9-123扭矩图薄壁筒扭转胡克定律
- 格式:ppt
- 大小:858.50 KB
- 文档页数:20
材料力学大连理工大学王博纯剪切切应力互等定理剪切胡克定律t r1. 变形特点圆周线 形状、大小、间距未变绕轴线旋转不同角度纵向线 间距未变,倾斜角度相同一、横截面上的切应力(目的:由内力表征出应力)薄壁圆筒扭转 纯剪切什么是薄壁圆筒? ——壁厚 t 远小于平均半径 r圆周线 纵向线2. 横截面上的应力猜测(特点)切应力τσ = 0 ;(2)大小 沿壁厚均匀分布、数值由静力学关系求得(1)方向 垂直于所在半径、 对轴线的矩与扭矩一致Q :从合力的作用效果分析,切应力与之前所学的连接件切应力有何不同? F τ ττ ≠ 0 推断(有无) M e T得 t Tr或 其中A 0为壁厚中线所围的面积由静力等效 ⎰=⋅⋅=⋅ATr t r A r τπτ2d 22πT r t τ=02T A t τ=tT r 20πA r =d A τd Ax yz 二、切应力互等定理Theorem of Conjugate Shearing Stress 应力单元体特点 1.各边长无穷小 2.各面应力均匀分布 3.平行两面对应应力数值相等 d y d x d z y z x d xd y d zτ'∑M x =0, ∴ 定理 在互相垂直的两个截面上1.垂直于截面交线的切应力数值相等2.方向同时指向截面交线,或同时背离截面交线 τ()()d d d d d d 0x y z x z y ττ'-==ττ'圆筒扭转横截面边缘各点切应力τ的方向为什么一定与边线相切(垂直于半径)?切应力互等定理——小试牛刀!!τM eτττTτ τ三、剪切胡克定律 Hooke ’s Law in Shear ττ γ γ 回忆 材料的拉压胡克定律 当 σ εσp P =E σσσε≤,弹性常数之关系 当 τ ≤ τpτ = Gγ式中 τp — 剪切比例极限G — 切变模量 Shear Modulus 单位 GPa τ © 变形后 线性剪切胡克定律 τ τ γ τp ()ν+=12E G。