度高,其准确度也一定高。
()
3. 在实验设计中,随机误差只能减小,不可能完全消除。
()
4. 统计学上的试验误差,通常指随机误差。
()
三、选择题(《生物统计学题解及练习》杜荣赛高等教育出版社。
2003.p164)
1. 由于造成我们所遇到的各种统计数据的不齐性。
()
(a) 研究对象本身性质(b) 度量标准不规范
(c) 人为误差(d) 记录不完整
2. 研究某一品种小麦高,因为该品种小麦是个极大的群体,其数量甚至是一个天文数字,该总体属于。
()
(a) 有限总体(b) 大总体
(c) 小总体(d) 无限总体
3. 从总体中一部分个体称为样本。
()
(a) 人为挑选出(b) 取出
(c) 随机抽取(d) 分割出
4. 用随机抽样方法从总体中获得一个样本的过程称为。
()
(a) 选择(b) 抽提
(c) 抽取(d) 抽样
答案:
填空
1.连续变量、离散型变量
2.参数
3.总体
4.n>30
判断
××√√
选择题
adcd。
生物统计学课后答案【篇一:生物统计学经典习题(期末复习)个人整理】class=txt>【例5.1】母猪的怀孕期为114天,今抽测10头母猪的怀孕期分别为116、115、113、112、114、117、115、116、114、113(天),试检验所得样本的平均数与总体平均数114天有无显著差异?根据题意,本例应进行双侧t检验。
1.提出无效假设与备择假设2、计算值经计算得:=114.5,s=1.581:=114,:≠114所以==10-1=9==1.0003、查临界值,作出统计推断由|t|,p0.05,故不能否定=9,查值表(附表3)得:=2.262,因为=114,表明样本平均数与总体平均数差异不显著,可以认为该样本取自母猪怀孕期为114天的总体。
【例5.2】按饲料配方规定,每1000kg某种饲料中维生素c不得少于246g,现从工厂的产品中随机抽测12个样品,测得维生素c含量如下:255、260、262、248、244、245、250、238、246、248、258、270g/1000kg,若样品的维生素c含量服从正态分布,问此产品是否符合规定要求?按题意,此例应采用单侧检验。
1、提出无效假设与备择假设经计算得:=252,s=9.115:=246,:246、计算值所以==12-1=11==2.2813、查临界值,作出统计推断因为单侧(11),p0.05,否定:=246,接受=双侧=1.796,|t|单侧t0.05:246,表明样本平均数与总体平均数差异显著,可以认为该批饲料维生素c含量符合规定要求。
第三节两个样本平均数的差异显著性检验【例5.3】某种猪场分别测定长白后备种猪和蓝塘后备种猪90kg时的背膘厚度,测定结果如表5-3所示。
设两品种后备种猪90kg时的背膘厚度值服从正态分布,且方差相等,问该两品种后备种猪90kg 时的背膘厚度有无显著差异?表5-3长白与蓝塘后备种猪背膘厚度:=,:≠=0.0998、=0.1096,1、提出无效假设与备择假设2、计算值此例=1.817、、=12、=11,经计算得=1.202、=0.1508=0.123、分别为两样本离均差平方和。
概论名词:生物统计:将概率论和数理统计的原理应用到生物学中以分析和解释其数量资料的科学试验设计:试验工作未进行之前应用生物统计原理,来制定合理的试验方案,包括选择动物,分组和对比以及相应的资料搜集整理和统计分析的方法。
总体与样本⏹数据具有不齐性。
⏹根据研究目的确定的研究对象的全体称为总体(population);⏹含有有限个个体的总体称为有限总体;⏹包含有无限多个个体的总体叫无限总体;⏹总体中的一个研究单位称为个体(individual);⏹从总体中随机抽出一部分具有代表性的个体称为样本(sample);⏹样本中所包含的个体数目叫样本容量或大小,常记为n。
⏹通常把n≤30的样本叫小样本,n >30的样本叫大样本。
随机抽取(random sampling) 的样本是指总体中的每一个个体都有同等的机会被抽取组成样本。
变数与变异数列、变量:⏹变数:研究中对样本个体的观察值。
⏹变量:相同性质的事物间表现差异性的某种特征。
如:身高、体重。
⏹变异数列:将变数按从小到大的顺序排列的一组数列。
参数与统计量⏹由总体计算的特征数叫参数(parameter);⏹由样本计算的特征数叫统计量(staistic)。
准确性与精确性⏹准确性(accuracy)也叫准确度,指观测值与其真值接近的程度。
若x与μ相差的绝对值|x-μ|小,则观测值x的准确性高;反之则低。
⏹精确性(precision)也叫精确度,指重复观测值彼此接近的程度。
若观测值彼此接近,即任意二个观测值xi、xj相差的绝对值|xi -xj |小,则观测值精确性高;反之则低。
⏹调查或试验的准确性、精确性合称为正确性。
由于真值μ常常不知道,所以准确性不易度量,但利用统计方法可度量精确性。
随机误差与系统误差随机误差也叫抽样误差(sampling error) ,是由于许多无法控制的内在和外在的偶然因素所造成。
带有偶然性质,在试验中,即使十分小心也难以消除。
随机误差影响试验的精确性。
第一章概论解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。
第二章试验资料的整理与特征数的计算习题2.1 某地 100 例 30 ~ 40 岁健康男子血清总胆固醇(mol · L -1 ) 测定结果如下:4.77 3.37 6.14 3.95 3.56 4.23 4.31 4.715.69 4.124.56 4.375.396.30 5.217.22 5.54 3.93 5.21 6.515.18 5.77 4.79 5.12 5.20 5.10 4.70 4.74 3.50 4.694.38 4.89 6.255.32 4.50 4.63 3.61 4.44 4.43 4.254.035.85 4.09 3.35 4.08 4.79 5.30 4.97 3.18 3.975.16 5.10 5.85 4.79 5.34 4.24 4.32 4.776.36 6.384.885.55 3.04 4.55 3.35 4.87 4.17 5.85 5.16 5.094.52 4.38 4.31 4.585.726.55 4.76 4.61 4.17 4.034.47 3.40 3.91 2.70 4.60 4.095.96 5.48 4.40 4.555.38 3.89 4.60 4.47 3.64 4.34 5.186.14 3.24 4.90计算平均数、标准差和变异系数。
【答案】=4.7398, s=0.866, CV =18.27 %2.2 试计算下列两个玉米品种 10 个果穗长度 (cm) 的标准差和变异系数,并解释所得结果。
24 号: 19 , 21 , 20 , 20 , 18 , 19 , 22 , 21 , 21 , 19 ;金皇后: 16 , 21 , 24 , 15 , 26 , 18 , 20 , 19 , 22 , 19 。
第一章绪论1、什么是生物统计?它有何作用?(1)生物统计是数理统计的原理和方法来分析和解释生物界的各种数量资料变化规律和生物界各种现象的学科。
(2)作用主要体现在两个方面:一是提供试验或调查设计的方法,二是提供整理、分析资料的方法。
2、什么是总体、个体、样本、样本总量、随机样本?统计分析的两个特点是什么?总体:根据研究目的确定的研究对象的全体称为总体。
(具有相同性质的个体组成的集合)个体:总体中的一个研究单位称为个体。
(组成总体的每个成员)样本:总体的一部分称为样本。
(研究总体时抽出的若干个体组成的集合)样本含量:样本中所包含的个体数目称为样本含量(容量)或大小。
随机样本:从总体中随机抽取的样本称为随机样本,而随机抽取是指总体中的每一个个体都有同等的机会被抽取组成样本。
统计分析的两个特点是:①通过样本来推断总体。
②有很大的可靠性但也有一定的错误率。
3、什么是参数、统计数?二者有何关系?参数:由总体计算的用于描述总体特征的数值叫参数。
统计数:由样本计算的特征数叫统计数。
总体参数偶相应的统计数来估计。
4、什么是实验的精确性和准确性?如何提高试验的准确性与精确性?准确性:也叫准确度,指在调查或试验中某一试验指标或性状的观测值与真值接近的程度。
精确性:也叫精确度,指调查或试验研究中同一试验指标或性状的重复观测值彼此接近的程度。
在调查或试验中应严格按照调查或试验计划进行,准确地进行观察记载,力求避免认为差错,特别要注意试验条件的一致性,即除所研究的各个处理外,供试畜禽的初始条件如品种、性别、年龄、健康状况、饲养条件、管理措施等尽量控制一致,并通过合理的调查或试验设计,努力提高试验的准确性和精确性。
5、什么是随机误差与系统误差?如何控制、降低随机误差,避免系统误差?随机误差:也叫抽样误差,是由于许多无法控制的内在和外在的偶然因素所引起的统计量与参数间的偏差,它是客观存在的、不可避免的。
系统误差:由于实验处理以外的其他条件明显不一致产生的有倾向性的偏差,可控制。
生物统计学课后答案【篇一:生物统计学经典习题(期末复习)个人整理】class=txt>【例5.1】母猪的怀孕期为114天,今抽测10头母猪的怀孕期分别为116、115、113、112、114、117、115、116、114、113(天),试检验所得样本的平均数与总体平均数114天有无显著差异?根据题意,本例应进行双侧t检验。
1.提出无效假设与备择假设2、计算值经计算得:=114.5,s=1.581:=114,:≠114所以==10-1=9==1.0003、查临界值,作出统计推断由|t|,p0.05,故不能否定=9,查值表(附表3)得:=2.262,因为=114,表明样本平均数与总体平均数差异不显著,可以认为该样本取自母猪怀孕期为114天的总体。
【例5.2】按饲料配方规定,每1000kg某种饲料中维生素c不得少于246g,现从工厂的产品中随机抽测12个样品,测得维生素c含量如下:255、260、262、248、244、245、250、238、246、248、258、270g/1000kg,若样品的维生素c含量服从正态分布,问此产品是否符合规定要求?按题意,此例应采用单侧检验。
1、提出无效假设与备择假设经计算得:=252,s=9.115:=246,:246、计算值所以==12-1=11==2.2813、查临界值,作出统计推断因为单侧(11),p0.05,否定:=246,接受=双侧=1.796,|t|单侧t0.05:246,表明样本平均数与总体平均数差异显著,可以认为该批饲料维生素c含量符合规定要求。
第三节两个样本平均数的差异显著性检验【例5.3】某种猪场分别测定长白后备种猪和蓝塘后备种猪90kg时的背膘厚度,测定结果如表5-3所示。
设两品种后备种猪90kg时的背膘厚度值服从正态分布,且方差相等,问该两品种后备种猪90kg 时的背膘厚度有无显著差异?表5-3长白与蓝塘后备种猪背膘厚度:=,:≠=0.0998、=0.1096,1、提出无效假设与备择假设2、计算值此例=1.817、、=12、=11,经计算得=1.202、=0.1508=0.123、分别为两样本离均差平方和。
生物统计学作业答案完善版第一章习题1.1答:生物统计学是用数理统计的原理和方法来分析和解释生物界各种现象和实验调查资料,是研究生命过程中以样本来推断总体的一门科学。
生物统计学的主要内容包括实验设计和统计分析。
基本作用有以下四个方面:①提供整理和描述数据资料的科学方法,确定某些数性状和特性的数理特征;②判断实验结果的可靠性;③提供有样本推断总体的方法;③提供实验设计的一些重要原则。
习题1.2总体:总体是具有相同性质的个体所组成的集合,是研究对象的全体。
样本:是从总体中抽出来的若干个体所组成的集合。
样本容量:样本中所含个体总数。
变量:相同性质的事物间表现的差异性的某些特征。
参数:是描述总体特征的数量。
统计数:是描述样本特征的数量。
效应:是由因素而引起的实验差异的作用。
互作:是指两个或两个处理因素间的相互作用产生的效应。
实验误差:实验中不可控因素所引起的观测值和真实值之间的差异。
习题1.3答:随机误差:它是由实验中许多无法控制的因素所造成的实验结果和真实值之间的误差,是不可避免的。
系统误差:是由于实验处理以外的其他条件明显不一致所造成的带有倾向性的或定向的偏差,是可控的。
习题1.4答:准确性指在调查和实验中某一实验指标或性状的观测值和真实值接近程度。
精确性指调查和实验中同一实验指标或性状的重复观察值彼此接近的程度。
准确性是说明测定值和真实值之间符合程度的大小;精确性是反映多次测定值的变异程度。
第二章习题2.3答:平均数的用处:①平均数指出了一组数据的中心位置,标志着资料所代表性状的数量水平和质量水平;②作为样本或资料的代表数据与其他资料进行比较。
平均数的特征:①离均差之和为零;②离均差平方和为最小。
标准差的用处:①标准差的大小,受实验后调查资料中的多个观测值的影响,如果观测值之间的差异大,离均差就越大;②在计算标准差是如果对观察值加上一个或减去一个a,标准差不变;如果给各观测值乘以或除以一个常数a ,所得的标准差就扩大或缩小a 倍; ③在正态分布中,X+-S 内的观测值个数占总个数的68.26%,X-+2s 内的观测值个数占总个数的95.49%,x-+3s 内的观测值个数占总个数的99.73%。
第一章填空1.变量按其性质可以分为(连续型)变量和(非连续/离散型)变量。
2.样本统计数是总体(总体参数)的估计值。
3.生物统计学是研究生命过程中以样本来推断(总体)的一门学科。
4.生物统计学的基本内容包括(实验设计)和(统计推断)两大部分。
5.生物统计学的发展过程经历了(古典统计学)、(近代统计学)和(现代统计学)3个阶段。
6.生物学研究中,一般将样本容量(大于30)称为大样本。
7.试验误差可以分为(随机误差)和(系统误差)两类。
判断1.对于有限总体不必用统计推断方法。
(错) 2.资料的精确性高,其准确性也一定高。
(错)3.在试验设计中,随机误差只能减小,而不能完全消除。
(对) 4.统计学上的试验误差,通常指随机误差。
(对)第二章填空1.资料按生物的性状特征可分为(数量性状)变量和(质量性状)变量。
2. 直方图适合于表示(非连续型/离散型)资料的次数分布。
3.变量的分布具有两个明显基本特征,即(集中性)和(离散性)。
4.反映变量集中性的特征数是(平均数),反映变量离散性的特征数是(标准差)。
5.样本标准差的计算公式s=()。
判断题1. 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
(错)2. 条形图和多边形图均适合于表示计数资料的次数分布。
(错)3. 离均差平方和为最小。
(对)4. 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
(对)5. 变异系数是样本变量的绝对变异量。
(对)单项选择1. 下列变量中属于非连续性变量的是(C).A. 身高B.体重C.血型D.血压2. 对某鱼塘不同年龄鱼的尾数进行统计分析,可做成(A)图来表示.A. 条形B.直方C.多边形D.折线 3. 关于平均数,下列说法正确的是(B).A. 正态分布的算术平均数和几何平均数相等.B. 正态分布的算术平均数和中位数相等.C. 正态分布的中位数和几何平均数相等.D. 正态分布的算术平均数、中位数、几何平均数均相等。
李春喜《生物统计学》第三版 课后作业答案 精品资料
仅供学习与交流,如有侵权请联系网站删除 谢谢0 《生物统计学》第三版 课后作业答案 (李春喜、姜丽娜、邵云、王文林编著)
第一章 概论(P7)
习题1.1 什么是生物统计学?生物统计学的主要内容和作用是什么? 答:(1)生物统计学(biostatistics)是用数理统计的原理和方法来分析和解释生物界各种现象和实验调查资料,是研究生命过程中以样本来推断总体的一门学科。 (2)生物统计学主要包括实验设计和统计推断两大部分的内容。其基本作用表现在以下四个方面:①提供整理和描述数据资料的科学方法;②确定某些性状和特性的数量特征;③判断实验结果的可靠性;④提供由样本推断总体的方法;⑤提供实验设计的一些重要原则。
习题1.2 解释以下概念:总体、个体、样本、样本容量、变量、参数、统计数、效应、互作、随机误差、系统误差、准确性、精确性。 答:(1)总体(populatian)是具有相同性质的个体所组成的集合,是研究对象的全体。 (2)个体(individual)是组成总体的基本单元。 (3)样本(sample)是从总体中抽出的若干个个体所构成的集合。 (4)样本容量(sample size)是指样本个体的数目。 (5)变量(variable)是相同性质的事物间表现差异性的某种特征。 (6)参数(parameter)是描述总体特征的数量。 精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢1 (7)统计数(statistic)是由样本计算所得的数值,是描述样本特征的数量。 (8)效应(effection)试验因素相对独立的作用称为该因素的主效应,简称效应。 (9)互作(interaction)是指两个或两个以上处理因素间的相互作用产生的效应。 (10)实验误差(experimental error)是指实验中不可控因素所引起的观测值偏离真值的差异,可以分为随机误差和系统误差。 (11)随机误差(random)也称抽样误差或偶然误差,它是有实验中许多无法控制的偶然因素所造成的实验结果与真实结果之间产生的差异,是不可避免的。随机误差可以通过增加抽样或试验次数降低随机误差,但不能完全消。 (12) 系统误差(systematic)也称为片面误差,是由于实验处理以外的其他条件明显不一致所产生的倾向性的或定向性的偏差。系统误差主要由一些相对固定的因素引起,在某种程度上是可控制的,只要试验工作做得精细,在试验过程中是可以避免的。 (13) 准确性(accuracy)也称为准确度,指在调查或实验中某一实验指标或性状的观测值与其真值接近的程度。 (14) 精确性(precision)也称精确度,指调查或实验中同一实验指标或性状的重复观测值彼此接近程度的大小。 (15)准确性是说明测定值堆真值符合程度的大小,用统计数接近参数真值的程度来衡量。精确性是反映多次测定值的变异程度,用样本间的各个变量间变异程度的大小来衡量。 精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 习题1.3 误差与错误有何区别? 答:误差是指实验中不可控制因素所引起的观测值偏离真值的差异,其中随机误差只可以设法降低,但不能避免,系统误差在某种程度上可控制、可克服的;而错误是指在实验过程中,人为的作用所引起的差错,是完全可以避免的。
第二章 实验资料的整理与特征数的计算(P22、P23)
习题2.1 什么是次数分布表?什么是次数分布图?制表和绘图的基本步骤有哪些?制表和绘图时应注意些什么? 答:(1)对于一组大小不同的数据划出等距的分组区间(称为组距),然后将数据按其数值大小列入各个相应的组别内,便可以出现一个有规律的表式,这种统计表称之为次数分布表。 (2)次数分布图是指把次数分布资料画成图状,包括条形图、饼图、直方图、多边形图和散点图。 (3)制表和绘图的基本步骤包括:①求全距;②确定组数和组距;③确定组限和组中值;④分组,编制次数分布表。 (4)制表和绘图时需要注意的是事先确定好全距、组数、组距、各组上下限,再按观测值的大小来归组。 精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢3 习题2.2 算数平均数与加权数形式上有何不同?为什么说它们的实质是一致的? 答:(1)形式不同在于计算公式的不同:算数平均数的计算公式为M
=n
xxxn...21;
加权平均数的计算公式为M =mmmffffxfxfx......212211。 (2)因为它们反映的都是同一组数据的平均水平。
习题2.3 平均数与标准差在统计分析中有什么作用?它们各有哪些特性?
答:(1)平均数(mean)的用处:①平均数指出了一组数据资料内变量的中心位置,标志着资料所代表性状的数量水平和质量水平;②作为样本或资料的代表数据与其它资料进行比较。 (2)平均数的特性:①离均差之和等于零;②离均差平方和为最小。 (3)标准差(standard deviation)的用处:①标准差的大小,受实验或调查资料中多个观测值的影响,如果观测值与观测值之间差异较大,其离均差也大,因而标准差也大,反之则小;②在计算标准差时,如果对各观测值加上火减去一个常数a,标准差不变;如果给各观测值乘以或除以一个常数a,则所得的标准差扩大或缩小了a倍;③在正态分布中,一个样本变量的分布可以作如下估计: x±s内的观测值个数约占观测值总个数的68.26%,x±2s内的观测值个数约占总个数的95.49%,x±3s内的观测值个数约占观测值总个数的99.73%。 精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢4 (4)标准差的特性: ①表示变量的离散程度,标准差小,说明变量的分布比较密集在平均数附近,标准差大,则说明变量的分布比较离散,因此,可以用标准差的大小判断平均数代表性的强弱;②标准差的大小可以估计出变量的次数分布及各类观测值在总体中所占的比例;③估计平均数的标准误,在计算平均数的标准误时,可根据样本标准差代替总体标准差进行计算;④进行平均数区间估计和变异系数的计算。
习题2.4 总统和样本的平均数、标准差有什么共同点?又有什么联系和区别? 答:(1)总体和样本的平均数都等于资料中各个观测值的总和除以观测值的个数
所得的商。二者区别在于,总体平均数用µ表示,µ=Nx,公式中分母为总体观测值的个数N,样本平均数用x=nx,公式中的分分母为样本观测值的个数n。样本平均数x是总体平均数µ的无偏估计值。 (2)总体和样本的标准差都等于离均差的平方和除以样本容量。二者的区别在于,总体标准差用σ表示,,分母上总体观测值的个数N;标准差用s表示,,分母上是样本自由度n-1。样本标准差s是总体标准差σ的无偏估计值。 精品资料
仅供学习与交流,如有侵权请联系网站删除 谢谢5 习题2.5 答:见下图——
100例30-40岁健康男子血清总胆固醇(mol/L)的次数分布表 组限(mol/L) 组中值(mol/L) 次数 频率 累积频率
2.60- 2.870 2 0.02 0.02 3.10- 3.370 8 0.08 0.10 3.60- 3.850 12 0.12 0.22 4.10- 4.375 24 0.24 0.46 4.60- 4.845 20 0.20 0.66 5.10- 5.325 18 0.18 0.84 5.60- 5.825 7 0.07 0.91 6.10- 6.345 8 0.08 0.99 6.60- 0.000 0 0.00 0.99 7.10- 7.220 1 0.01 1.00
习题2.6 答:见下图——
100例男子总胆固醇7.257.006.756.506.256.005.755.505.255.004.754.504.254.003.753.503.253.002.75100例男子总胆固醇
Frequency20
100Std. Dev = .87 Mean = 4.74N = 100.00
这100例男子的血清总胆固醇基本呈正态分布,中间4.1-5.1mol/L的最多,两边少,但6.6-7.1 mol/L的没有。 精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢6 习题2.7 答:见下图—— Statistics100例男子总胆固醇10004.7389.086674.6600a
4.79b.86665.75108.276.241.055.4784.522.707.22473.893.5850c
4.08334.20004.31004.49004.66004.85005.16005.21005.38505.9325
ValidMissingNMeanStd. Error of MeanMedianModeStd. DeviationVarianceSkewnessStd. Error of SkewnessKurtosisStd. Error of KurtosisRangeMinimumMaximumSum1020253040506070758090Percentiles
Calculated from grouped data.a. Multiple modes exist. The smallest value is shownb. Percentiles are calculated from grouped data.c.
Descriptive Statistics
1004.522.707.224.7389.0867.86665.751100100例男子总胆固醇
Valid N (listwise)
StatisticStatisticStatisticStatisticStatisticStd. ErrorStatisticStatisticNRangeMinimumMaximumMeanStd.DeviationVariance
由上表可知:平均数μ=4.7389,标准差s=0.86665,而CV=s /μ* 100% =18%