数学
- 格式:pptx
- 大小:291.02 KB
- 文档页数:38
数学各种数的概念数学是一门研究数量、结构、变化和空间等概念的学科。
在数学中,有各种各样的数概念,这些概念是数学学习的基础,对于理解和应用数学知识都是至关重要的。
本文将介绍数学中一些常见的数的概念。
一、自然数自然数是最简单、最基本的数。
它们由0和正整数组成,用符号{0, 1, 2, 3, ...}表示。
自然数的特点是它们之间存在着顺序关系,后面的数比前面的数大1。
二、整数整数是由自然数、0和负整数组成。
整数集合用符号{..., -3, -2, -1, 0, 1, 2, 3, ...}表示。
整数和自然数不同的地方在于整数不仅包括正数,还包括负数和0。
整数之间的加减运算是封闭的,也就是说对两个整数进行加减运算后,结果仍然是一个整数。
三、有理数有理数是可以表示为两个整数之间的比值的数。
有理数包括整数和分数,它们的集合用符号Q表示。
有理数之间的加减乘除运算依然得到有理数。
四、无理数无理数是不能表示为两个整数之间的比值的数。
无理数包括无限不循环小数和无限循环小数,如π(圆周率)和√2(2的平方根)。
无理数和有理数一起构成了实数集。
五、实数实数包括有理数和无理数,它们构成了一个连续的数轴。
实数是数学中最基本的数系,包括了所有我们平时使用和接触到的数字。
六、复数复数是由实数和虚数组成的数。
虚数单位i是一个满足i²= -1的数,其中i称为虚数单位。
复数的一般形式为a + bi,其中a是实部,b是虚部。
复数在数学和物理学中都有重要的应用,它们可以表示平面上的向量、交流电路中的电压和电流等。
七、小数小数是指不是整数的数。
小数可以分为有限小数和无限循环小数两种类型。
有限小数是指小数部分有限位数的小数,如0.5、2.1等。
无限循环小数是指小数部分具有循环节并且无限循环下去的小数,如1/3=0.3333...。
八、分数分数是指两个整数之间的比值。
分数由一个分子和一个分母组成,分子表示被分割的份数,分母表示整体被分成的份数。
60种数学计算方法标题:60种数学计算方法在数学领域中,计算方法的研究和应用对于问题解决和理论发展具有重要意义。
本文将介绍60种常见的数学计算方法,旨在帮助读者更好地理解和应用数学知识。
一、基本算术计算方法1. 加法:将两个或多个数值相加,求和的结果。
2. 减法:从一个数值中减去另一个数值,得到差。
3. 乘法:将两个或多个数值相乘,得到积。
4. 除法:用一个数值去除另一个数值,得到商。
5. 平方:将一个数值自乘,得到平方值。
6. 开方:对一个数值进行开方运算,得到其平方根。
7. 百分数:将一个数值表示为百分数形式,即乘以100。
8. 混合运算:将多种运算方法结合使用,求得复杂的计算结果。
二、代数计算方法9. 代数式化简:对复杂的代数式进行化简,得到简化的表达形式。
10. 代数方程求解:通过变量的代换和移项操作,求解代数方程的未知数。
11. 代数不等式求解:对代数不等式进行变量的范围判断,解出满足条件的解集。
12. 多项式展开:将一个多项式按照二项式定理展开成简单的项。
13. 因式分解:将一个多项式分解成多个乘积形式。
14. 分式化简:对含有分式的代数式进行化简,得到简化的表达形式。
15. 根式化简:对根式进行化简,得到简化的根式形式。
16. 平方差公式:快速计算两个数的平方差。
17. 二次方程求解:求解二次方程的未知数。
18. 四则运算法则:用于整数和有理数的加减乘除。
三、几何计算方法19. 点与线的位置关系判断:判断一个点与一条直线的位置关系,包括在直线上、在线段上、在线段延长线上或在直线两侧。
20. 直线与平面的位置关系判断:判断一条直线与一个平面的位置关系,包括平面内、平面外或平面相交。
21. 角的类型判断:根据角的度数或特点,判断其类型,包括直角、锐角、钝角、对顶角等。
22. 三角形分类:根据三角形的边长和角度关系,将三角形分为等边三角形、等腰三角形、直角三角形等。
23. 三角形内角和定理:计算三角形内角和的数值。
数学知识大全数学作为一门科学,是研究数量、结构、空间以及变化等概念的学科。
它是现代科学的基础,也是解决实际问题的重要工具。
本文将为您呈现数学知识的大全,包括数学的基础概念、重要定理与公式、数学在实际生活中的应用等方面的内容。
一、数学的基础概念1. 数的分类:自然数、整数、有理数、实数、复数等。
2. 基本运算:加法、减法、乘法、除法,以及它们的性质和规律。
3. 数的因数与倍数:素数、合数、最大公约数、最小公倍数等概念。
4. 数列与级数:等差数列、等比数列、调和级数等。
二、重要定理与公式1. 代数方程:一元一次方程、二次方程等的解法及性质。
2. 解析几何:直线方程、圆方程、曲线的性质等。
3. 三角函数:正弦、余弦、正切等基本概念及相关公式。
4. 极限、导数与积分:函数的极限与连续性、导数的定义与应用、积分的概念与计算方法等。
三、数学在实际生活中的应用1. 金融领域:利息计算、投资收益分析、贷款利率计算等。
2. 统计学:数据收集与分析、概率与统计推断等。
3. 工程学:测量、建模、优化等领域中的数学方法应用。
4. 物理学:运动学、力学、电磁学中的数学描述与计算等。
四、数学的发展与进步1. 古代数学:埃及、希腊、印度等古代文明的数学成就。
2. 近代数学:微积分、解析几何等的发展与应用。
3. 现代数学:集合论、代数学、几何学等的研究进展。
4. 数学思维:数学的逻辑思维、证明方法及与其他学科的交叉等。
五、数学的重要性与学习方法1. 提高思维能力:数学训练可以培养逻辑推理能力和问题解决能力。
2. 学科交叉应用:数学与物理、化学、经济学等学科有着密切的联系。
3. 技术创新:现代科技的发展需要数学方法的应用与推动。
4. 学习方法:培养兴趣、理解概念、掌握基础、多实践与思考等。
六、数学的趣味性与乐趣1. 数学竞赛:参加数学竞赛可以激发学习兴趣与提高水平。
2. 数学游戏:数独、数学趣味题、数学解谜等游戏丰富了学习的方式。
数学概念的定义
数学是一门抽象的科学,用来探索和表达各种数字的关系和概念。
它是一种独特的分析方法,可以帮助我们更容易地理解和解决实践问题。
1. 数:数学中的基本单位,表示某一具体事物的数量。
2. 变量:是一种形式,可以用来代表某一数量未知,一般可以
是确定的量或未知的量。
3. 方程:是用变量来表达一般的关系的形式。
4. 函数:是一种正确的关系,即当变量的值发生变化时,函数
的值也随之改变。
5. 数列:是数字以特定的次序排列而成的有序集合。
6. 代数:是一种表达数量之间关系的一般化数学方法,是一种
形式上可以进行简化和抽象的数学表示法。
7. 统计:是一种统计学理论的研究,用于分析和比较数据的特征。
8. 几何:是数学中的一种描述形状、空间和大小等的学科,使
用几何图形来说明和表示一般的客观现象。
9. 微积分:是一种研究变化率和变化过程的数学理论,是数学
运算的一种方法,用于计算极限、微分、积分和求解微分方程等。
- 1 -。
数学之道:十大速算窍门1. 数字拆分法将大数字拆分成易于计算的小数字,例如将 12345 拆分为10000 + 2000 + 300 + 40 + 5,分别进行计算再相加。
2. 倍数加速法利用数字的倍数特性,快速计算结果。
例如,计算156 乘以2,可以先计算 150 乘以 2 得到 300,再加上 6 乘以 2 得到 12,最终结果为 312。
3. 数字分组法将数字进行分组,例如将 1234 分为 12 和 34,先计算 12 乘以5 得到 60,再计算 34 乘以 5 得到 170,最后将两个结果相加得到230。
4. 加减交换律在加减法运算中,可以改变数字的顺序,这样可以简化计算。
例如,计算 123 + 45,可以改为计算 123 + 54,更容易计算出结果。
5. 乘法分配律利用乘法分配律,将复杂的乘法运算简化。
例如,计算 (2 + 3) 乘以 4,可以先计算 2 乘以 4 得到 8,再计算 3 乘以 4 得到 12,最后将两个结果相加得到 20。
6. 数字定位法对于较大的数字,可以通过数字定位法快速计算出结果。
例如,计算 123456 乘以 7,可以先计算 123456 乘以 10 得到 1234560,再减去 123456 得到 1111004。
7. 平方速算法利用平方数的特性,快速计算数字的平方。
例如,计算 13 的平方,可以先计算 10 的平方得到 100,再计算 3 的平方得到 9,最后将两个结果相加得到 169。
8. 立方速算法利用立方数的特性,快速计算数字的立方。
例如,计算 5 的立方,可以先计算 4 的立方得到 64,再加上 1 的立方得到 65。
9. 递减相加法在加法运算中,可以使用递减相加法,将计算简化。
例如,计算 123 + 45,可以先从 123 中减去 40 得到 83,再加上 5 得到 88。
10. 递增相减法在减法运算中,可以使用递增相减法,将计算简化。
例如,计算 123 - 45,可以先加上 1 得到 124,再减去 40 得到 84。
数学的数学技能数学作为一门学科,是研究数量、结构、空间以及变化等概念和关系的学科。
在学习和应用数学的过程中,数学技能是必不可少的。
本文将探讨数学的数学技能,并介绍如何提升和应用这些技能。
一、基本的计算技能1. 加法和减法:加法和减法是最基本的计算技能,它们是进行数学运算的基础。
通过在日常生活中的实际应用中练习这些技能,如购物时计算物品的价格,可以帮助我们提高加法和减法的能力。
2. 乘法和除法:乘法和除法是进行更复杂的数学运算的基础,它们能够帮助我们解决实际问题。
通过练习乘法和除法,我们能够计算面积、体积、速度等各种实际物理量。
3. 百分比和比例:百分比和比例是量化和比较概念的重要工具。
掌握百分比和比例的计算方法可以帮助我们分析统计数据,了解各种比率关系,比如利润率、增长率等。
二、代数技能1. 代数方程式:代数方程式是数学中的一种常见形式,它们可以用来解决各种问题。
通过学习解方程的方法和技巧,我们可以解决实际生活中的各种问题,如物体运动的轨迹、经济模型的建立等。
2. 函数和图像:函数是一种描述变量之间关系的数学工具,图像是函数关系的可视化呈现。
掌握函数和图像的概念和技能,可以帮助我们分析和解释各种现象,如物体的运动规律、市场需求曲线等。
三、几何技能1. 图形的认识和测量:几何学研究的是形状、大小和相对位置等概念。
认识各种常见的图形,如点、线、面、体等,以及测量各种物体的长度、面积、体积等,是提高几何技能的基础。
2. 角度和三角形:角度和三角形是几何学中的基本概念,它们是解决几何问题的重要工具。
通过学习角度的测量和计算方法,以及三角形的性质和计算方法,我们可以解决各种几何问题,如建筑设计、地理测量等。
四、概率和统计技能1. 概率:概率是描述事件发生可能性的数学工具。
掌握概率的概念和计算方法可以帮助我们分析和预测各种事件的可能性,如天气预报、股票走势等。
2. 统计:统计是对数据进行收集、整理和分析的过程。
数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。
2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。
3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。
6. 三角形面积公式:面积S=底×高÷2。
7. 圆柱体体积公式:体积V=底面积S×高h。
8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。
9. 圆周长公式:周长C=2πr(其中r是半径)。
10. 圆面积公式:面积S=πr^2(其中r是半径)。
11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。
12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。
13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。
14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。
15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。
以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。
数学公式100个1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)3.减法的性质:a-(b+c)=a-b-c4.乘法交换律:ab=ba5.乘法结合律:(ab)c=a(bc)6.乘法分配律:(a+b)c=ac+bc7.除法的性质:a÷(b ×c)=a÷b÷c8.商不变的规律:被除数和除数同时乘或除以相同的数(0除外),商不变。
9.乘法验算:a÷b=(a ×c)÷(b×c)10.加法验算:a+b=c,则b=c-a11.减法验算:a-b=c,则b=a-c12.除法验算:a÷b=c,则b=a÷c13.分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
14.分数加减法的计算法则:同分母分数相加减,分母不变,只把分子相加减;异分母分数相加减,先通分,再加减。
15.分数化简:分子、分母是互质数的分数叫最简分数,最简分数的分子、分母互质。
16.圆的周长公式:C=2πr17.圆的面积公式:S=πr²18.正方形的周长公式:P=4a19.正方形的面积公式:S=a²20.长方形的周长公式:P=(a+b)×221.长方形的面积公式:S=ab22.三角形的面积公式:S=(底×高)÷223.梯形的面积公式:S=(上底+下底)×高÷224.平行四边形的面积公式:S=ah25.圆柱的侧面积公式:S=ch26.圆柱的表面积公式:S=2πrh+2πr²27.圆柱的体积公式:V=πr²h28.圆锥的体积公式:V=(1/3)πr²h29.长方体的表面积公式:S=(ab+ah+bh)×2 30.长方体的体积公式:V=abc31.正方体的表面积公式:S=6a²32.正方体的体积公式:V=a³33.容积的定义:物体所容纳的空间的大小叫做物体的容积。
数学基础公式
数学基础公式
数学是自然科学的重要组成部分,它是研究数量、结构、变化和空间等概念及其相互关系的学科。
在数学中,有许多基础公式,下面将为你介绍几个常见的数学基础公式。
一、勾股定理
勾股定理又称毕达哥拉斯定理,是三角形中最基本的定理之一。
它的表述是:直角三角形的斜边的平方等于两条直角边的平方和。
勾股定理的公式为:c²= a²+ b²,其中c 为斜边,a 和b 为直角边。
二、圆的面积公式
圆是平面上离定点距离相等的点的集合。
它是数学中最基础的图形之一,圆的面积公式为:S = πr²,其中S 为圆的面积,r 为圆的半径,π的近似值为3.14。
三、直线方程
直线是平面上的一种基本图形,它可以用一般式方程和斜截式方程来表示。
一般式方程的形式为Ax + By + C = 0,其中A、B、C 为常数,x 和y 是直线上任意一点的坐标。
斜截式方程的形式为y = kx + b,其中k 是斜率,b 是截距,表示直线与y 轴的交点。
四、三角函数公式
三角函数是介于角度和正弦、余弦、正切等函数之间的一类函数,它们在数学、物理、工程等领域中得到广泛应用。
其中最基础的三角函数为正弦函数、余弦函数和正切函数,它们的公式如下:
正弦函数:sinθ= 对边/ 斜边
余弦函数:cosθ= 邻边/ 斜边
正切函数:tanθ= 对边/ 邻边
其中,θ为角度,对边、邻边、斜边分别为三角形中的对应边。
以上是数学中一些基础公式的介绍,希望对你有所帮助。
常用的数学名词术语100个数学作为一门学科,拥有丰富的术语和名词,这些术语和名词在数学研究和学习中起着重要的作用。
本文将介绍100个常用的数学名词术语,帮助读者更好地理解数学知识。
1. 数字(Number):用来表示数量或度量的符号或字符。
2. 数量(Quantity):表示事物的多少。
3. 数(Count):用来表示某种事物的个数。
4. 整数(Integer):不带小数的数字,包括正整数、负整数和零。
5. 正整数(Positive Integer):大于零的整数。
6. 负整数(Negative Integer):小于零的整数。
7. 零(Zero):表示没有数量或空集的数。
8. 分数(Fraction):表示整体被均等分割的部分。
9. 真分数(Proper Fraction):分子小于分母的分数。
10. 假分数(Improper Fraction):分子大于分母的分数。
11. 纯分数(Mixed Fraction):整数和真分数的组合。
12. 百分数(Percentage):以100为基数的分数。
13. 分数形式(Fractional Form):以分数表示的数。
14. 小数(Decimal):整数和小数部分组成的数。
15. 有限小数(Finite Decimal):小数部分有限的数。
16. 无限小数(Infinite Decimal):小数部分无限循环的数。
17. 有理数(Rational Number):可以表示为两个整数的比值的数。
18. 无理数(Irrational Number):不能表示为两个整数的比值的数。
19. 实数(Real Number):包括有理数和无理数的数。
20. 虚数(Imaginary Number):不能表示为实数的数,形如a+bi。
21. 复数(Complex Number):实数和虚数的组合。
22. 加法(Addition):求两个或多个数的和。
23. 减法(Subtraction):求两个数的差。
数学名词抛物线直线边、差、长、乘、除、底、点、度、分、高、勾、股、行、和、弧环、集、加、减、积、角、解、宽、棱、列、面、秒、幂、模、球式、势、商、体、项、象、线、弦、腰、圆十位、个位、几何、子集、大圆、小圆、元素、下标、下凸、下凹百位、千位、万位、分子、分母、中点、约分、加数、减数、数位通分、除数、商数、奇数、偶数、质数、合数、乘数、算式、进率因式、因数、单价、数量、约数、正数、负数、整数、分数、倒数乘方、开方、底数、指数、平方、立方、数轴、原点、同号、异号余数、除式、商式、余式、整式、系数、次数、速度、距离、时间方程、等式、左边、右边、变号、相等、解集、分式、实数、根式对数、真数、底数、首数、尾数、坐标、横轴、纵轴、函数、常显变量、截距、正弦、余弦、正切、余切、正割、余割、坡度、坡比频数、频率、集合、数集、点集、空集、原象、交集、并集、差集映射、对角、数列、等式、基数、正角、负角、零角、弧度、密位函数、端点、全集、补集、值域、周期、相位、初相、首项、通项公比、公差、复数、虚数、实数、实部、虚部、实轴、虚轴、向量辐角、排列、组合、通项、概率、直线、公理、定义、概念、射线线段、顶点、始边、终边、圆角、平角、锐角、纯角、直角、余角补角、垂线、垂足、斜线、斜足、命题、定理、条件、题设、结论证明、内角、外角、推论、斜边、曲线、弧线、周长、对边、距离矩形、菱形、邻边、梯形、面积、比例、合比、等比、分比、垂心重心、内心、外心、旁心、射影、圆心、半径、直径、定点、定长圆弧、优弧、劣弧、等圆、等弧、弓形、相离、相切、切点、切线相交、割线、外离、外切、内切、内径、外径、中心、弧长、扇形轨迹、误差、视图、交点、椭圆、焦点、焦距、长袖、短轴、准线法线、移轴、转轴、斜率、夹角、曲线、参数、摆线、基圆、极轴极角、平面、棱柱、底面、侧面、侧棱、楔体、球缺、棱锥、斜高棱台、圆柱、圆锥、圆台、母线、球面、球体、体积、环体、环面球冠、极限、导数、微分、微商、驻点、拐点、积分、切面、面角极值被减数、被乘数、被除数、假分数、代分数、质因数、小数点多位数、百分数、单名数、复名数、统计表、统计图、比例尺循环节、近似数、准确数、圆周率、百分位、十分位、千分位万分位、自然数、正整数、负整数、相反数、绝对值、正分数负分数、有理数、正方向、负方向、正因数、负因数、正约数运算律、交换律、结合律、分配律、最大数、最小数、逆运算奇次幂、偶次幂、平方表、立方表、平方数、立方数、被除式代数式、平方和、平方差、立方和、立方差、单项式、多项式二项式、三项式、常数项、一次项、二次项、同类项、填空题选择题、判断题、证明题、未知数、大于号、小于号、等于号恒等号、不等号、公分母、不等式、方程组、代入法、加减法公因式、有理式、繁分式、换元法、平方根、立方式、根指数小数点、无理数、公式法、判别式、零指数、对数式、幂指数对数表、横坐标、纵坐标、自变量、因变量、函数值、解析法解析式、列表法、图象法、指点法、截距式、正弦表、余弦表正切表、余切表、平均数、有限集、描述法、列举法、图示法真子集、欧拉图、非空集、逆映射、自反性、对称性、传递性可数集、可数势、维恩图、反函数、幂函数、角度制、弧度制密位制、定义城、函数值、开区间、闭区间、增函数、减函数单调性、奇函数、偶函数、奇偶性、五点法、公因子、对逆性比较法、综合法、分析法、最大值、最小值、递推式、归纳法复平面、纯虚数、零向量、长方体、正方体、正方形、相交线延长线、中垂线、对预角、同位角、内错角、无限极、长方形平行线、真命题、假命题、三角形、内角和、辅助线、直角边全等形、对应边、对应角、原命题、逆命解、原定理、逆定理对称点、对称轴、多边形、对角线、四边形、五边形、三角形否命题、中位线、相似形、比例尺、内分点、外分点、平面图同心圆、内切圆、外接圆、弦心距、圆心角、圆周角、弓形角内对角、连心线、公切线、公共弦、中心角、圆周长、圆面积反证法、主视图、俯视图、二视图、三视图、虚实线、左视图离心率、双曲线、渐近线、抛物线、倾斜角、点斜式、斜截式两点式、一般式、参变数、渐开线、旋轮线、极坐标、公垂线斜线段、半平面、二面角、斜棱柱、直棱柱、正梭柱、直观图正棱锥、上底面、下底面、多面体、旋转体、旋转面、旋转轴拟柱体、圆柱面、圆锥面、多面角、变化率、左极限、右极限隐函数、显函数、导函数、左导教、右导数、极大值、极小值极大点、极小点、极值点、原函数、积分号、被积式、定积分无穷小、无穷大、连分数、近似数、弦切角混合运算、乘法口诀、循环小数、无限小数、有限小数、简易方程四舍五人、单位长度、加法法则、减法法则、乘法法则、除法法则数量关系、升幂排列、降幂排列、分解因式、完全平方、完全立方同解方程、连续整数、连续奇数、连续偶数、同题原理、最简方程最简分式、字母系数、公式变形、公式方程、整式方程、二次方根三次方根、被开方数、平方根表、立方根表、二次根式、几次方根求根公式、韦达定理、高次方程、分式方程、有理方程、无理方程分数指数、同次根式、异次根式、最简根式、同类根式、常用对数换底公式、反对数表、坐标平面、坐标原点、比例系数、一次函数二次函数、三角函数、正弦定理、余弦定理、样本方差、集合相交等价集合、可数集合、对应法则、指数函数、对数函数、自然对数指数方程、对数方程、单值对应、单调区间、单调函数、诱导公式周期函数、周期交换、振幅变换、相位变换、正弦曲线、余弦曲线正切曲线、余切曲线、倍角公式、半角公式、积化和差、和差化积三角方程、线性方程、主对角线、副对角钱、零多项式、余数定理因式定理、通项公式、有穷数列、无穷数列、等比数列、总和符号特殊数列、不定方程、系数矩阵、增广炬阵、初等变换、虚数单位共轭复数、共轭虚数、辐角主值、三角形式、代数形式、加法原理乘法原理、几何图形、平面图形、等量代换、度量单位、角平分线互为余角、互为补角、同旁内角、平行公理、性质定理、判定定理斜三角形、对应顶点、尺规作图、基本作图、互逆命题、互逆定理凸多边形、平行线段、逆否命题、对称中心、等腰梯形、等分线段比例线段、勾股定理、黑金分割、比例外项、比例内项、比例中项比例定理、相似系数、位似图形、位似中心、内公切线、外公切线正多边形、扇形面积、互否命题、互逆命题、等价命题、尺寸注法标准方程、平移公式、旋转公式、有向线段、定比分点、有向直线经验公式、有心曲线、无心曲线、参数方程、普通方程、极坐标系等速螺线、异面直线、直二面角、凸多面体、祖恒原理、体积单位球面距离、凸多面角、直三角面、正多面体、欧拉定理、连续函数复合函数、中间变量、瞬间速度、瞬时功率、二阶导数、近似计算辅助函数、不定积分、被积函数、积分变量、积分常数、凑微分法相对误差、绝对误差、带余除法、微分方程、初等变换、立体几何平面几何、解析几何、初等函数、等差数列四舍五入法、纯循环小数、一次二项式、二次三项式、最大公约数最小公倍数、代入消元法、加减消元法、平方差公式、立方差公式立方和公式、提公因式法、分组分解法、十字相乘法、最简公分母算数平方根、完全平方数、几次算数根、因式分解法、双二次方程负整数指数、科学记数法、有序实数对、两点间距离、解析表达式正比例函数、反比例函数、三角函数表、样本标准差、样本分布表总体平均数、样本平均数、集合不相交、基本恒等式、最小正周期两角和公式、两角差公式、反三角函数、反正弦函数、反余弦函数反正切函数、反余切函数、第一象限角、第二象限角、第三象限角第四象限角、线性方程组、二阶行列式、三阶行列式、四阶行列式对角钱法则、系数行列式、代数余子式、降阶展开法、绝对不等式条件不等式、矛盾不等式、克莱姆法则、算术平均数、几何平均数一元多项武、乘法单调性、加法单调性、最小正周期、零次多项式待定系数法、辗转相除法、二项式定法、二项展开式、二项式系数数学归纳法、同解不等式、垂直平分线、互为邻补角、等腰三角形等边三角形、锐角三角形、钝角三角形、直角三角形、全等三角形边角边公理、角边角公理、边边边定理、轴对称图形、第四比例项外角平分线、相似多边形、内接四边形、相似三角形、内接三角形内接多边形、内接五边形、外切三角形、外切多边形、共轭双曲线斜二测画法、三垂线定理、平行六面体、直接积分法、换元积分法第二积分法、分部积分法、混循环小数、第一积分法、同类二次根一元一次方程、一元二次方程、完全平方公式、最简二次根式直接开平方法、半开半闭区间、万能置换公式、绝对值不等式实系数多项式、复系数多项式、整系数多项式、不等边三角形中心对称图形、基本初等函数、基本积分公式、分部积分公式二元一次方程、三元一次方程一元一次不等式、一元二次不等式、二元一次方程组三元一次方程组、二元二次方程组、平面直角坐标系等腰直角三角形、二元一次不等式、二元线性方程组三元线性方程组、四元线性方程组、多项式恒等定律一元一次不等式组、三元一次不定方程、三元齐次线性方程组。