团风县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 格式:doc
- 大小:242.50 KB
- 文档页数:7
凤县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是()A .5B .3C .2D .2. 平面向量与的夹角为60°,=(2,0),||=1,则|+2|=( )A .B .C .4D .12 3. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能4. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( )A .M=PB .P ⊊MC .M ⊊PD .M ∪P=R 5. 已知函数在处取得最大值,则函数的图象( )sin(2)y x ϕ=+6x π=cos(2)y x ϕ=+A .关于点对称B .关于点对称(0)6π,(0)3π,C .关于直线对称D .关于直线对称6x π=3x π=6. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .7. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A .i ≥7?B .i >15?C .i ≥15?D .i >31?班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( )A .(﹣3,0)∪(2,3)B .(﹣∞,﹣3)∪(0,3)C .(﹣∞,﹣3)∪(3,+∞)D .(﹣3,0)∪(2,+∞) 9. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是()A .B .C .D .10.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)11.如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等( )A .B .C .D .12.某一简单几何体的三视图如所示,该几何体的外接球的表面积是()A .13πB .16πC .25πD .27π二、填空题13.函数()满足且在上的导数满足,则不等式)(x f R x ∈2)1(=f )(x f R )('x f 03)('>-x f 的解集为.1log 3)(log 33-<x x f 【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.14.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .15.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)16.设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为1362722=+y x ,则此双曲线的标准方程是.)4,15(17.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进 行那么安排这5项工程的不同排法种数是 .(用数字作答)18.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= .三、解答题19.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;12(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x)为f 1(x),f 2(x)的“活动函数”.已知函数.。
团风县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱2. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .3. 一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 4. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .0 5. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( )A .4 2B .4 5C .2 2D .2 56. 如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.7. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1y x x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.8. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .29. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .① B .② C .③D .④10.过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=011.下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.12.正方体1111D ABC A B C D - 中,,E F 分别为1,AB B C 的中点,则EF 与平面ABCD 所成角的正 切值为( )A .B C.12 D 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60︒角;④DM 与BN 是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).14.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.15.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.16.在下列给出的命题中,所有正确命题的序号为 .①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.三、解答题(本大共6小题,共70分。
团风县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2402. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )A B C.4 D .343. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .34. 设D 为△ABC 所在平面内一点,,则( )A .B .C .D .5. 已知角的终边经过点()3P x ,()0x <且cos x θ=,则等于( )A .1-B .13- C .3- D .3-6. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )A .B .C .D .7. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( ) A .x ﹣2y+7=0 B .2x+y ﹣1=0 C .x ﹣2y ﹣5=0 D .2x+y ﹣5=0 8. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)9. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)10.下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 11.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.12.已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或10二、填空题13.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .14.已知f (x )=x (e x +a e -x )为偶函数,则a =________.15.已知i 是虚数单位,且满足i 2=﹣1,a ∈R ,复数z=(a ﹣2i )(1+i )在复平面内对应的点为M ,则“a=1”是“点M 在第四象限”的 条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)16.已知实数x ,y 满足2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩,目标函数3z x y a =++的最大值为4,则a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.17.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2; ⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.三、解答题18.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .19.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.20.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.(Ⅰ)证明:AG⊥平面ABCD;(Ⅱ)若直线BF与平面ACE所成角的正弦值为,求AG的长.21.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性质Ω.(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.22.已知等差数列满足:=2,且,成等比数列。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C . D.(ln y x =+2y x =tan y x =xy e =3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个4. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D . 6. 已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ +=u u u r u u u r r OPQ ∆的面积等于()A .B .CD7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .48. 已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝9. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .211.下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )12.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.函数y=lgx 的定义域为 .17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.三、解答题19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.20.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线.(2)若,求的值.23.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 24.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值;(Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A DDCCCCCB题号1112答案DC二、填空题13. (,) .14. . 15. .16. {x|x >0} .17. ③ .18. ①④⑤ 三、解答题19. 20. 21. 22.23.(1);(2).122n n b +=-222(4)n n S n n +=-++24.。
团风县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( ) A .两个点 B .四个点 C .两条直线 D .四条直线2. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>03. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的164. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .125. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+B .12+23πC .12+24πD .12+π6. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x .则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A.7 B.6 C.5 D.4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.7.已知函数f(x)是定义在R上的奇函数,当x≥0时,.若,f(x-1)≤f(x),则实数a的取值范围为A[]B[]C[]D[]8.执行如图的程序框图,则输出的s=()A.B.﹣C.D.﹣9.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为()1111]A.10B.51C.20D.3010.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x11.点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .12.已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB最小则直线的方程是 .14.(lg2)2+lg2•lg5+的值为 .15.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 16.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.三、解答题(本大共6小题,共70分。
凤县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .2. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c3. 将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A .B .﹣C .﹣D .4. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .5. 已知菱形ABCD 的边长为3,∠B=60°,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .C .πD .6π6. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.7. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.4 B.16 C.27 D.368.设M={x|﹣2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()A.B.C.D.9.设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1=,a n=f(n)(n∈N*),则数列{a n}的前n项和S n的取值范围是()A.[,2)B.[,2] C.[,1)D.[,1]10.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()A.B.C.D.=0.08x+1.2311.设m是实数,若函数f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,但不是偶函数,则下列关于函数f (x)的性质叙述正确的是()A.只有减区间没有增区间 B.是f(x)的增区间C.m=±1 D.最小值为﹣312.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( ) A .0.42 B .0.28 C .0.3 D .0.7二、填空题13.不等式()2110ax a x +++≥恒成立,则实数的值是__________.14.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为 .15.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .16.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.17.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .18.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .三、解答题19.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4 (1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.20.(本小题满分12分)已知1()2ln ()f x x a x a R x=--∈. (Ⅰ)当3a =时,求()f x 的单调区间;(Ⅱ)设()()2ln g x f x x a x =-+,且()g x 有两个极值点,其中1[0,1]x ∈,求12()()g x g x -的最小值. 【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.21f x =sin ωx+φω00φ2π(2)求函数g (x )=f (x )+sin2x 的单调递增区间.22.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.23.已知椭圆+=1(a >b >0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.24.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.凤县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题a13.114.y2=4x或y2=16x.15..16.17..18.5.三、解答题19.20.21.22.23.24.。
团风县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a2. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .563. 抛物线x 2=4y 的焦点坐标是( )A .(1,0)B .(0,1)C .()D .()4. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为( )A .94 B . C.92D .4 5. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}6. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥7. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q8. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C ) 13 (D ) 12- 9. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .1210.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[] C[]D[]11.某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.12.与向量=(1,﹣3,2)平行的一个向量的坐标是( )A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)二、填空题13.设某双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .14.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________.15.已知f (x )=,则f[f (0)]= .16.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .17.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .18.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.三、解答题19.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少?20.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x )>恒成立,求实数k 的取值范围.21.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF. (1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.22.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.23.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.24.已知△ABC 的顶点A (3,1),B (﹣1,3)C (2,﹣1)求: (1)AB 边上的中线所在的直线方程; (2)AC 边上的高BH 所在的直线方程.团风县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a ,且b >1,又c=2log 52=log 54<1, ∴c <b <a . 故选:A .2. 【答案】D 【解析】考点:1.斜率;2.两点间距离. 3. 【答案】B【解析】解:∵抛物线x 2=4y 中,p=2, =1,焦点在y 轴上,开口向上,∴焦点坐标为 (0,1),故选:B .【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x 2=2py 的焦点坐标为(0,),属基础题.4. 【答案】] 【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()11f x x =+[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。
团风县三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .02. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .3. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为454. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .45. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=6. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .7. 已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .8. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=09. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)10.若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞ ,,D .[1)+∞,11.已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .12.已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件二、填空题13.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ . 14.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是15.已知x 是400和1600的等差中项,则x= .16.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .17.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .18.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .三、解答题19.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.20.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.21.如图,平面ABB 1A 1为圆柱OO 1的轴截面,点C 为底面圆周上异于A ,B 的任意一点. (Ⅰ)求证:BC ⊥平面A 1AC ;(Ⅱ)若D 为AC 的中点,求证:A 1D ∥平面O 1BC .22.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.23.实数m取什么数值时,复数z=m+1+(m﹣1)i分别是:(1)实数?(2)虚数?(3)纯虚数?24.如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.团风县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】解:∵A 1B ∥D 1C ,∴CP 与A 1B 成角可化为CP 与D 1C 成角.∵△AD 1C 是正三角形可知当P 与A 重合时成角为,∵P 不能与D 1重合因为此时D 1C 与A 1B 平行而不是异面直线,∴0<θ≤.故选:D .2. 【答案】A【解析】解:∵∴,即△PF 1F 2是P 为直角顶点的直角三角形.∵Rt △PF 1F 2中,,∴=,设PF 2=t ,则PF 1=2t∴=2c ,又∵根据椭圆的定义,得2a=PF 1+PF 2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.3. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD 所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1 考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.4. 【答案】A【解析】解:分两类讨论,过程如下:①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递增,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,舍去;②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递减,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,符合题意; 故选A .5. 【答案】D 【解析】考点:直线的方程. 6. 【答案】B【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.7.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.9.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.10.【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式.11.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.12.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.二、填空题13.【答案】1 2 -考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.14.【答案】(],1-∞【解析】试题分析:函数(){}2min2,f x x x=-的图象如下图:观察上图可知:()f x 的取值范围是(],1-∞。
方正县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是()A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数2. 如图,直三棱柱ABC ﹣A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB=AC=AA 1=1,BC=,则异面直线A 1C与B 1C 1所成的角为()A .30°B .45°C .60°D .90°3. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( )A .S 10B .S 9C .S 8D .S 74. 设是等差数列的前项和,若,则( )n S {}n a 5359a a =95SS =A .1B .2C .3D .45. 与向量=(1,﹣3,2)平行的一个向量的坐标是()A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)6.设a >0,b >0,若是5a 与5b 的等比中项,则+的最小值为()A .8B .4C .1D .7. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣8. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A .92%B .24%C .56%D .5.6%9. 若复数z=2﹣i ( i 为虚数单位),则=()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .4+2iB .20+10iC .4﹣2iD .10.函数y=x+xlnx 的单调递增区间是( )A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)11.已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是()A .0B .1C .2D .312.若函数则的值为( )1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5 B . C . D .21-7-二、填空题13.已知一个空间几何体的三视图如图所示,其三视图均为边长为1的正方形,则这个几何体的表面积为 .14.要使关于的不等式恰好只有一个解,则_________.x 2064x ax ≤++≤a =【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.15.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .16.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .17.在直角三角形ABC 中,∠ACB=90°,AC=BC=2,点P 是斜边AB 上的一个三等分点,则= .18.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 . 三、解答题19.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:月份x12345销售量y (百件)44566(Ⅰ)该同学为了求出y 关于x 的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X ,求X 的分布列和数学期望.20.设f (x )=2x 3+ax 2+bx+1的导数为f ′(x ),若函数y=f ′(x )的图象关于直线x=﹣对称,且f ′(1)=0(Ⅰ)求实数a ,b 的值(Ⅱ)求函数f (x )的极值.21.某城市100户居民的月平均用电量(单位:度),以,,,[)160,180[)180,200[)200,220,,,分组的频率分布直方图如图.[)220,240[)240,260[)260,280[]280,300(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]22.(本小题满分12分)求下列函数的定义域:(1);()f x =(2)()f x =23. 定圆动圆过点且与圆相切,记圆心的轨迹为22:(16,M x y ++=N 0)F M N .E (Ⅰ)求轨迹的方程;E (Ⅱ)设点在上运动,与关于原点对称,且,当的面积最小时,求直线,,A B C E A B AC BC =ABC ∆AB 的方程.24.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立C 2cos ρθ=平面直角坐标系,直线的参数方程是(为参数).243x ty t =-+⎧⎨=⎩(1)写出曲线的参数方程,直线的普通方程;C (2)求曲线上任意一点到直线的距离的最大值.C方正县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C C CACBBCAB题号1112答案CD111]二、填空题13. 3+ .14.. ±15. 3 .16. .17. 4 .18. (﹣1,﹣]∪[,) .三、解答题19. 20.21.(1);(2)众数是,中位数为.0.0075x =23022422.(1);(2).()[),11,-∞-+∞U [)(]1,23,4-U 23.24.(1)参数方程为,;(2).1cos sin x y θθ=+⎧⎨=⎩3460x y -+=145。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果定义在R 上的函数满足:对于任意,都有)(x f 21x x ≠)()(2211x f x x f x +,则称为“函数”.给出下列函数:①;②)()(1221x f x x f x +>)(x f H 13++-=x x y ;③;④,其中“函数”的个数是( ))cos sin (23x x x y --=1+=xe y ⎩⎨⎧=≠=000||ln x x x y H A . B . C . D .43212. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为()A .B .C .D .3. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=()A .B .C .D .04. 下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.5. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .46. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ()A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是()A .60°B .45°C .90°D .120°8. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要9. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .410.下列各组函数中,表示同一函数的是()A 、x 与B 、 与()f x =()f x =2x x()1f x x =-()f x =C 、与D 、与()f x x =()f x =()f x x =2()f x =11.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)12.在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,6πB .[,)6ππ C. (0,]3πD .[,)3ππ二、填空题13.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值;④当x=﹣1时,(i ,j )有2种不同取值;⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号) 14.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取19.0100人,则应在高三年级中抽取的人数等于 .15.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.16.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =17.运行如图所示的程序框图后,输出的结果是 18.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则.a =三、解答题19.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.20.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),y t y t 1()16t ay -=a如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;y t (2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。
湖北省2018届高三上学期11月统测试卷(理科数学)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={x∈R|x2﹣4x<0},集合N={0,4},则M∪N=()A.[0,4] B.[0,4)C.(0,4] D.(0,4)2.设i为虚数单位,复数z=,则z的共轭复数=()A.﹣1﹣3i B.1﹣3i C.﹣1+3i D.1+3i3.已知向量,且,则实数a的值为()A.0 B.2 C.﹣2或1 D.﹣24.设复数z满足(1+i)•z=1﹣2i3(i为虚数单位),则复数z对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限5.原命题:“设a、b、c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个6.图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为A1,A2,…A14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.8 B.9 C.10 D.117.若变量x,y满足约束条件则z=2x﹣y的最小值等于()A. B.﹣2 C. D.28.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系;那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误D.以上三种说法都不正确9.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是()A.B.C.D.10.已知某几何体的三视图如图所示,则该几何体体积为()A.B.C.D.11.实数x,y满足,若z=2x+y的最大值为9,则实数m的值为()A.1 B.2 C.3 D.412.在四棱锥S﹣ABCD中,底面ABCD是平行四边形,M、N分别是SA,BD上的点.①若=,则MN∥面SCD;②若=,则MN∥面SCB;③若面SDA⊥面ABCD,且面SDB⊥面ABCD,则SD⊥面ABCD.其中正确的命题个数是()A.0 B.1 C.2 D.3二.填空题:本大题共4小题,每小题5分.13.(1+2)3(1﹣)5的展开式中x的系数是.14.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:(参考公式==, =﹣,,表示样本均值)则y对x的线性回归方程为.15.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则= .16.已知正数a,b满足a+b=2,则的最小值为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.某重点中学100位学生在市统考中的理科综合分数,以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(Ⅰ)求直方图中x的值;(Ⅱ)求理科综合分数的众数和中位数;(Ⅲ)在理科综合分数为[220,240),[240,260),[260,280),[280,300]的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[220,240)的学生中应抽取多少人?18.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC 的中点.(Ⅰ)证明:ND∥面PAB;(Ⅱ)求AN与面PND所成角的正弦值.19.新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7﹣10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以如表格记录了他们的评分情况.(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记X 表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.20.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?21.如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠ADC=60°,PA=PC,PD⊥PB,AC∩BD=E,二面角P﹣AC﹣B的大小为60°.(1)证明:AC⊥PB;(2)求二面角E﹣PD﹣C的余弦值.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x+m|+|2x+1|.(Ⅰ)当m=﹣1,解不等式f(x)≤3;(Ⅱ)求f(x)的最小值.湖北省2018届高三上学期11月统测数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={x∈R|x2﹣4x<0},集合N={0,4},则M∪N=()A.[0,4] B.[0,4)C.(0,4] D.(0,4)【考点】并集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:集合M={x∈R|x2﹣4x<0}=(0,4),集合N={0,4},则M∪N=[0,4],故选:A.2.设i为虚数单位,复数z=,则z的共轭复数=()A.﹣1﹣3i B.1﹣3i C.﹣1+3i D.1+3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,则z的共轭复数可求.【解答】解:z==,则=﹣1+3i.故选:C.3.已知向量,且,则实数a的值为()A.0 B.2 C.﹣2或1 D.﹣2【考点】数量积判断两个平面向量的垂直关系.【分析】由,可得=0,解得a.【解答】解:∵,∴=a+2(1﹣a)=0,解得a=2.故选:B.4.设复数z满足(1+i)•z=1﹣2i3(i为虚数单位),则复数z对应的点位于复平面内()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】化简复数为:a+bi的形式,求出对应点的坐标,即可判断选项.【解答】解:复数z满足(1+i)•z=1﹣2i3,可得z===,复数对应点的坐标()在第一象限.故选:A.5.原命题:“设a、b、c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个【考点】四种命题的真假关系.【分析】∵a>b,∴关键是c是否为0,由等价命题同真同假,只要判断原命题和逆命题即可.【解答】解:原命题:若c=0则不成立,由等价命题同真同假知其逆否命题也为假;逆命题:∵ac2>bc2知c2>0,由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴有2个真命题.故选C6.图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,图中第1次到14次的考试成绩依次记为A1,A2,…A14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是()A.8 B.9 C.10 D.11【考点】程序框图;茎叶图.【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加14次考试成绩超过90分的人数;根据茎叶图的含义可得超过90分的人数为10个,故选:C.7.若变量x,y满足约束条件则z=2x﹣y的最小值等于()A. B.﹣2 C. D.2【考点】简单线性规划.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1)﹣=.故选:A.8.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系;那么在100个吸烟的人中必有99人患有肺病B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误D.以上三种说法都不正确【考点】独立性检验的应用.【分析】由独立性检验知,概率值是指我们认为我的下的结论正确的概率,从而对四个命题判断.【解答】解:若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系;而不是在100个吸烟的人中必有99人患有肺病,故不正确;从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,是指吸烟与患肺病有关系的概率,而不是吸烟人就有99%的可能患有肺病,故不正确;若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误,正确;故选C.9.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案.【解答】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有2×3=6种选择;如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有2×3=6种选择,得到第5球独占一盒的选择有4×(6+6)=48种,第二类,第5球不独占一盒,先放1﹣4号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9×4=36,根据分类计数原理得,不同的方法有36+48=84种.而将五球放到4盒共有×=240种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率P==故选:C10.已知某几何体的三视图如图所示,则该几何体体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】由已知中的三视图,可得该几何体是以侧视图为底面的一个三棱柱,切去两个三棱锥所得的组合体,进而可得体积.【解答】解:由已知中的三视图,可得该几何体是以侧视图为底面的一个三棱柱,切去两个三棱锥所得的组合体,∵侧视图的面积S==8,棱柱的高为5,切去的两个棱锥高均为1,故组合体的体积V=5×8﹣2××8×1=,故选:C.11.实数x,y满足,若z=2x+y的最大值为9,则实数m的值为()A.1 B.2 C.3 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,求出最优解,建立方程关系进行求解即可.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最大,此时z最大,此时2x+y=9.由,解得,即B(4,1),∵B在直线y=m上,∴m=1,故选:A12.在四棱锥S﹣ABCD中,底面ABCD是平行四边形,M、N分别是SA,BD上的点.①若=,则MN∥面SCD;②若=,则MN∥面SCB;③若面SDA⊥面ABCD,且面SDB⊥面ABCD,则SD⊥面ABCD.其中正确的命题个数是()A.0 B.1 C.2 D.3【考点】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】在①和②中,过M作MH∥SD,交AD于H,连结HN,由条件能推导出平面MNH∥平面SDC,从而得到MN∥面SCD;在③中,由面SDA⊥面ABCD,且面SDB⊥面ABCD,平面SDA∩平面SDB=SD,得到SD⊥面ABCD.【解答】解:在①中,过M作MH∥SD,交AD于H,连结HN,∵在四棱锥S﹣ABCD中,底面ABCD是平行四边形,M、N分别是SA,BD上的点, =,∴NH∥CD,∵MH∩MN=M,SD∩DC=D,MH,MN⊂平面MNH,SD,CD⊂平面SDC,∴平面MNH∥平面SDC,∵MN⊂平面MNH,∴MN∥面SCD,故①正确;在②中,过M作MH∥SD,交AD于H,连结HN,∵在四棱锥S﹣ABCD中,底面ABCD是平行四边形,M、N分别是SA,BD上的点, =,∴∴NH∥CD,∵MH∩MN=M,SD∩DC=D,MH,MN⊂平面MNH,SD,CD⊂平面SDC,∴平面MNH∥平面SDC,∵MN⊂平面MNH,∴MN∥面SCD,故②正确;在③中,∵面SDA⊥面ABCD,且面SDB⊥面ABCD,平面SDA∩平面SDB=SD,∴SD⊥面ABCD,故③正确.故选:D.二.填空题:本大题共4小题,每小题5分.13.(1+2)3(1﹣)5的展开式中x的系数是 2 .【考点】二项式系数的性质.【分析】把所给的式子按照二项式定理展开,即可求得展开式中x的系数.【解答】解:由于(1+2)3(1﹣)5=(+++)•(++…+),故展开式中x的系数为 1×(﹣)+×4×1=2,故答案为 2.14.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:(参考公式==, =﹣,,表示样本均值)则y对x的线性回归方程为.【考点】线性回归方程.【分析】根据所给的数据计算出x,y的平均数和回归直线的斜率,即可写出回归直线方程.【解答】解:∵176, =176,∴样本组数据的样本中心点是,==, =﹣=88,∴回归直线方程为.故答案为15.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=10 .【考点】向量在几何中的应用.【分析】建立坐标系,利用坐标法,确定A,B,D,P的坐标,求出相应的距离,即可得到结论.【解答】解:建立如图所示的平面直角坐标系,设|CA|=a,|CB|=b,则A(a,0),B(0,b)∵点D是斜边AB的中点,∴,∵点P为线段CD的中点,∴P∴===∴|PA|2+|PB|2==10()=10|PC|2∴=10.故答案为:1016.已知正数a,b满足a+b=2,则的最小值为.【考点】基本不等式.【分析】正数a,b满足a+b=2,则a+1+b+1=4.利用“乘1法”与基本不等式的性质即可得出.【解答】解:正数a,b满足a+b=2,则a+1+b+1=4.则= [(a+1)+(b+1)] =≥==,当且仅当a=,b=.故答案为:.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.某重点中学100位学生在市统考中的理科综合分数,以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(Ⅰ)求直方图中x的值;(Ⅱ)求理科综合分数的众数和中位数;(Ⅲ)在理科综合分数为[220,240),[240,260),[260,280),[280,300]的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[220,240)的学生中应抽取多少人?【考点】频率分布直方图.【分析】(Ⅰ)根据直方图求出x的值即可;(Ⅱ)根据直方图求出众数,设中位数为a,得到关于a的方程,解出即可;(Ⅲ)分别求出[220,240),[240,260),[260,280),[280,300]的用户数,根据分层抽样求出满足条件的概率即可.【解答】解:(Ⅰ)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1,得x=0.007 5,∴直方图中x的值为0.007 5.(Ⅱ)理科综合分数的众数是=230,∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴理科综合分数的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a﹣220)=0.5,解得a=224,即中位数为224.(Ⅲ)理科综合分数在[220,240)的学生有0.012 5×20×100=25(位),同理可求理科综合分数为[240,260),[260,280),[280,300]的用户分别有15位、10位、5位,故抽取比为=,∴从理科综合分数在[220,240)的学生中应抽取25×=5人.18.如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC 的中点.(Ⅰ)证明:ND∥面PAB;(Ⅱ)求AN与面PND所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)取PB中点M,连结AM,MN,证明:四边形AMND是平行四边形,得出ND∥AM,即可证明ND∥面PAB;(Ⅱ)在面PAD内过A做AF⊥PD于F,则CD⊥AF,又CD∩PD=D,AF⊥面PDC,连接NF,则∠ANF是AN与面PND所成的角,即可求AN与面PND所成角的正弦值.【解答】(Ⅰ)证明:如图,取PB中点M,连结AM,MN.∵MN是△BCP的中位线,∴MN平行且等于BC.依题意得,AD平行且等于BC,则有AD平行且等于MN∴四边形AMND是平行四边形,∴ND∥AM∵ND⊄面PAB,AM⊂面PAB,∴ND∥面PAB(Ⅱ)解:取BC的中点E,则,所以四边形AECD是平行四边形,所以CD∥AE,又因为AB=AC,所以AE⊥BC,所以CD⊥BC,又BC∥AD,所以CD⊥ADPA⊥面ABCD,CD⊂面ABCD,所以PA⊥CD又PA∩AD=A,所以CD⊥面PAD.在面PAD内过A做AF⊥PD于F,则CD⊥AF,又CD∩PD=D,AF⊥面PDC,连接NF,则∠ANF是AN与面PND所成的角.在Rt△ANF中,,,,所以AN与面PND所成角的正弦值为19.新生儿Apgar评分,即阿氏评分是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,满10分者为正常新生儿,评分7分以下的新生儿考虑患有轻度窒息,评分在4分以下考虑患有重度窒息,大部分新生儿的评分多在7﹣10分之间,某市级医院妇产科对1月份出生的新生儿随机抽取了16名,以如表格记录了他们的评分情况.(1)现从16名新生儿中随机抽取3名,求至多有1名评分不低于9分的概率;(2)以这16名新生儿数据来估计本年度的总体数据,若从本市本年度新生儿任选3名,记X 表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)利用互斥事件的概率公式,可得结论;(2)确定变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.表示所抽取3名中有i名新生儿评分不低于9分,至多有1名评分不【解答】解:(1)设A1低于9分记为事件A,则.(2)由表格数据知,从本市年度新生儿中任选1名评分不低于的概率为,则由题意知X 的可能取值为0,1,2,3.;;;.所以X的分布列为由表格得.(或)20.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【考点】简单线性规划的应用.【分析】(1)依题意,每天生产的伞兵的个数为100﹣x﹣y,根据题意即可得出每天的利润;(2)先根据题意列出约束条件,再根据约束条件画出可行域,设W=2x+3y+300,再利用T的几何意义求最值,只需求出直线0=2x+3y过可行域内的点A时,从而得到W值即可.【解答】解:(1)依题意每天生产的伞兵个数为100﹣x﹣y,所以利润W=5x+6y+3=2x+3y+300(x,y∈N).(2)约束条件为整理得目标函数为W=2x+3y+300,如图所示,作出可行域.初始直线l:2x+3y=0,平移初始直线经过点A时,W有最大值.由得最优解为A(50,50),所以W=550(元).max答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550(元)21.如图,四棱锥P﹣ABCD的底面ABCD是菱形,∠ADC=60°,PA=PC,PD⊥PB,AC∩BD=E,二面角P﹣AC﹣B的大小为60°.(1)证明:AC⊥PB;(2)求二面角E﹣PD﹣C的余弦值.【考点】二面角的平面角及求法.【分析】(1)推导出AC⊥PE,AC⊥BD,由此能证明AC⊥PB.(2)推导出CE⊥PD,过E作EH⊥PD于H,连接CH,则PD⊥面CEH,∠CHE是二面角E﹣PD﹣C的平面角.由此能求出二面角E﹣PD﹣C的余弦值.【解答】证明:(1)∵E是AC的中点,PA=PC,∴AC⊥PE,∵底面ABCD是菱形,∴AC⊥BD,又PE∩BD=E,∴AC⊥面PDB,又PB⊂面PDB,∴AC⊥PB.解:(2)由(1)CE⊥面PDB,PD⊂面PDB,∴CE⊥PD,过E作EH⊥PD于H,连接CH,则PD⊥面CEH,又CH⊂面CEH,则PD⊥CH,∴∠CHE是二面角E﹣PD﹣C的平面角.由(1)知∠PEB是二面角P﹣AC﹣B的平面角,所以∠PEB=60°,设AB=a,在Rt△PDB中,,△PBE是等边三角形,,EH是△PBD的中位线,则,,CH==,∴,即二面角E﹣PD﹣C的余弦值为.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.[选修4-4:坐标系与参数方程]22.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)利用极坐标与直角坐标的对于关系即可得出曲线C的方程;对直线l的参数方程消参数可得直线l的普通方程;(2)把直线l的参数方程代入曲线C的直角坐标方程得出关于参数t的一元二次方程,利用参数的几何意义和根与系数的关系计算|PQ|.【解答】解:(1)∵ρ=4cosθ.∴ρ2=4ρcosθ,∵ρ2=x 2+y 2,ρcos θ=x ,∴x 2+y 2=4x ,所以曲线C 的直角坐标方程为(x ﹣2)2+y 2=4,由(t 为参数)消去t 得:.所以直线l 的普通方程为.(2)把代入x 2+y 2=4x 得:t 2﹣3t+5=0.设其两根分别为t 1,t 2,则t 1+t 2=3,t 1t 2=5.所以|PQ|=|t 1﹣t 2|==.[选修4-5:不等式选讲]23.设函数f (x )=|x+m|+|2x+1|. (Ⅰ)当m=﹣1,解不等式f (x )≤3;(Ⅱ)求f (x )的最小值.【考点】函数的最值及其几何意义.【分析】(Ⅰ)当m=﹣1,化简不等式,通过x 的范围,取得绝对值符号,求解不等式f (x )≤3;(Ⅱ)利用绝对值的几何意义求解函数的最值即可.【解答】(本小题满分10分)解:(Ⅰ)当m=﹣1时,不等式f (x )≤3,可化为|x ﹣1|+|2x+1|≤3.当时,﹣x+1﹣2x ﹣1≤3,∴x ≥﹣1,∴;当时,﹣x+1+2x+1≤3,∴x ≤1,∴;当x ≥1时,x ﹣1+2x+1≤3,∴x ≤1,∴x=1;综上所得,﹣1≤x ≤1.(Ⅱ)=,当且仅当时等号成立.又因为,当且仅当时,等号成立.所以,当时,f(x)取得最小值.。
团风县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )A .2B .4C .8D .162. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A.B .πC.D.3. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .14 4. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件5. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .566. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)7. 已知双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的渐近线方程是( ) A .y=±x B .y=±C .xy=±2xD .y=±x8. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A. B. C. D.9. 已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X (单位:mm )对工期延误天数YPA .0.1B .0.3C .0.42D .0.5班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2} 11.执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .3612.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A .2,3B .3,4C .3,5D .2,5二、填空题13.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .14.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .15.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是 .16.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω; ③若1λ=,则(,)λμΩ表示一条直线;④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为. 其中所有正确结论的序号是 .17.已知函数f (x )=x 3﹣ax 2+3x 在x ∈[1,+∞)上是增函数,求实数a 的取值范围 . 18.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .三、解答题19.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.20.在中,,,.(1)求的值;(2)求的值。
城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数1ln(1)y x=-的定义域为( ) A . (,0]-∞ B .(0,1) C .(1,)+∞ D .(,0)(1,)-∞+∞2. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=844. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( )A .{﹣2}B .{2}C .{﹣2,2}D .∅5. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.3126. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个 7. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45 B .90 C .120 D .3608. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i9. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 10.在极坐标系中,圆的圆心的极坐标系是( )。
共和县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为()A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)2. 执行右面的程序框图,如果输入的,则输出的属于( )[1,1]t ∈-S A. B. C. D.[0,2]e -(,2]e -¥-[0,5][3,5]e-【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.3. 函数在定义域上的导函数是,若,且当时,,()f x R '()f x ()(2)f x f x =-(,1)x ∈-∞'(1)()0x f x -<设,,,则( )(0)a f=b f =2(log 8)c f =A . B .C .D .a b c <<a b c >>c a b <<a c b<<4. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是()A .∅B .{1,4}C .MD .{2,7}5. 在△ABC 中,已知D 是AB边上一点,若=2,=,则λ=( )A.B .C .﹣D .﹣6. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=7. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .8. 设集合,集合,若 ,则的取值范围3|01x A x x -⎧⎫=<⎨⎬+⎩⎭(){}2|220B x x a x a =+++>A B ⊆()A .B .C.D .1a ≥12a ≤≤a 2≥12a ≤<9. 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,)63sin(2)(π+=x x f 4π)(x g 则的解析式为( ))(x g A . B .3)43sin(2)(--=πx x g 343sin(2)(++=πx x g C .D .3123sin(2)(+-=πx x g 3)123sin(2)(--=πx x g 【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.10.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为()A .2160B .2880C .4320D .864011.数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)12.已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为()A.12B.11C.10D.9二、填空题13.阅读下图所示的程序框图,运行相应的程序,输出的的值等于_________.n14.在等差数列{a n}中,a1,a2,a415.已知抛物线::1C xy42=2C12222=-byax(,)的渐近线恰好过0>a0>b P识交汇,难度中等.16.已知函数.32()39f x x ax x=++-a=17.已知a,b是互异的负数,A是a与G的大小关系为 .18.【泰州中学2018届高三10为常数)的导函数为,b c,对任意,不等式.()f x'x R∈()f x三、解答题19.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.20.(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.P ABCD-ABCD PA⊥ABCD E PD(1)证明:平面;//PB AEC(2)设,的体积,求到平面的距离.1AP=AD=P ABD-V=A PBC111]21.已知函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1,且f (x )的周期为2.(Ⅰ)当时,求f (x )的最值;(Ⅱ)若,求的值.22.(本小题满分12分)已知数列的各项均为正数,,.{}n a 12a =114n n n na a a a ++-=+(Ⅰ)求数列的通项公式;{}n a (Ⅱ)求数列的前项和.11n n a a +⎧⎫⎨⎬+⎩⎭n n S 23.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.24.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.共和县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D B CDADCABC题号1112答案CB二、填空题13.614. 2或1 . 15.316.517. A <G .18.2-三、解答题19.20.(1)证明见解析;(221.22.(本小题满分12分)解: (Ⅰ)由得,∴是等差数列,公差为4,首项为4, (3分)114n n n na a a a ++-=+2214n n aa +-={}2n a ∴,由得(6分)244(1)4n a n n =+-=0n a >n a =(Ⅱ)∵, (9分)1112n n a a +==+∴数列的前项和为11n n a a +⎧⎫⎨⎬+⎩⎭n . (12分)11111)1)2222-+++=L 23. 24.。
优选高中模拟试卷团风县高中 2018-2019 学年高二上学期第一次月考试卷数学班级 __________姓名 __________分数 __________一、选择题1. 已知函数 fx 12 x 1,则曲线 y f x 在点 1 , f 1 处切线的斜率为()x 1A .1B . 1C . 2D . 2x [ 1,1]y [0, 2]P( x, y)x y 2,2, ,则点 落在地区 x2 y1 0内的概率为(). 已知实数,2 x y2 033C.1D.1A.B.4848【命题企图】此题考察线性规划、几何概型等基础知识,意在考察数形联合思想及基本运算能力 . 3. 设函数 f ( x )知足 f ( x+ π) =f ( x ) +cosx ,当 0≤x ≤π时, f ( x ) =0,则 f ( ) =()A .B .C . 0D .﹣4. 设会合 A={x|2 x ≤4} ,会合 B={x|y=lg ( x ﹣1) } ,则 A ∩B 等于( )A .( 1,2)B . [1,2]C . [1, 2)D .( 1, 2]5. 以下哪组中的两个函数是相等函数( )A . f x = 4 x4,g x4B . f x =x24, g x4xx 21,x 0x 2C . fx 1,g xD . fx =x gx3x 31,x 06. 已知某工程在很大程度上受当地年降水量的影响,施工时期的年降水量 X (单位: mm )对工期延迟天数Y 的影响及相应的概率P 如表所示:降水量 XX <100100≤X <200200 ≤X <300X ≥300 工期延迟天数 Y0 515 30 概率 P0.40.20.10.3在降水量 X 起码是 100 的条件下,工期延迟不超出 15 天的概率为()A .0.1B .0.3C . 0.42D . 0.57. 某工厂生产某种产品的产量 x (吨)与相应的生产能耗 y (吨标准煤)犹如表几组样本数据:x 3 4 5 6 y2.5 3 4 4.5据有关性查验,这组样本数据拥有线性有关关系,经过线性回归剖析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是()A .=0.7x+0.35B .=0.7x+1C.=0.7x+2.05D.=0.7x+0.452)8.抛物线 E:y =2px( p>0)的焦点为 F,点 A(0,2),若线段 AF 的中点 B 在抛物线上,则 |BF|=(A .B .C.D.9.过点M( 2,a) , N (a,4) 的直线的斜率为1| (),则|MN2A .10 B.180 C.6 3 D.6 510.某班有50 名学生,一次数学考试的成绩ξ听从正态散布N( 105, 102),已知 P( 95≤ξ≤105)=0.32 ,估计该班学生数学成绩在115 分以上的人数为()A .10 B.9 C. 8 D. 711.“方程+ =1 表示椭圆”是“﹣ 3< m<5”的()条件.A .必需不充足B .充要C.充足不用要D.不充足不用要12.(0 10.5﹣ 2的值为())﹣(﹣)÷A .﹣B .C.D.二、填空题13. S n= + + + = .14.以下命题:①会合a,b,c,d 的子集个数有16 个;②定义在 R 上的奇函数 f (x) 必知足 f (0) 0 ;③ f ( x) (2 x 1)2 2(2x 1) 既不是奇函数又不是偶函数;④A R,B R , f : x1A 到会合B 的对应关系 f 是映照;,从会合| x |⑤ f ( x) 1在定义域上是减函数.x此中真命题的序号是.15.设函数 f( x) = ,①若 a=1,则 f( x)的最小值为;②若 f( x)恰有 2 个零点,则实数 a 的取值范围是.16.圆柱形玻璃杯高 8cm,杯口周长为 12cm,内壁距杯口 2cm 的点 A 处有一点蜜糖. A 点正对面的外壁(不是 A 点的外壁)距杯底 2cm 的点 B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少cm.(不计杯壁厚度与小虫的尺寸)17.函数 f( x) =a x+4 的图象恒过定点P,则 P 点坐标是.18.设 f (x)为奇函数,且在(﹣∞,0)上递减,f(﹣2)=0,则xf(x)<0的解集为.三、解答题19.已知椭圆C :x2y 2 1 a b 0 的左右焦点分别为F1,F2 ,椭圆 C过点 P 1,2,直线 PF1 a2 b2 2交 y 轴于 Q ,且PF2 2QO, O 为坐标原点.( 1)求椭圆C的方程;( 2)设M是椭圆C上的极点,过点M 分别作出直线 MA, MB 交椭圆于 A, B 两点,设这两条直线的斜率分别为 k1, k2,且 k1 k2 2 ,证明:直线AB 过定点.20.十八届四中全会明确提出“以法治手段推动生态文明建设” ,为响应呼吁,某市红星路小区的环保人士向该市政府部门建议“ 在全市范围内禁放烟花、爆竹”.为此,红星路小区的环保人士对该小区年纪在[15 ,75)的市民进行问卷检查,随机抽查了50 人,并将检查状况进行整理后制成下表:年纪(岁) [15, 25)[ 25, 35) [35, 45) [45, 55) [55,65) [65, 75)频数61012125 5同意人数3610643( 1)请预计红星路小区年纪在 [15 , 75)的市民对 “ 禁放烟花、爆竹 ” 的同意率和被检查者的年纪均匀值; ( 2)若从年纪在 [55 ,65)、[65 ,75)的被检查者中各随机选用两人进行追踪检查,记被选 4 人中不同意 “ 禁放烟花、爆竹 ”的人数为 ξ ,求随机变量 ξ 的散布列和数学希望.21.(本小题满分 12 分)已知两点 F 1 ( 1,0) 及 F 2 (1,0) ,点 P 在以 F 1 、F 2 为焦点的椭圆 C 上,且 PF 1 、 F 1F 2 、PF 2 组成等差数列.( I )求椭圆 C 的方程; mm( II )设经过 F 2 的直线 与曲线 C 交于 P Q两点,若 PQ = F 1P + F 1Q,求直线 的方程.、 22222 .已知函数 f ( x )=( log 2x ﹣ 2)( log 4x ﹣ ) ( 1 )当 x ∈ [2, 4]时,求该函数的值域;( 2 )若 f (x )> mlog 2x 对于 x ∈ [4, 16]恒成立,求 m 的取值范围.23.(本小题满分 12 分)已知等差数列{ a n}的前n项和为S n,且S9 90 , S15 240 .( 1)求{ a n}的通项公式a n和前n项和S n;( 2)设b nn71,求数列 b n的前n项和T n.1 a n是等比数列,且 b2 7,b5【命题企图】此题考察等差数列与等比数列的通项与前n 项和、数列乞降等基础知识,意在考察逻辑思想能力、运算求解能力、代数变形能力,以及分类议论思想、方程思想、分组乞降法的应用.24.在长方体 ABCD ﹣ A 1B1 C1D 1 中, AB=BC=1 ,AA 1=2, E 为 BB 1中点.(Ⅰ)证明: AC ⊥D 1E;(Ⅱ)求 DE 与平面 AD 1E 所成角的正弦值;(Ⅲ)在棱 AD 上能否存在一点P,使得 BP∥平面 AD 1E?若存在,求DP 的长;若不存在,说明原因.团风县高中 2018-2019 学年高二上学期第一次月考试卷数学(参照答案)一、选择题1.【答案】 A【分析】试题剖析:由已知得 f x 2 x 1 2 1 ,则 f ' x 12,因此 f ' 1 1 .x x x考点: 1、复合函数;2、导数的几何意义 .2.【答案】 B【解析】3.【答案】 D【分析】解:∵函数 f ( x)( x∈R)知足 f( x+π) =f ( x)+cosx,当 0≤x<π时, f (x) =1,∴ f()=f()=f()+cos=f()+cos+cos=f ()+cos+cos=f () +cos+cos=f ()+cos+cos+cos=0+cos﹣cos+cos=﹣.应选: D.【评论】此题考察抽象函数以及函数值的求法,引诱公式的应用,是基础题,解题时要仔细审题,注意函数性质的合理运用.4.【答案】 D【分析】解: A={x|2 x≤4}={x|x ≤2} ,由 x﹣1> 0 得 x> 1∴B={x|y=lg ( x﹣ 1)}={x|x > 1}∴A ∩B={x|1 < x≤2}应选 D.5.【答案】 D111]【分析】考点:相等函数的观点.6.【答案】 D【分析】解:降水量X 起码是100 的条件下,工期延迟不超出15 天的概率 P,设:降水量 X 起码是100 为事件 A ,工期延迟不超出 15 天的事件 B ,P( A) =0.6, P( AB ) =0.3,P=P(B 丨 A )= =0.5,故答案选: D.7.【答案】 A【分析】解:设回归直线方程=0.7x+a ,由样本数据可得,=4.5, =3.5.由于回归直线经过点(,),因此 3.5=0.7×4.5+a,解得 a=0.35.应选 A.【评论】此题考察数据的回归直线方程,利用回归直线方程恒过样本中心点是重点.8.【答案】 D【分析】解:依题意可知 F 坐标为(,0)∴B 的坐标为(,1)代入抛物线方程得=1,解得 p=,∴抛物线准线方程为x= ﹣,因此点 B 到抛物线准线的距离为=,则 B 到该抛物线焦点的距离为.应选 D.9.【答案】D【分析】考点: 1.斜率; 2.两点间距离 .10.【答案】 B2【分析】解:∵考试的成绩ξ听从正态散布N ( 105, 10 ).∵P(95≤ξ≤105) =0.32 ,∴ P(ξ≥115) = ( 1﹣ 0.64) =0.18 ,∴该班数学成绩在115 分以上的人数为0.18×50=9应选: B.【评论】此题考察正态曲线的特色及曲线所表示的意义,是一个基础题,解题的重点是考试的成绩ξ对于ξ=105对称,利用对称写出要用的一段分数的频数,题目得解.11.【答案】 C【分析】解:若方程+=1 表示椭圆,则知足,即,即﹣ 3<m< 5 且 m≠1,此时﹣ 3<m< 5 成立,即充足性成立,当 m=1 时,知足﹣ 3< m< 5,但此时方程+=1 即为 x2+y 2=4 为圆,不是椭圆,不知足条件.即必需性不可立.故“方程+=1 表示椭圆”是“﹣ 3<m< 5”的充足不用要条件.应选: C.【评论】此题主要考察充足条件和必需条件的判断,考察椭圆的标准方程,依据椭圆的定义和方程是解决此题的重点,是基础题.12.【答案】 D【分析】解:原式 =1﹣( 1﹣)÷=1﹣( 1﹣)÷=1﹣( 1﹣ 4)×=1﹣(﹣ 3)×=1+=.应选: D.【评论】此题考察了根式与分数指数幂的运算问题,解题时应仔细计算,是易错题.二、填空题13.【答案】【分析】解:∵==(﹣),∴S n=++ +=[(1﹣)+(﹣)+(﹣)++(﹣)=(1﹣)=,故答案为:.【评论】此题主要考察利用裂项法进行数列乞降,属于中档题.14.【答案】①②【分析】试题剖析:子集的个数是2n,故①正确.依据奇函数的定义知②正确.对于③ f x 4x2 1 为偶函数,故错误. 对于④ x 0 没有对应,故不是映照.对于⑤减区间要分红两段,故错误.考点:子集,函数的奇偶性与单一性.【思路点晴】会合子集的个数由会合的元素个数来决定,一个个元素的会合,它的子集的个数是2n个;对于奇函数来说,假如在x 0 处有定义,那么必定有 f 0 0,偶函数没有这个性质;函数的奇偶性判断主要依据定义 f x f x , f x f x ,注意判判定义域能否对于原点对称.映照一定会合 A 中任意一个元素在会合 B 中都有独一确立的数和它对应;函数的定义域和单一区间要划分清楚,不要任意写并集.1 15.【答案】≤a<1或a≥2.【分析】解:①当 a=1 时, f( x) =,当 x<1 时, f( x) =2x﹣ 1 为增函数, f( x)>﹣ 1,当 x>1 时, f( x) =4( x﹣ 1)( x﹣ 2)=4( x2﹣ 3x+2 ) =4( x﹣)2﹣1,当 1<x<时,函数单一递减,当x>时,函数单一递加,故当 x=时,f(x)min=f()=﹣1,x②设 h( x) =2 ﹣ a, g(x) =4(x﹣ a)( x﹣ 2a)因此 a>0,而且当 x=1 时, h( 1)=2 ﹣ a> 0,因此 0< a<2,而函数 g( x) =4( x﹣ a)( x﹣ 2a)有一个交点,因此2a≥1,且 a<1,因此≤a<1,若函数 h( x) =2x﹣a 在 x< 1 时,与 x 轴没有交点,则函数 g( x) =4( x﹣ a)( x﹣ 2a)有两个交点,当 a≤0 时, h( x)与 x 轴无交点, g( x)无交点,因此不知足题意(舍去),当 h(1) =2﹣ a≤0 时,即 a≥2 时, g(x)的两个交点知足x1=a, x2=2a,都是知足题意的,综上所述 a 的取值范围是≤a<1,或a≥2.16.【答案】10 cm【分析】解:作出圆柱的侧面睁开图如下图,设 A 对于茶杯口的对称点为 A ′,则 A ′A=4cm , BC=6cm ,∴A ′C=8cm ,∴ A ′B==10cm .故答案为: 10.【评论】此题考察了曲面的最短距离问题,往常转变为平面图形来解决.17.【答案】(0,5).【分析】解:∵ y=a x的图象恒过定点(0, 1),而 f ( x) =a x+4 的图象是把 y=a x的图象向上平移 4 个单位获得的,∴函数 f ( x)=a x+4 的图象恒过定点 P( 0, 5),故答案为:( 0,5).【评论】此题考察指数函数的性质,考察了函数图象的平移变换,是基础题.18.【答案】(﹣∞,﹣2)∪(2,+∞)【分析】解:∵ f( x)在 R 上是奇函数,且f( x)在(﹣∞, 0)上递减,∴ f( x)在( 0, +∞)上递减,由 f (﹣ 2)=0,得 f (﹣ 2) =﹣ f( 2)=0,即 f ( 2) =0,由 f (﹣ 0)=﹣ f ( 0),得 f ( 0)=0,作出 f ( x)的草图,如下图:由图象,得xf x 0或,()< ?解得 x<﹣ 2 或 x> 2,∴xf ( x)< 0 的解集为:(﹣∞,﹣ 2)∪( 2,+∞)故答案为:(﹣∞,﹣ 2)∪( 2, +∞)三、解答题x2y 2 1;(2)证明看法析.19.【答案】(1)2【分析】试题分析:( 1)PF2 2QO ,∴ PF2 F1 F2,∴c 1 ,1 121,a 2 2 c 2 2a2 b2 b b 1 ,∴b2 1, a2 2 ,2即 x y21;( 2)设AB方程为y kx b 代入椭圆方程1 2x221 0 , x Ax B2kbb 2 12k2kbx b1, x A x B1,k 2k 222kMAy A 1y B 1y A 1 y B 1y A x B x A y Bx A x B2 ,x A , k MBx B,∴ k MAkMBx Ax Bx A x B∴k b 1代入 y kx b 得: y kxk 1 因此, 直线必过1, 1 . 1考点:直线与圆锥曲线地点关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转变为垂直 .直线和圆锥曲线的地点关系一方面要表现方程思想, 另一方面要联合已知条件,从图形角度求解. 联立直线与圆锥曲线的方程获得方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法.波及弦长的问题中,应娴熟地利用根与系数关系、设而不求法计算弦长; 波及垂直关系时也常常利用根与系数关系、 设而不求法简化运算; 波及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 20. 【答案】【分析】 ( 1)解:同意率为,被检查者的均匀年纪为20× 0.12+30× 0.2+40× 0.24+50× 0.24+60× 0.1+70× 0.1=43( 2)解:由题意知 ξ 的可能取值为 0, 1, 2, 3,,,,,∴ ξ 的散布列为:ξ 0123P∴.【评论】此题考察互相独立事件概率、失散型随机变量的散布列及数学希望等基础知识,考察数据办理能力,考察化归与转变思想,是中档题.21. 【答案】【分析】 【命题企图】此题考察椭圆标准方程和定义、等差数列、直线和椭圆的地点关系等基础知识,意在考查转变与化归的数学思想的运用和综合剖析问题、解决问题的能力.( II )①若 m 为直线 x 1,代入x 2y 24 32,| F 1P |2| F 1Q |2直接计算知 PQ = 9 ②若直线 m 的斜率为 k ,直线 m 的方程为1得 y 3,即 P(1, 3),Q(1,3) 25222PQ 2221不切合题意 ;, ? F 1PF 1 Q, x2y = k(x - 1)x 2y 2122 2 2由 43 (3 4k)x 8k x (4k12) 0得yk(x 1)设 P( x 1 , y 1) , Q( x 2 , y 2 ) ,则 x 1 x 28k 2 4k 2 12 3 4k 2, x 1 x 24k 23222由 PQ = F 1P + F 1Q 得, F 1 P?FQ 1 0即 ( x 1 1)( x 21) y 1 y 2 0 , (x 1 1)( x 2 1) k( x 1 1) k( x 2 1) 0(1 k 2 )x 1 x 2 (1 k 2 )( x 1x 2 ) (1 k 2 ) 0代入得 (1 k 2)(4k 212 1) (1 k 2 ) 8k 20 ,即 7k 2 9 03 4k 23 4k 2 3 73 7 1)解得 k,直线 m的方程为 y ( x7722. 【答案】1 f x =(log2 4)【分析】解:()()x﹣ 2)( log x﹣= ( log2x)2﹣log2 x+1,2≤x≤4令 t=log 2x,则 y= t2﹣ t+1= ( t﹣) 2﹣,∵2≤x≤4,∴1≤t≤2.当 t= 时, y min=﹣max=0.,当 t=1,或 t=2 时, y∴函数的值域是 [﹣,0].2)令t=log 2 2﹣t+1>mt对于2 t 4(x,得t ≤ ≤ 恒成立.∴m<t+ ﹣对于 t ∈ [2 ,4] 恒成立,设 g( t) = t+ ﹣, t∈ [2, 4],∴g( t) = t+ ﹣ = (t+ )﹣,∵g( t) = t+﹣在[2,4]上为增函数,∴当 t=2 时, g( t)min=g ( 2) =0,∴m< 0.23.【答案】【分析】( 1)设等差数列{ a n}的首项为a1,公差为d,则由 S9 90 , S159a1 36d 902 ,3分240 ,得105d,解得 a1 d15a1 240因此 a n 2 (n 1) 2 2n ,即 a n 2n ,S n 2n n(n 1) 2 n(n 1),即S (n n 1).5分2 n团风县高中2018-2019学年高二上学期第一次月考试卷数学优选高中模拟试卷24.【答案】【分析】(Ⅰ)证明:连结BD∵ABCD ﹣A 1B 1C1 D1是长方体,∴D 1D⊥平面 ABCD ,又 AC ? 平面 ABCD ,∴D1D⊥AC 1 分在长方形 ABCD 中, AB=BC ,∴ BD ⊥AC 2 分又BD ∩D1D=D ,∴ AC ⊥平面 BB 1D 1D, 3 分而D1E? 平面 BB1D1D ,∴AC ⊥ D1E 4 分(Ⅱ )解:如图成立空间直角坐标系Dxyz,则A 1 0 0),D1(,,( 0,0,2),E( 1,1,1),B( 1,1,0),∴ 5 分设平面 AD 1E 的法向量为,则,即令 z=1,则7 分∴8 分∴ DE 与平面 AD 1E 所成角的正弦值为9 分团风县高中2018-2019学年高二上学期第一次月考试卷数学优选高中模拟试卷(Ⅲ)解:假定在棱AD 上存在一点P,使得 BP∥平面 AD 1E.设 P 的坐标为( t, 0, 0)( 0≤t≤1),则∵ BP∥平面 AD 1E∴,即,∴ 2( t﹣ 1)+1=0 ,解得, 12分∴在棱 AD 上存在一点P,使得 BP∥平面 AD 1E,此时 DP 的长. 13分.。
商城县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 复数z=(其中i 是虚数单位),则z 的共轭复数=()A .﹣iB .﹣﹣iC .+iD .﹣+i2. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a的值为( )A .2B .C .D .33. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A .1﹣B .﹣C .D .4. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A.B .或36+C .36﹣D .或36﹣5. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是()A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 某棵果树前n 年的总产量S n 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高,则m 的值为()A .5B .7C .9D .117. 已知集合,,则( ){| lg 0}A x x =≤1={|3}2B x x ≤≤A B =I A .B .C .D .(0,3](1,2](1,3]1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.8. 已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是()A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+)D .f (x )=sin (2x+)9. 定义在(0,+∞)上的单调递减函数f (x ),若f (x )的导函数存在且满足,则下列不等式成立的是()A .3f (2)<2f (3)B .3f (4)<4f (3)C .2f (3)<3f (4)D .f (2)<2f (1)10.PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()A .甲B .乙C .甲乙相等D .无法确定11.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=()A .∅B .{x|x >0}C .{x|x <1}D .{x|0<x <1}可.12.与椭圆有公共焦点,且离心率的双曲线方程为( )A .B .C .D .二、填空题13.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.14.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 .15.长方体中,对角线与棱、、所成角分别为、、,1111ABCD A B C D -1A C CB CD 1CC αβ则 . 222sinsin sin αβγ++=16.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答) 17.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.18.经过A (﹣3,1),且平行于y 轴的直线方程为 .三、解答题19.已知y=f (x )是R 上的偶函数,x ≥0时,f (x )=x 2﹣2x (1)当x <0时,求f (x )的解析式.(2)作出函数f (x )的图象,并指出其单调区间.20.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y=x 的图象上(n ∈N *),(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若c 1=0,且对任意正整数n 都有,求证:对任意正整数n ≥2,总有.21.已知,其中e 是自然常数,a ∈R(Ⅰ)讨论a=1时,函数f (x )的单调性、极值; (Ⅱ)求证:在(Ⅰ)的条件下,f (x )>g (x )+. 22.本小题满分10分选修:不等式选讲45-已知函数.2()log (12)f x x x m =++--Ⅰ当时,求函数的定义域;7=m )(x f Ⅱ若关于的不等式的解集是,求的取值范围.x 2)(≥x f R m 23.设集合.{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=(1)若,求实数的值;{}2A B =I (2),求实数的取值范围.1111]A B A =U24.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,直线l的参数方程为(t为参数),圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若圆C上的点到直线l的最大距离为3,求r值.商城县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案C B ADCCDDAA题号1112答案DA二、填空题13.14. {a|或} .15.16. 15 17. 24 18. x=﹣3 .三、解答题19. 20. 21. 22.23.(1)或;(2).1a =5a =-3a >24.。
湖北省团风中学2018-2019学年11月高考数学模拟题班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. “1m =±”是“函数22()log (1)log (1)f x mx x =++-为偶函数”的( ) A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件2. 复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 3. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x .则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.4. 已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则s i n :s i n C A =( ) A .2︰3 B .4︰3 C .3︰1 D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力. 5. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 6. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.7.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为()A.83 B .4 C.163D .2038. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.9. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.10.“24x ππ-<≤”是“tan 1x ≤”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.二、填空题(本大题共5小题,每小题5分,共25分.把答案填写在横线上)11.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 12.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.13.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 14.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.15.若复数34sin(cos)i55zαα=-+-是纯虚数,则tanα的值为.【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.三、解答题(本大共6小题,共75分。
团风县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1.
平面向量
与的夹角为60°
,=(2,0),
||=1,则
|
+2|=( )
A
.
B
.
C .4
D .12
2.
函数
是( )
A .最小正周期为2π的奇函数
B .最小正周期为π的奇函数
C .最小正周期为2π的偶函数
D .最小正周期为π的偶函数
3. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如
由2
()()()()()
n ad bc K a b c d a c b d -=++++算得22
500(4027030160)9.96720030070430K ⨯⨯-⨯=
=⨯⨯⨯ 附表:
参照附表,则下列结论正确的是( )
①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④
4. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )
A .
B .
C .
D .3
5. 如图可能是下列哪个函数的图象( )
3.841 6.635 10.828k 2() 0.050 0.010 0.001
P K k ≥班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A.y=2x﹣x2﹣1 B.y=
C.y=(x2﹣2x)e x D.y=
6.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f(log35)=()
A.B.﹣C.4 D.
7.下列说法正确的是()
A.类比推理是由特殊到一般的推理
B.演绎推理是特殊到一般的推理
C.归纳推理是个别到一般的推理
D.合情推理可以作为证明的步骤
8.下列计算正确的是()
A、
21
33
x x x
÷=B、
45
54
()
x x
=C、
4
5
5
4
x x x
=D、
44
550
x x
-
=
9.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2
10.设集合M={x|x>1},P={x|x2﹣6x+9=0},则下列关系中正确的是()
A.M=P B.P⊊M C.M⊊P D.M∪P=R
11.在下面程序框图中,输入44
N=,则输出的S的值是()
A.251B.253C.255D.260
【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.
12.若函数f(x)=﹣2x3+ax2+1存在唯一的零点,则实数a的取值范围为()
A.[0,+∞)B.[0,3] C.(﹣3,0] D.(﹣3,+∞)
二、填空题
13.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若
,则实数的取值范围为______.
14.设椭圆E:+=1(a>b>0)的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO 交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是.
15.以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为.
16.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.
17.复数
z=(i 虚数单位)在复平面上对应的点到原点的距离为 .
18.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0
,z =3x +y +m 的最小值为1,则m =________.
三、解答题
19.如图,在三棱柱ABC ﹣A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,
AB=3,BC=5.
(Ⅰ)求证:AA 1⊥平面ABC ;
(Ⅱ)求证二面角A 1﹣BC 1﹣B 1的余弦值;
(Ⅲ)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B
,并求
的值.
20.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;
(Ⅱ)若EF •
FC=,求正方形ABCD 的面积.
21.已知函数f (x )=x 3﹣x 2+cx+d 有极值.
(Ⅰ)求c 的取值范围;
(Ⅱ)若f (x )在x=2处取得极值,且当x <0时,f (x )<d 2
+2d 恒成立,求d 的取值范围.
22.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .
(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:31
3b a
+≥.
23.(本小题满分12分)
已知函数2
1()cos cos 2
f x x x x =--. (1)求函数()y f x =在[0,
]2
π
上的最大值和最小值; (2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]
24.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()
A
B
C
D
团风县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
13.
14.
.
15. (x ﹣5)2+y 2=9 .
16. 1 .
17. . 18.
三、解答题
19.
20. 21. 22.
23.(1)最大值为,最小值为32 ;(2)14
. 24.C。