时间序列、动态计量与非平稳性
- 格式:pptx
- 大小:187.63 KB
- 文档页数:31
中国可税GDP与税收收入的实证分析1黄凤羽潘丽君内容提要:税收弹性系数过高,引起了人们对中国税收增长质量的疑惑。
本文从GDP组成结构入手,在支出法计算的国民生产总值的基础上,剥离了不提供税收收入的GDP,估算了中国的可税GDP水平。
而后运用计量经济学方法,考察了中国税收收入与可税GDP总量的关系,以及税收收入和可税GDP的增量变化关系。
模型分析认为,我国税收收入与可税GDP总量之间是高度正相关的;可税GDP与同期的税收收入之间,存在着长期均衡的关系;税收收入与可税GDP的系统内部存在着动态调整机制,可以保持两者之间长期的、稳定的均衡关系。
因此,中国的税收增长是健康的、可持续的。
关键词:可税GDP;经济增长;税收收入一、引言GDP是按市场价格计算的国内生产总值的简称,是一个国家(或地区)所有常住单位在一定时期内生产活动的最终成果。
从总量上看,一个经济体系的经济总量,就是这一经济体系的全部税源,在税收制度保持稳定的情况下,经济增长必然带来税收的相应增长。
为了直观地表示税收增长与经济增长的数量关系,人们将税收收入增长与 GDP 增长之间的比例关系,定义为“税收弹性系数”2。
但近年来中国的税收弹性系数却出现了一些异常的表现:在我国这种以流转税为主体税种的税制结构中,税收弹性系数通常应该是小于1的。
因为在其他条件不变的情况下,流转税的收入最多只能是与GDP同步增长,而不可能超过GDP的增长速度。
但1997年以来,中国的税收弹性系数却连续12年大于1,即使在宏观经济出现剧烈波动的2008年,中国的税收弹性系数也达到了1.893。
为此,本文将从结构角度分析中国的税收增长与经济增长,据以判断中国的税收增长是否健康、合理。
我国学者在相关领域所进行的研究主要体现在以下方面:樊丽明、张斌(2000)提出,有相当一部分GDP 不可作为税基增加税收收入,并且初步提出了不可税GDP 的具体内涵,从GDP 的分解入手,分析经济增长与税收收入关联的具体传导机制,并在此基础上分析现阶段税收收入增长机制存在的主要问题。
时间序列、动态计量与非平稳性时间序列分析是一种研究时间上观测到的数据的方法,它通常用来预测未来的数据走势,或者揭示数据背后的规律和模式。
时间序列分析的基本假设是数据是按照时间顺序收集和记录的,因此数据中的观测值之间存在一定的内在关联。
动态计量是时间序列分析的一种方法,它关注变量之间的相互影响和动态调整过程。
动态计量的核心思想是当前时刻的变量取值受到过去时刻的变量取值的影响,而且这种影响是不断调整和改变的。
动态计量模型通常使用回归分析、向量自回归(VAR)模型、脉冲响应分析等方法,来研究变量之间的时序关系和相互作用。
然而,时间序列和动态计量在实际应用中都面临一个重要的问题,那就是非平稳性。
非平稳性是指时间序列数据在整个时间范围内存在明显的长期趋势、季节性变化、周期性波动等,这会导致时间序列的统计性质发生变化,使得传统的时间序列模型无法有效地拟合和预测数据。
非平稳性在金融、经济学、气象学等领域中普遍存在,因此如何处理非平稳性是时间序列分析的重要课题。
为了处理非平稳性,可以使用一系列的技术,如差分、变换、季节调整和模型拟合等。
其中,差分是最常见的一种方法,它通过计算相邻时刻的观测值之间的差异,来消除数据中的趋势和季节性变化。
变换则是将原始数据进行数学变换,如对数变换、平方根变换等,以改变数据的统计性质。
季节调整是将季节性因素从数据中剔除,以便更好地研究数据的长期趋势。
而模型拟合则是利用时间序列模型来拟合和预测非平稳数据,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
非平稳性的处理不仅能够改善模型的拟合效果,还能够提高模型的预测准确性和可解释性。
通过去除非平稳性的影响,我们可以更好地理解数据的本质和规律,更准确地进行预测和决策。
对于金融市场而言,处理非平稳性可以帮助投资者更好地判断市场趋势和价值,从而制定更科学和有效的投资策略。
总之,时间序列、动态计量和非平稳性是现代统计学中重要的研究领域。
统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。
通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。
统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。
一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。
在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。
时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。
2. 季节性:时间序列数据在一年内固定时间段内的重复模式。
3. 循环性:时间序列数据中存在的多重周期性波动。
4. 随机性:时间序列数据中的不规则、无法预测的波动。
二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。
2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。
3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。
4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。
5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。
它综合考虑了自回归、移动平均和差分的影响因素。
三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。
2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。
3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。
4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。
1、计量经济学计量经济学是一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科,统计学,经济理论和数学这结合便构成了计量经济学。
2、计量经济学模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
3、解释变量影响被解释变量的因素或因子,是原因变量,记为“X”.4、被解释变量结果变量称为被解释变量,记为“Y”。
5、结构分析结构分析是对经济现象中变量之间相互关系的研究。
所采用的主要方法是弹性分析、乘数分析与比较静力分析。
6、时间序列数据按照时间先后顺序排列的统计数据,又称为纵向数据。
7、截面数据一批发生在同一时间截面上的调查数据,又称横向数据。
8、平行数据(面板数据)时间序列数据与截面数据的合成体,又称面板数据。
9、回归分析回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。
10、随机误差项被解释变量数值与其条件期望之间的离差,是一个不可观测的随机变量,称为随机误差项,或随机干扰项。
11、最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。
12、最佳线性无偏估计量拥有有限样本性质或小样本性质这类性质的估计量,称为最佳线性无偏估计量。
13、拟合优度是SRF对样本观测值的拟合程度,即样本回归直线与观测散点之间的紧密程度。
14、方程显著性检验对所有被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断的检验。
15、变量显著性检验是对模型中某一个具体的解释变量X与被解释变量Y之间的线性关系在总体上是否显著成立做出判断,换言之,是考察所选择的X在总体上是否对Y有显著的线性影响。
16、最小样本容量是指从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。
17、满足基本要求的样本容量当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。
18、需求函数的零阶齐次性当所有商品价格和消费者货币支出总额按照同一比例变动时,需求量保持不变,这就是所谓的消费者无货币幻觉。
计量经济学基础知识引言计量经济学是经济学中的一个重要分支,通过运用统计学和数学工具来研究经济现象并进行经济数据的分析和量化。
本文将介绍计量经济学的基础知识,包括计量经济学的定义、应用领域、研究方法和重要概念。
1. 计量经济学的定义计量经济学是一门研究经济现象的科学,它利用统计学和数学工具来分析和解释经济数据。
计量经济学不仅关注经济理论的推导和验证,还关注经济现象的实证研究和政策分析。
计量经济学可以帮助经济学家理解经济现象背后的规律,预测经济变量的未来走势,并为政策制定者提供政策建议。
2. 计量经济学的应用领域计量经济学的应用领域非常广泛,涵盖了许多经济学的分支领域。
以下列举几个常见的应用领域:2.1. 劳动经济学劳动经济学研究劳动市场的行为和结果,包括就业、工资、劳动力供给和劳动力需求等方面。
计量经济学的方法可以帮助研究者理解劳动市场的运作机制,评估劳动市场政策的效果,以及预测未来的劳动力需求和就业机会。
2.2. 产业经济学产业经济学研究产业结构、企业行为和市场竞争等方面。
计量经济学的方法可以用来评估市场垄断程度、分析市场结构的变动、研究企业决策的影响因素等。
2.3. 金融经济学金融经济学研究与金融市场有关的经济现象,包括金融资产定价、投资组合选择、风险管理等方面。
计量经济学的方法可以用来构建金融模型、分析金融市场数据,帮助投资者进行投资决策和风险管理。
2.4. 国际贸易经济学国际贸易经济学研究国际贸易的原因和影响,包括比较优势、贸易政策和国际收支平衡等方面。
计量经济学的方法可以用来检验贸易理论的有效性,评估贸易政策的影响以及预测国际贸易的走势。
3. 计量经济学的研究方法计量经济学的研究方法包括理论推导、数据收集、模型建立、变量选择和实证分析等环节。
以下是计量经济学常用的研究方法和技巧:3.1. 线性回归模型线性回归模型是计量经济学中最常用的方法之一,它使用线性方程来描述因变量和自变量之间的关系。
时间序列分析⼀、定义时间序列(或称动态数列)是指将同⼀统计指标的数值按其发⽣的时间先后顺序排列⽽成的数列。
时间序列分析的主要⽬的是根据已有的历史数据对未来进⾏预测。
经济数据中⼤多数以时间序列的形式给出。
根据观察时间的不同,时间序列中的时间可以是年份、季度、⽉份或其他任何时间形式。
时间序列简单的说就是各时间点上形成的数值序列。
时间序列分析并不是关于时间的回归,它主要是研究⾃⾝的变化规律的(这⾥不考虑含外⽣变量的时间序列)。
对时间序列进⾏观察,研究,寻找它变化发展的规律,预测它将来的⾛势,就是时间序列分析。
⼆、构成要素:长期趋势,季节变动,循环变动,不规则变动。
1)长期趋势( T )现象在较长时期内受某种根本性因素作⽤⽽形成的总的变动趋势。
2)季节变动( S )现象在⼀年内随着季节的变化⽽发⽣的有规律的周期性变动。
3)循环变动( C )现象以若⼲年为周期所呈现出的波浪起伏形态的有规律的变动。
4)不规则变动(I )是⼀种⽆规律可循的变动,包括严格的随机变动和不规则的突发性影响很⼤的变动两种类型。
三、作⽤1. 反映社会经济现象的发展变化过程,描述现象的发展状态和结果。
2. 研究社会经济现象的发展趋势和发展速度。
3. 探索现象发展变化的规律,对某些社会经济现象进⾏预测。
4. 利⽤时间序列可以在不同地区或国家之间进⾏对⽐分析,这也是统计分析的重要⽅法之⼀。
四、变量特征⾮平稳性(nonstationarity,也译作不平稳性,⾮稳定性):即时间序列变量⽆法呈现出⼀个长期趋势并最终趋于⼀个常数或是⼀个线性函数。
波动幅度随时间变化(Time-varying Volatility):即⼀个时间序列变量的⽅差随时间的变化⽽变化。
这两个特征使得有效分析时间序列变量⼗分困难。
平稳型时间数列(Stationary Time Series)系指⼀个时间数列其统计特性将不随时间之变化⽽改变。
五、时域分析的经典步骤1.考察序列的特征,检验是否具有平稳性2.根据序列特征选择拟合的模型3.确定模型的⼝径4.检验、优化模型5.利⽤拟合的模型进⾏预测以下为转载————————————————版权声明:本⽂为CSDN博主「Python⾦融量化」的原创⽂章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原⽂出处链接及本声明。
实证研究中五大最重要的计量模型工具在实证研究中,计量模型工具是非常重要的,它们可以帮助研究者分析数据、检验假设、预测结果。
本文将介绍实证研究中最重要的五大计量模型工具,并讨论它们的应用及优缺点。
一、回归分析回归分析是实证研究中最常用的计量模型工具之一。
它用于研究变量之间的关系,并进行因果关系的分析。
回归分析可以帮助研究者了解自变量对因变量的影响程度,以及预测因变量的数值。
回归分析广泛应用于经济学、社会学、心理学等领域,例如分析收入和教育水平之间的关系、预测销售额等。
优点:回归分析简单易懂,计算过程清晰,结果直观易解释。
缺点:回归分析对数据的要求较高,容易受到异常值的影响,同时需要满足一些假设条件。
二、时间序列分析时间序列分析是一种专门用于研究时间序列数据的方法。
它可以帮助研究者发现数据的趋势、季节性变动以及周期性波动,预测未来数据的走势。
时间序列分析在经济学、金融学等领域有着广泛的应用,例如股票价格走势分析、经济增长趋势预测等。
优点:时间序列分析可以揭示数据的内在规律和趋势,对未来数据具有一定的预测能力。
缺点:时间序列分析需要数据的连续性和稳定性,对数据的要求相对较高。
三、因子分析因子分析是一种用于研究变量之间关系的多元统计方法。
它可以帮助研究者发现变量之间的内在结构和模式,降低数据的维度,并挖掘出隐藏的因素。
因子分析广泛应用于心理学、管理学、市场营销等领域,例如研究用户偏好、评估企业绩效等。
优点:因子分析可以找出变量之间的潜在关系,简化数据的分析和解释。
缺点:因子分析对数据的要求较高,需要满足一些假设条件,并且结果的解释比较主观。
四、生存分析生存分析是一种用于研究个体生存时间和生存概率的统计方法。
它可以帮助研究者分析人口统计动态、医学研究、工程可靠性等领域,例如分析疾病的生存率、评估产品的可靠性等。
优点:生存分析适用于研究个体生存时间和生存概率,能够处理有censored数据的情况。
缺点:生存分析对数据的要求较高,需要考虑censored数据的处理,同时结果的解释稍显复杂。
计量经济学中的时间序列是指按照时间顺序排列的一系列数据,这些数据可以是同一指标在不同时间点的观测值,也可以是多个指标在不同时间点的观测值组合。
时间序列数据的分析主要涉及两个方面:一是数据平稳性检验,二是数据建模与分析。
数据平稳性检验是时间序列分析中非常重要的一个步骤。
平稳性是指时间序列数据的统计特性不随时间推移而发生变化。
如果数据不满足平稳性条件,那么传统的回归分析方法可能会出现问题。
因此,在利用回归分析方法讨论经济变量有意义的经济关系之前,必须对经济变量时间序列的平稳性与非平稳性进行判断。
如果数据是非平稳的,可能需要采用适当的处理方法,如差分、对数转换等,使其满足平稳性条件。
在数据平稳性检验通过后,接下来需要进行数据建模与分析。
在计量经济学中,自回归模型(AR模型)是一种常用的时间序列模型。
自回归模型是统计上一种处理时间序列的方法,它用同一变数例如x 的之前各期,亦即x 1至x t-1来预测本期x t的表现,并假设它们为一线性关系。
除了自回归模型外,还有其他的模型可用于时间序列分析,如移动平均模型(MA模型)、自回归移动平均模型(ARMA模型)等。
这些模型的参数估计与假设检验方法也是计量经济学中研究的重点内容之一。
总之,计量经济学中的时间序列分析是一个相对独立且完整的领域,它为经济学、金融学等领域的研究提供了重要的方法论支持和实践指导。
计量经济学的发展:客观地认识与科学地表述经济规律是历代经济学与计量经济学工作者的奋斗目标。
然而经济活动的多因素性、随机波动性以及事件发生的不可逆性一直影响着经济学的科学化进程。
经济学与自然科学的一个最大不同点就是无法建立实验室,无法创造出其他因素不变的理想环境。
自然科学中的变量常遵循函数关系,但对于经济问题却没有函数关系可言,只能建立统计模型。
尽管这样,随着计量经济学的诞生,人们借助数学、统计学知识分析和预测经济问题。
虽然这只有几十年的时间,却超过了经济学数百年积累起来的文字分析水平。
计量经济学的发展可分为三个时期:(1) 20-40年代,(2) 50-70年代,(3) 80年代以后。
1.上世纪之前,在错综复杂的经济现象面前,经济工作者主要是使用头脑直接对材料进行归纳、综合和推理。
十九世纪欧洲主要国家先后进入资本主义社会。
工业化大生产的出现,经济活动规模的不断扩大,需要人们对经济问题做出更精确、深入的分析、解释与判断。
这是计量经济学诞生的社会基础。
到本世纪初,数学、统计学理论日趋完善为计量经济学的出现奠定了理论基础。
17世纪牛顿—莱布尼茨(Newton-Leibniz)提出微积分,19世纪初勒让德尔(Legendre)和高斯(Gauss)分别提出最小二乘法,1821年高斯提出正态分布理论。
19世纪末英国统计学家高尔登(Galton)提出“回归”概念。
20世纪20年代学生(Student)和Fisher 提出抽样分布和精确小样本理论。
尼曼(Neyman J. D.,波兰裔美国人)和皮尔逊(Pearson)提出假设检验理论。
至此,数理统计的理论框架基本形成。
这时,人们自然想到要用这些知识解释、分析、研究经济问题,从而诞生了计量经济学。
“计量经济学”一词首先由挪威经济学家Frisch仿照生物计量学(biometrics)一词于1926年提出。
1930年由Frisch,Tinbergen和Fisher等人发起在美国成立了国际计量经济学会。