高中数学(人教a版)必修一教案:§2.1.1指数(3)
- 格式:pdf
- 大小:51.48 KB
- 文档页数:3
人教a版数学必修1教案6篇人教a版数学必修1教案篇1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。
而这个数列就是我们今天要研究的等比数列了。
)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
高中数学 2.1.2-3指数函数及其性质导学案 新人教A 版必修1学习目标:深入学习指数函数的性质学习重点:能解决与指数函数有关的综合应用问题 学习过程:一、 关于定义域:求下列函数的定义域 1、1621-=xy2、191-⎪⎭⎫ ⎝⎛=xy3、x y 416-=二、 关于值域: 1、求下列函数的值域(1)3121+⎪⎭⎫ ⎝⎛=x y(2)xy ⎪⎭⎫⎝⎛=32(3)212225.0+-=x x y(4)231-=+x y ,[]0,2-∈x (5)121-=x y2、函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值大2a ,则a 的值为______三、 关于单调性:1、 求下列函数的单调区间 (1)12.01-=xy(2)322-+=x x a y )(1,0≠>a a2、 已知x x a a a a -++>++122)2()2(,则x 的取值范围是_____________四、 关于奇偶性 1、判断函数xx f 2121)(+-=的奇偶性2、已知函数x x eaa e x f +=)( )0(>a 是R 上的偶函数,求a 的值 一、选择题1、 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<<a B 、 -<<10a C 、 a =-1 D 、 a <-12、已知310x =,则这样的( )A 、 存在且只有一个B 、 存在且不只一个C 、 存在且x <2D 、 根本不存在 3、函数f x x ()=-23在区间()-∞,0上的单调性是( ) A 、 增函数 B 、 减函数C 、 常数D 、 有时是增函数有时是减函数4、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11115、函数f x x ()=-21,使f x ()≤0成立的的值的集合是( )A 、 {}x x <0B 、 {}x x <1C 、 {}x x =0D 、 {}x x =16、函数f x g x x x ()()==+22,,使f x g x ()()=成立的的值的集合( ) A 、 是φ B 、 有且只有一个元素 C 、 有两个元素 D 、 有无数个元素7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( )A 、1a >且1b <B 、01a <<且1b ≤C 、01a <<且0b >D 、1a >且0b ≤ 8、F(x)=(1+)0)(()122≠⋅-x x f x是偶函数,且f(x)不恒等于零,则f(x)( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数 二、填空题9、 函数y x =-322的定义域是_________。
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
指数与指数幂的运算(3)导入新课思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是——实数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题(指数与指数幂的运算(3))之无理数指数幂.思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本堂课的课题.推进新课新知探究提出问题①我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?③你能给上述思想起个名字吗?④一个正数的无理数次幂到底是一个什么性质的数呢?如52,根据你学过的知识,能作出判断并合理地解释吗?⑤借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:问题①从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.问题②对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.问题③上述方法实际上是无限接近,最后是逼近.问题④对问题给予大胆猜测,从数轴的观点加以解释.问题⑤在③④的基础上,推广到一般的情形,即由特殊到一般.讨论结果:①1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.②第一个表:从大于2的方向逼近2时,52就从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向逼近52.第二个表:从小于2的方向逼近2时,52就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向逼近52.从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面52从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向接近52,而另一方面52从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向接近52,可以说从两个方向无限地接近52,即逼近52,所以52是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示52的点靠近,但这个点一定在数轴上,由此我们可得到的结论是52一定是一个实数,即51.4<51.41<51.414<51.414 2<51.41421<…<52<…<51.41422<51.4143<51.415<51.42<51.5.充分表明52是一个实数.③逼近思想,事实上里面含有极限的思想,这是以后要学的知识. ④根据②③我们可以推断52是一个实数,猜测一个正数的无理数次幂是一个实数.⑤无理数指数幂的意义:一般地,无理数指数幂a α(a>0,α是无理数)是一个确定的实数.也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂. 提出问题(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗?活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳. 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂a α(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通. 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.讨论结果:(1)底数大于零的必要性,若a=-1,那么a α是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂a α是一个确定的实数,就不会再造成混乱. (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①a r ·a s =a r+s(a>0,r,s 都是无理数).②(a r )s =a rs(a>0,r,s 都是无理数).③(a·b)r =a r b r(a>0,b>0,r 是无理数).(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂. 实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈R ).②(a r )s =a rs(a>0,r,s∈R ).③(a·b)r =a r b r(a>0,b>0,r∈R ). 应用示例思路1例1利用函数计算器计算.(精确到0.001) (1)0.32.1;(2)3.14-3;(3)3.143;(4)33.活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按键,再按幂指数2.1,最后按,即可求得它的值; 对于(2),先按底数3.14,再按键,再按负号键,再按3,最后按即可;对于(3),先按底数3.1,再按键,再按34,最后按即可;对于(4),这种无理指数幂,可先按底数3,其次按键,再按键,再按3,最后按键.有时也可按或键,使用键上面的功能去运算.学生可以相互交流,挖掘计算器的用途.答案:(1)0.32.1≈0.080;(2)3.14-3≈0.032; (3)3.143≈2.336;(4)33≈6.705.点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n 位,只需看第(n+1)位能否进位即可.例2求值或化简. (1)3224ab ba -(a>0,b>0); (2)(41)21-213321)()1.0()4(---b a ab (a>0,b>0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.(3) 246347625---+- =222)22()32()23(---+- =3-2+2-3-2+2=0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例3已知x=21(5n 1-5n 1-),n∈N *,求(x+2x 1+)n 的值.活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,5n1与5n1-具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.x 2=41(5n 1-5n 1-)2=41(5n 2-2·50+5n 2-)=41(5n 2+2+5n 2--4) =41(5n 1+5n 1-)2-1. 这时应看到1+x 2=1+41(n 1-5n 1-)2=41(5n 1+5n 1-)2,这样先算出1+x 2,再算出2x 1+,带入即可.解:将x=21(5n 1-5n 1-)代入1+x 2,得1+x 2=1+41(5n 1-5n 1-)2=41(5n 1+5n 1-)n ,所以(x+2x 1+)n=[21(5n 1-5n 1-)+211)55(41n n-+]n=[21(5n 1-5n 1-)+21(5n 1+5n 1-)]n =(5n 1)n=5.点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.思路2 例1计算:(1)105432)(0625.0833416--+++π;(2)12532+(21)-2+34331-(271)31-;(3)(-2x 41y31-)(3x 21y 32);(4)(x 21-y 21)÷(x 41-y 41).活动:学生观察、思考,根式化成分数指数,利用幂的运算性质解题,另外要注意整体的意识,教师有针对性的提示引导,对(1)根式的运算常常化成幂的运算进行,对(2)充分利用指数幂的运算法则来进行,对(3)则要根据单项式乘法和幂的运算法则进行,对(4)要利用平方差公式先因式分解,并对学生作及时的评价. 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0.062 5)41+1-21=(25)2×21+(23)313⨯+(0.5)414⨯+21 =25+23+0.5+21 =5;(2)12532+(21)-2+34331-(271)31-=(53)32+(2-1)-2+(73)31-(3-3)31-=5323⨯+2-2×(-1)+7313⨯-3)31(3-⨯-=25+4+7-3=33; (3)(-2x 41y 31-)(3x 21y 32)=(-2×3)(x 41x 21·y31-y 32)=323121416+-+•-yx=-6x 43y 31=3436y x-;(4)(x 21-y 21)÷(x 41-y 41)=((x 41)2-(y 41)2)÷(x 41-y 41) =(x 41+y 41)(x 41-y 41)÷(x 41-y 41) =x 41+y 41.点评:在指数运算中,一定要注意运算顺序和灵活运用乘法公式.例2化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x 32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流. 解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a-a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a+a -1.点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m·a 21a 21-=m,需认真对待,要在做题中不断地提高灵活运用这些公式的能力.知能训练课本P 59习题2.1A 组 3.利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1B.(1-2321-)-1C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a>0,x=21(a n 1-a n 1-),则(x+2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x=21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x+2x 1+)n=[21(a n 1-a n 1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n 1-)+21(a n 1+a n 1-)]n=a.答案:a 拓展提升参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂32的意义.活动:教师引导学生回顾无理数指数幂52的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算32的过剩近似值和不足近似值,利用逼近思想,“逼出”32的意义,学生合作交流,在投影仪上展示自己的探究结果.我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数 21.7,21.72,21.731,21.7319,…,同样把用2作底数, 3的过剩近似值作指数的各个幂排成从大到小的一列数: 21.8,21.74,21.733,21.7321,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为32. 即21.7<21.73<21.731<21.7319<…<32<…<21.7321<21.733<21.74<21.8.也就是说32是一个实数,32=3.321 997 …也可以这样解释:当3的过剩近似值从大于3的方向逼近3时,32的近似值从大于32的方向逼近32; 当3的不足近似值从小于3的方向逼近3时,32的近似值从小于32的方向逼近32.所以32就是一串有理指数幂21.7,21.73,21.731,21.7319,…,和另一串有理指数幂21.8,21.74,21.733,21.7321,…,按上述规律变化的结果,即32≈3.321 997.课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a>0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈R ).②(a r )s =a rs(a>0,r,s∈R ).③(a·b)r =a r b r(a>0,b>0,r∈R ).(3)逼近的思想,体会无限接近的含义. 作业课本P 60习题2.1 B 组 2.设计感想无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.。
高中数学 2.1.1指数与指数幂的运算导学案新人教A版必修1 学习目标:理解根式、分数指数幂、无理数指数幂、实数指数幂的定义学习重点:会应用运算性质进行根式、指数幂的运算计算学习过程:一、根式1、观察发现:22=中2叫做4的平方根,记作___;44-中2-叫做4的平方)2(2=根,记作____823=中2叫做8的立方根,记作___;8-中2-叫做8-的立=)2(3-方根,记作___±中2±叫做16的4次方根,记作_________16(4=)2=(5--中2-叫做______________,记作_______)232(6=±中2±叫做________________,记作________ )2642、归纳总结:若ax n=,则x叫做a的_______ (其中*n,1)n∈>N当n是正奇数时,若0<a,则x____,a,则x>0,x=________,若0>x=_____当n是正偶数时,若0<a,则>a,则x=___________,若0x_____________其中式子n a叫做_______,这里n (*n,1)叫做_________,a叫n∈>N做_______注:______0=n ()=n n a ___________n 是正奇数时,=n n a __________;n 是正偶数时,=n n a __________3、练习体验: _______)8(33=- ______)10(2=- 44)3(π-=________ _______)(66=-y x (x>y )_____)4(2=-π _____)(2=-b a二、 分数指数幂1、 观察与归纳:(1)_______________224===;_______________248===_______________510===a ______________412===a()0____32>=a a ;()0_____>=b b ;()0_____45>=c c 正数的正分数指数幂)10______(>∈>=*,n N ,m、n a a mn(2)______21=- )0_______(1≠=-x x ______534—= _____32—=a正数的负分数指数幂)10______(—>∈>=*,n N ,m、n a a m n(3)0的正分数指数幂等于0;0的负分数指数幂没有意义。
高中数学必修一第二章教案和练习§2.1.1 指数与指数幂的运算(1)学习目标1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.学习过程一、课前准备(预习教材P 48~ P 50,找出疑惑之处)复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a ,那么这个数叫做a 的 ,记作 ; 如果一个数的立方等于a ,那么这个数叫做a 的 ,记作 .二、新课导学※ 学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1. 某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万?实例2. 给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后体内碳14的含量P 与死亡时碳14关系为57301()2t P . 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察: 2(2)4±=,那么2±就叫4的 ;3327=,那么3就叫27的 ;4(3)81±=,那么3±就叫做81的 .依此类推,若n x a =,,那么x 叫做a 的 .新知:一般地,若n x a =,那么x 叫做a 的n 次方根 ( n th root ),其中1n >,n *∈N .例如:328=2=.反思:当n 为奇数时, n 次方根情况如何?33=-, 记:x =当n 为偶数时,正数的n 次方根情况?例如:81的4次方根就是 ,记:.强调:负数没有偶次方根;0的任何次方根都是00=.试试:4b a =,则a 的4次方根为 ;3b a =,则a 的3次方根为 .新知:根式(radical ),这里n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ).试试:计算2.反思:从特殊到一般,n结论:n a =. 当n a =;当n (0)||(0)a a a a a ≥⎧=⎨-<⎩.※ 典型例题例1求下类各式的值:(1) ; (2) ;(3; (4)a b <).变式:计算或化简下列各式.(1 (2推广:=(a ≥0).※ 动手试试练1.练2. 化简三、总结提升※ 学习小结1. n 次方根,根式的概念;2. 根式运算性质.※ 知识拓展1. 整数指数幂满足不等性质:若0a >,则0n a >.2. 正整数指数幂满足不等性质:① 若1a >,则;② 若01a <<,则01n a <<. 其中n ∈N *.1. ).A. 3B. -3C. ±3D. 812. 625的4次方根是( ).A. 5B. -5C. ±5D. 253. 化简2是( ).A. b -B. bC. b ±D. 1b4. = .5. 计算:31. 计算:(1(2)2. 计算34a a-⨯和3(8)a+-,它们之间有什么关系?你能得到什么结论?3. 对比()n n nab a b=与()n nna ab b=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算.一、课前准备(预习教材P50~ P53,找出疑惑之处)复习1:一般地,若n x a=,则x叫做a的,其中1n>,n*∈N. 简记为:.像的式子就叫做,具有如下运算性质:n= ;= ;= .(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学※ 学习探究探究任务:分数指数幂引例:a >01025a a ==,则类似可得= ;23a = = .新知:规定分数指数幂如下*(0,,,1)mna a m n N n =>∈>; *1(0,,,1)mnmn a a m n N n a -==>∈>.试试:(1)将下列根式写成分数指数幂形式:= ; = ;= (0,)a m N *>∈.(2)求值:238; 255; 436-; 52a -.反思:① 0的正分数指数幂为 ;0的负分数指数幂为 .② 分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质: (0,0,,a b r s Q >>∈)r a ·r r s a a +=; ()r s rs a a =; ()r r s ab a a =.※ 典型例题例1 求值:2327;4316-; 33()5-;2325()49-.变式:化为根式.例2 用分数指数幂的形式表示下列各式(0)b >:(1)2b b ; (2)533b b ; (3例3 计算(式中字母均正): (1)211511336622(3)(8)(6)a b a b a b -÷-; (2)311684()m n .小结:例2,运算性质的运用;例3,单项式运算.例4 计算:(1334a a(0)a >; (2)312103652(2)()m n m n --÷- (,)m n N *∈;(3)÷小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:①② 无理数指数幂(0,)a a αα>是无理数是一个确定的实数.实数指数幂的运算性质如何?练1. 把851323x --⎫⎪⎪⎝⎭化成分数指数幂.练2. 计算:(1443327; (2三、总结提升 学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.知识拓展放射性元素衰变的数学模型为:0t m m e λ-=,其中t 表示经过的时间,0m 表示初始质量,衰减后的质量为m ,λ为正的常数.1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. m m n na a a ÷= B. m n mn a a a ⋅= C. ()nm m n a a += D. 01n n a a -÷= 2. 化简3225的结果是( ).A. 5B. 15C. 25D. 1253. 计算(122--⎡⎤⎢⎥⎣⎦的结果是( ).A B . C.2 D .2- 4. 化简2327-= .5. 若102,104m n ==,则3210m n -= .1. 化简下列各式:(1)3236()49; (2.2.1⎛-⎝.§2.1.1 指数与指数幂的运算(练习)1. 掌握n次方根的求解;2. 会用分数指数幂表示根式;3. 掌握根式与分数指数幂的运算.一、课前准备(复习教材P48~ P53,找出疑惑之处)复习1:什么叫做根式? 运算性质?像的式子就叫做,具有性质:n=;=;= .复习2:分数指数幂如何定义?运算性质?①mna=;mna-=. 其中*0,,,1a m n N n>∈>②r sa a =;()r sa=;()sab=.复习3:填空.①n为时,(0)||...........(0)xxx≥⎧==⎨<⎩.②求下列各式的值:= ;=;= ;= ;= ;=;= .二、新课导学典型例题例1 已知1122a a-+=3,求下列各式的值:(1)1a a-+;(2)22a a-+;(3)33221122a aa a----.小结:①平方法;②乘法公式;③根式的基本性质=(a≥0)等.注意,a≥0十分重要,无此条件则公式不成立. .变式:已知11223a a--=,求:(1)1122a a-+;(2)3322a a--.例2从盛满1升纯酒精的容器中倒出13升,然后用水填满,再倒出13升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结:① 方法:摘要→审题;探究 → 结论; ② 解应用问题四步曲:审题→建模→解答→作答. ※ 动手试试练1. 化简:11112244()()x y x y -÷-.练2. 已知x +x -1=3,求下列各式的值.(1)1122x x -+; (2)3322x x -+.练3. 已知12(),0x f x x x π=⋅>.三、总结提升 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用.知识拓展1. 立方和差公式:3322()()a b a b a ab b +=+-+;3322()()a b a b a ab b -=-++.2. 完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-.1.).A. B. C. 3 D. 729 2. 354a a (a >0)的值是( ).A. 1B. aC. 15a D. 1710a3. 下列各式中成立的是( ).A .1777()n n m m= B .C 34()x y =+D .4. 化简3225()4-= . 5. 化简2115113366221()(3)()3a b a b a b -÷= .课后作业1. 已知32x a b --=+, .2. 2n a =时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)学习目标1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).学习过程一、课前准备(预习教材P 54~ P 57,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1)0a = ;(2)n a -= ;(3)m n a = ;m na -= .其中*0,,,1a m n N n >∈>复习2:有理指数幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学 学习探究探究任务一:指数函数模型思想及指数函数概念实例:A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么?B .一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .反思:为什么规定a >0且a ≠1呢?否则会出现什么情况呢?试试:举出几个生活中有关指数模型的例子?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =讨论:(1)函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或13后呢?a >1 0<a <1图象性 质 (1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x =0时,y =1(4)在 R 上是增函数 (4)在R 上是减函数典型例题例1函数()x f x a =(0,1a a >≠且)的图象过点(2,)π,求(0)f ,(1)f -,(1)f 的值.小结:①确定指数函数重要要素是 ;② 待定系数法.例2比较下列各组中两个值的大小:(1)0.60.52,2; (2)2 1.50.9,0.9-- ;(3)0.5 2.12.1,0.5 ; (4)231-与.小结:利用单调性比大小;或间接利用中间数.练1. 已知下列不等式,试比较m 、n 的大小:(1)22()()33m n >; (2) 1.1 1.1m n <.练2. 比较大小:(1)0.70.90.80.8,0.8, 1.2a b c ===;(2)01, 2.50.4,-0.22-, 1.62.5.三、总结提升学习小结①指数函数模型应用思想;②指数函数概念;③指数函数的图象与性质;③单调法.知识拓展因为(01)x y a a a =>≠,且的定义域是R , 所以()(01)f x y a a a =>≠,且的定义域与()f x 的定义域相同. 而()(01)x y a a a ϕ=>≠,且的定义域,由()y t ϕ=的定义域确定.学习评价自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差当堂检测(时量:5分钟 满分:10分)计分:1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ).A. 1B. 2C. 1或2D. 任意值2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1)B. (0,2)C. (2,1)D. (2,2)3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是( ).4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 . 课后作业1. 求函数y =1151x x --的定义域.2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)学习目标1. 熟练掌握指数函数概念、图象、性质;2. 掌握指数型函数的定义域、值域,会判断其单调性;3. 培养数学应用意识.学习过程一、课前准备(预习教材P 57~ P 60,找出疑惑之处)复习1:指数函数的形式是 ,复习2:在同一坐标系中,作出函数图象的草图:2x y =,1()2x y =,5x y =,1()5x y =, 10x y =,1()10x y =.思考:指数函数的图象具有怎样的分布规律?二、新课导学典型例题例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.(1)按照上述材料中的1%的增长率,从2000年起,x 年后我国的人口将达到2000年的多少倍?(2)从2000年起到2020年我国人口将达到多少?小结:学会读题摘要;掌握从特殊到一般的归纳法.试试:2007年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍?多少年后产值能达到120亿?小结:指数函数增长模型.设原有量N ,每次的增长率为p ,则经过x 次增长后的总量y = . 我们把形如x y ka = (,0,1)k R a a ∈>≠且的函数称为指数型函数.例2 求下列函数的定义域、值域:(1)21x y =+; (2)y = (3)110.4x y -=.变式:单调性如何?小结:单调法、基本函数法、图象法、观察法.试试:求函数y =.练1. 求指数函数212x y +=的定义域和值域,并讨论其单调性.练2. 已知下列不等式,比较,m n 的大小.(1)33m n <; (2)0.60.6m n >;(3)(1)m n a a a >> ;(4) (01)m n a a a <<<.练3. 一片树林中现有木材30000 m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 3.三、总结提升学习小结1. 指数函数应用模型(,01)x y ka k R a a =∈>≠且;2. 定义域与值域;知识拓展形如()(01)f x y a a a =>≠,且的函数值域的研究,先求得()f x 的值域,再根据t a 的单调性,列出简单的指数不等式,得出所求值域,注意不能忽视()0f x y a =>. 而形如()(01)x y a a a ϕ=>≠,且的函数值域的研究,易知0x a >,再结合函数()t ϕ进行研究. 在求值域的过程中,配合一些常用求值域的方法,例如观察法、单调性法、图象法等.1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x (b >0,b ≠1)的图象关于y 轴对称,则有( ).A. a >bB. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x -1的定义域、值域分别是( ).A. R , RB. R , (0,)+∞C. R ,(1,)-+∞D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减C. 若a 2>a 21-,则a >1D. 若2x >1,则1x >4. 比较下列各组数的大小:122()5- 320.4-(); 0.763() 0.753-(). 5. 在同一坐标系下,函数y =a x ,y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 .课后作业1. 已知函数f (x )=a -221x +(a ∈R ),求证:对任何a R ∈, f (x )为增函数.2. 求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)学习目标1. 理解对数的概念;3. 掌握对数式与指数式的相互转化.学习过程一、课前准备(预习教材P 62~ P 64,找出疑惑之处)复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?复习2:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产 是2002年的2倍? (只列式)二、新课导学学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿?讨论:(1)问题具有怎样的共性?(2)已知底数和幂的值,求指数怎样求呢?例如:由1.01x m =,求x .新知:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数log N 简记为lg Nlog e N 简记作ln N试试:分别说说lg5 、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系?0,1a a >≠时,x a N =⇔ .(2)负数与零是否有对数?为什么?(3)log 1a = , log a a = .典型例题例1下列指数式化为对数式,对数式化为指数式.(1)35125= ;(2)712128-=;(3)327a =; (4) 2100.01-=; (5)12log 325=-;(6)lg0.001=3-; (7)ln100=4.606.变式:12log 32?= lg0.001=?小结:注意对数符号的书写,与真数才能构成整体. 例2求下列各式中x 的值:(1)642log 3x =; (2)log 86x =-; (3)lg 4x =; (4)3ln e x =.练1. 求下列各式的值.(1)5log 25 ; (2)21log 16; (3)lg 10000.练2. 探究log ?n a a = log ?a N a =三、总结提升①对数概念;②lg N 与ln N ;③指对互化;④如何求对数值知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier ,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.:1. 若2log 3x =,则x =( ).A. 4B. 6C. 8D. 92.log = ( ).A. 1B. -1C. 2D. -23. 对数式2log (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4. 计算:1(3+= .5. 若log 1)1x =-,则x =________,若y =,则y =___________.课后作业1. 将下列指数式化成对数式,对数式化成指数式.(1)53243=; (2)51232-=; (3)430a = (4)1() 1.032m =; (5)12log 164=-; (6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log 27; (2)3log 243; (3);(3)(2log (2; (4).§§2.2.1 对数与对数运算(2)学习目标1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..学习过程一、课前准备(预习教材P 64~ P 66,找出疑惑之处)复习1:(1)对数定义:如果x a N =(0,1)a a >≠,那么数 x 叫做 ,记作 .(2)指数式与对数式的互化:x a N =⇔ .复习2:幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .复习3:根据对数的定义及对数与指数的关系解答:(1)设log 2a m =,log 3a n =,求m n a +;(2)设log a M m =,log a N n =,试利用m 、n 表示log (a M ·)N .二、新课导学学习探究探究任务:对数运算性质及推导问题:由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系?问题:设log a M p =, log a N q =,由对数的定义可得:M =p a ,N =a∴MN =p a q a =p q a +,∴log a MN =p +q ,即得log a MN =log a M + log a N根据上面的证明,能否得出以下式子?如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()log log a a a MN M N =+;(2)log log log a a a M M N N=-; (3) log log ()n a a M n M n R =∈.反思:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)典型例题例1用log a x , log a y , log a z 表示下列各式:(1)2log a xy z ; (2) log a .例2计算:(1)5log 25; (2)0.4log 1;(3)852log (42)⨯; (4)探究:根据对数的定义推导换底公式log log log c a c b b a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?动手试试练1. 设lg2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=0.3010,lg3=0.4771,求lg6、.练2. 运用换底公式推导下列结论.(1)log log m n a a n b b m=;(2)1log log a b b a =.练3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9.三、总结提升学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log b a b N N a=; ② 对数的倒数公式1log log a b b a=. ③ 对数恒等式:log log n n a a N N =,log log m n a a n N N=,log log log 1a b c b c a =. ※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=-B .222log (10)2log (10)-=-C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35ab x c= C .35ab x c= D .x =a +b 3-c 3 3. 若()2lg 2lg lg y x x y -=+,那么( ).A .y x =B .2y x =C .3y x =D .4y x =4. 计算:(1)99log 3log 27+=;(2)2121log log 22+= . 5. 计算:15lg 23=.1. 计算:(1; (2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b-=.§2.2.1 对数与对数运算(3)1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力.一、课前准备(预习教材P 66~ P 69,找出疑惑之处)复习1:对数的运算性质及换底公式.如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()a MN = ;(2)log a M N= ; (3) log n a M = .换底公式log a b = .复习2:已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿? (用式子表示)二、新课导学※ 典型例题例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)小结:读题摘要→寻找数量关系→利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P 与生物死亡年数t 之间的关系.回答下列问题:(1)求生物死亡t 年后它机体内的碳14的含量P ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(2)已知一生物体内碳14的残留量为P ,试求该生物死亡的年数t ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代?反思:① P 和t 之间的对应关系是一一对应;② P 关于t 的指数函数(x P =,则t 关于P 的函数为 . ※ 动手试试练1. 计算:(1)0.21log 35-; (2)4912log 3log 2log ⋅-练2. 我国的GDP 年平均增长率保持为7.3%,约多少年后我国的GDP 在2007年的基础上翻两番?三、总结提升※ 学习小结1. 应用建模思想(审题→设未知数→建立x 与y 之间的关系→求解→验证);2. 用数学结果解释现象.※ 知识拓展在给定区间内,若函数()f x 的图象向上凸出,则函数()f x 在该区间上为凸函数,结合图象易得到1212()()()22x x f x f x f ++≥; 在给定区间内,若函数()f x 的图象向下凹进,则函数()f x 在该区间上为凹函数,结合图象易得到1212()()()x x f x f x f ++≤.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 25()a -(a ≠0)化简得结果是( ).A .-aB .a 2C .|a |D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ).A. 3B.C.D.3. 已知35a b m ==,且112a b+=,则m 之值为( ).A .15BC .D .2254. 若3a =2,则log 38-2log 36用a 表示为 .5. 已知lg20.3010=,lg1.07180.0301=,则lg2.5= ;1102= .1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++; (2)()()24525log 5+log 0.2log 2+log 0.5.2. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.一、课前准备(预习教材P 70~ P 72,找出疑惑之处)复习1:画出2x y =、1 ()2x y =的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学※ 学习探究探究任务一:对数函数的概念讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系logt P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数)新知:一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 (0a >,且1)a ≠.探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象.2log y x =;0.5log y x =.反思:((2)图象具有怎样的分布规律?※ 典型例题例1求下列函数的定义域: (1)2log a y x =;(2)log (3)a yx =-;变式:求函数y =的定义域.例2比较大小:(1)ln3.4,ln8.5; (2)0.30.3log 2.8,log 2.7; (3)log 5.1,log 5.9a a .小结:利用单调性比大小;注意格式规范.※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)y .练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和; (3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.三、总结提升※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x xf ++≤;当01a <<时,1212()()()22f x f x x xf ++≥.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 5. 函数(-1)log (3-)x y x =的定义域是 .1. 已知下列不等式,比较正数m 、n 的大小:(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域:(1)y =(2)y =§2.2.2 对数函数及其性质(2)1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.一、课前准备(预习教材P 72~ P 73,找出疑惑之处)复习1:对数函数log (0,1)a y x a a =>≠且图象和性质.复习2:比较两个对数的大小.(1)10log 7与10log 12 ; (2)0.5log 0.7与0.5log 0.8.复习3:求函数的定义域.(1)311log 2y x=- ; (2)log (28)a y x =+.二、新课导学※ 学习探究探究任务:反函数问题:如何由2x y =求出x ?反思:函数2log x y =由2x y =解出,是把指数函数2x y =中的自变量与因变量对调位置而得出的. 习惯上我们通常用x 表示自变量,y 表示函数,即写为2log y x =.新知:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ) 例如:指数函数2x y =与对数函数2log y x =互为反函数.试试:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质?反思: (1)如果000(,)P x y 在函数2x y =的图象上,那么P 0关于直线y x =的对称点在函数2log y x =的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.※ 典型例题例1求下列函数的反函数:(1) 3x y =; (2)log (1)a y x =-.小结:求反函数的步骤(解x →习惯表示→定义域)变式:点(2,3)在函数log (1)a y x =-的反函数图象上,求实数a 的值.例2溶液酸碱度的测量问题:溶液酸碱度pH 的计算公式lg[]pH H +=-,其中[]H +表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系? (2)纯净水7[]10H +-=摩尔/升,计算其酸碱度.小结:抽象出对数函数模型,然后应用对数函数模型解决问题,这就是数学应用建模思想.※ 动手试试练1. 己知函数()x f x a k =-的图象过点(1,3)其反函数的图象过点(2,0),求()f x 的表达式.练2. 求下列函数的反函数.(1) y =x (x ∈R );(2)y =log a 2x(a >0,a ≠1,x >0)三、总结提升※ 学习小结① 函数模型应用思想;② 反函数概念.※ 知识拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x 的值,y 都有唯一的值和它对应. 对于一个单调函数,反之对应任意y 值,x 也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 函数0.5log y x =的反函数是( ). A. 0.5log y x =- B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2xy =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减3. 函数2(0)y x x =<的反函数是( ). A. (0)y x x =±> B. (0)y x x => C. (0)y x x =-> D. y x =±4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x =, 4log a y x =的图象,则底数之间的关系为 .课后作业有占总数12的细胞每小时分裂一次,即由1个细1. 现有某种细胞100个,其中胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg20.301==).。
2.1.2 指数函数及其性质整体设计教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》.根据实际情况,将《指数函数及其性质》划分为三节课〔指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)〕,这是第一节课“指数函数的图象及其性质”.指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.学生学习情况分析指数函数是在学生系统学习了函数概念,基本掌握了函数性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和碳14的衰减问题),已经让学生感受到了指数函数的实际背景,但这两个例子的背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.设计思想1.函数及其图象在高中数学中占有很重要的位置.如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机地结合起来,通过具有一定思考价值的问题,激发学生的求知欲望——持久的好奇心.我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去.2.在本节课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.(2)在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.3.通过课堂教学活动向学生渗透数学思想方法.教学目标根据学生的实际情况,本节课的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.重点难点教学重点:指数函数的概念、图象和性质.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.教学过程一、创设情境、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……,按这样的规律,51号同学该准备多少粒米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重.师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……,按这样的规律,51号同学该准备多少粒米?学情预设学生可能说出很多或能算出具体数目.师:大家能否估计一下51号同学该准备的米有多重吗?教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨.师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨.这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!设计意图用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望.在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用x表示,y与x之间的关系分别是什么?学生很容易得出y=2x(x∈N*)和y=2x(x∈N*).学情预设学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的取值范围.二、师生互动、探究新知1.指数函数的定义师:其实,在本章开头的问题中,也有一个与y=2x类似的关系式y=1.073x(x∈N*,x≤20).(1)让学生思考讨论以下问题(问题逐个给出,约3分钟):①y=2x(x∈N*)和y=1.073x(x∈N*,x≤20)这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 设计意图引导学生从具体问题、实际问题中抽象出数学模型.学生对比已经学过的一次函数、反比例函数、二次函数,发现y =2x ,y =1.073x 是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣.引导学生观察,两个函数中,底数是常数,指数是自变量.师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成y =a x 的形式.自变量在指数位置,所以我们把它称作指数函数.(2)让学生讨论并给出指数函数的定义(约6分钟).对于底数的分类,可将问题分解为:①若a <0,会有什么问题?(如a =-2,x =12,则在实数范围内相应的函数值不存在) ②若a =0,会有什么问题?(对于x ≤0,a x 都无意义)③若a =1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要)师:为了避免上述各种情况的发生,所以规定a >0且a ≠1.在这里要注意生生之间、师生之间的对话.①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a >0,且a ≠1;a =1为什么不行?②若学生只给出y =a x ,教师可以引导学生通过类比一次函数(y =kx +b ,k ≠0)、反比例函数(y =k x ,k ≠0)、二次函数(y =ax 2+bx +c ,a ≠0)中的限制条件,思考指数函数中底数的限制条件.学情预设设计意图①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;②讨论出a >0,且a ≠1,也为下面研究性质时对底数的分类做准备.接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y =2×3x ,y =32x ,y =-2x.学情预设学生可能只是关注指数是否是变量,而不考虑其他的.设计意图加深学生对指数函数定义和呈现形式的理解.2.指数函数的性质(1)提出两个问题(约3分钟)①目前研究函数一般可以包括哪些方面?设计意图让学生在研究指数函数时有明确的目标:函数三要素(对应法则、定义域、值域)和函数的基本性质(单调性、奇偶性).②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考.设计意图①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)两个不同的角度对函数进行研究;②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透.(2)分组活动,合作学习(约8分钟)师:下面我们就从图象和解析式这两个不同的角度对指数函数进行研究.①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;②每一大组再分为若干合作小组(建议4人一小组);③每组都将研究所得到的结论或成果写出来以便交流.学情预设考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导.通过自主探索、合作学习,不仅让学生充当学习的主人更可加深对所得到结论的理解.设计意图(3)交流、总结(约10~12分钟)师:下面我们开一个成果展示会!教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果.教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析.这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其他性质?师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?〔〕如过定点(0,1),y =a x 与y =⎝ ⎛⎭⎪⎫1a x 的图象关于y 轴对称学情预设①首先选一个从解析式的角度研究的小组上台汇报;②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;③问其他小组有没有不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化.设计意图①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的.②让学生上台汇报研究成果,使学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题,使该难点的突破显得自然.师:从图象入手我们很容易看出函数的单调性、奇偶性,以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到.教师通过几何画板中改变参数a的值,追踪y=a x的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律.师生共同总结指数函数的图象和性质,教师可以边总结边板书.0<a<1a>1(0,+∞)过定点(0,1)1.例:已知指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,π),求f(0),f(1),f(-3)的值.解:因为f(x)=a x的图象经过点(3,π),所以f(3)=π,即a 3=π.解得13πa =,于是f (x )=3πx . 所以f (0)=1,f (1)=3π,f (-3)=1π. 设计意图通过本题加深学生对指数函数的理解.师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了.设计意图让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想.2.练习:(1)在同一平面直角坐标系中画出y =3x 和y =⎝ ⎛⎭⎪⎫13x 的大致图象,并说出这两个函数的性质;(2)求下列函数的定义域:①y =112xy ⎛⎫= ⎪⎝⎭. 3.师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?学情预设学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数.设计意图①让学生再一次复习对函数的研究方法(可以从多个角度进行),让学生体会本节课的研究方法,以便能将其迁移到其他函数的研究中去.②总结本节课中所用到的数学思想方法.③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通.4.作业:课本习题2.1A 组 5.教学反思1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”.2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本节课使用几何画板可以动态地演示出指数函数的底数的变化过程,让学生直观地观察底数对指数函数单调性的影响.3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉地运用这些数学思想方法去分析、思考问题.指数函数及其性质的应用整体设计三维目标1.知识与技能理解指数函数的图象和性质,会利用性质来解决问题.2.过程与方法能利用指数函数的图象和性质来比较两个值的大小,图象间的平移,去探索利用指数函数的单调性来求未知字母的取值范围.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.重点难点教学重点:指数函数的图象和性质.教学难点:指数函数的性质应用.教学过程第2课时指数函数及其性质的应用(1)作者:王建波导入新课思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明(特别是指数函数的单调性),以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质的应用(1).应用示例例1 比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的方法,再写出答案(最好用实物投影仪展示写得正确的答案).比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;图1二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y=1.7x的图象,如图1.在图象上找出横坐标分别为2.5,3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法三:利用函数单调性,(1)1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x在R上是增函数,而2.5<3,所以1.72.5<1.73;(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x在R上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;(3)因为1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思考在上面的解法中,你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习强化来实现.例活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1,x 2∈R ,且x 1<x 2,则y 2-y 1=21121(1)x x x x a a a a x -=--.因为a >1,x 2-x 1>0,所以21>1x x a-,即21x x a --1>0. 又因为1x a >0,所以y 2-y 1>0,即y 1<y 2.所以当a >1时,y =a x,x ∈R 是增函数.同理可证,当0<a <1时,y =a x 是减函数. 证法二:设x 1,x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=2211x x x x a a a -=. 因为a >1,x 2-x 1>0,所以21>1x x a->1,即y 2y 1>1,y 1<y 2. 所以当a >1时,y =a x ,x ∈R 是增函数.同理可证,当0<a <1时,y =a x是减函数.例1%,那么经过20年后,我国人口数最多为多少(精确到亿)?活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;……经过x 年 人口约为13(1+1%)x亿;经过20年 人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 y =13(1+1%)x ,当x =20时,y =13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N ,平均增长率为p ,则对于经过时间x 后总量y =N (1+p )x (x ∈N ),像y =N (1+p )x 等形如y =ka x (k ∈R ,且k ≠0;a >0,且a ≠1)的函数称为指数型函数.知能训练1.函数y =a |x |(a >1)的图象是( )图2解析:当x ≥0时,y =a |x |=a x 的图象过(0,1)点,在第一象限,图象下凸,是增函数. 答案:B2.下列关系中正确的是( )A .221333111252⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .122333111225⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .212333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .221333111522⎛⎫⎛⎫⎛⎫<<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答案:D3.已知函数f (x )的定义域是(0,1),那么f (2x)的定义域是( )A .(0,1)B .⎝ ⎛⎭⎪⎫12,1 C .(-∞,0) D .(0,+∞) 解析:由题意得0<2x <1,即0<2x <20,所以x <0,即x ∈(-∞,0). 答案:C4.若集合A ={y |y =2x,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .AB B .AB C .A =B D .A ∩B =∅解析:A ={y |y >0},B ={y |y ≥0},所以A B .答案:A5.对于函数f (x )定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论: ①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=10x时,上述结论中正确的是__________. 解析:因为f (x )=10x,且x 1≠x 2,所以f (x 1+x 2)=1212101010x x xx +=⋅=f (x 1)·f (x 2),所以①正确;因为f (x 1·x 2)=1212101010x x xx ⋅≠+=f (x 1)+f (x 2),②不正确;因为f (x )=10x是增函数,所以f (x 1)-f (x 2)与x 1-x 2同号, 所以f (x 1)-f (x 2)x 1-x 2>0,所以③正确.因为函数f (x )=10x图象如图3所示是上凹下凸的,可解得④正确.图3答案:①③④另解:④.∵10x 1>0,10x 2>0,x 1≠x 2,∴1210102xx +>1210102xx +>即121221010102x x x x ++>.∴f (x 1)+f (x 2)2>f ⎝⎛⎭⎪⎫x 1+x 22.拓展提升在同一坐标系中作出下列函数的图象,讨论它们之间的联系. (1)①y =3x,②y =3x +1,③y =3x -1;(2)①y =⎝ ⎛⎭⎪⎫12x ,②y =⎝ ⎛⎭⎪⎫12x -1,③y =⎝ ⎛⎭⎪⎫12x +1.活动:学生动手画函数图象,教师点拨,学生没有思路,教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.解:如图4及图5.观察图4可以看出,y =3x,y =3x +1,y =3x -1的图象间有如下关系:y =3x +1的图象由y =3x 的图象左移1个单位得到; y =3x -1的图象由y =3x 的图象右移1个单位得到; y =3x -1的图象由y =3x +1的图象向右移动2个单位得到.观察图5可以看出,y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫12x -1,y =⎝ ⎛⎭⎪⎫12x +1的图象间有如下关系:y =⎝ ⎛⎭⎪⎫12x +1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象左移1个单位得到;y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x 的图象右移1个单位得到; y =⎝ ⎛⎭⎪⎫12x -1的图象由y =⎝ ⎛⎭⎪⎫12x +1的图象向右移动2个单位得到. 你能推广到一般的情形吗?同学们留作思考.课堂小结思考本节课我们主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致.本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.作业课本习题2.1 B组1,3,4.设计感想本节课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0<a<1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.第3课时指数函数及其性质的应用(2)作者:刘玉亭导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=a x与y=a x+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质的应用(2).思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本节课要解决的问题——指数函数及其性质的应用(2).推进新课新知探究提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:图象分布在一、二象限,与轴相交,落在x轴的上方都过点(0,1)第一象限的点的纵坐标都大于1第二象限的点的纵坐标都大于第一象限的点的纵坐标都大于0且小于1;第二象限的点①取值.即设x1,x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f(g(x))可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考查式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例例 1 在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.解:(1)列出函数数据表作出图象如图6.图6比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.(2)列出函数数据表作出图象如图7.图7比较可知函数y =2x -1、y =2x -2与y =2x的图象的关系为:将指数函数y =2x的图象向右平行移动1个单位长度,就得到函数y =2x -1的图象;将指数函数y =2x的图象向右平行移动2个单位长度,就得到函数y =2x -2的图象.点评:类似地,我们得到y =a x与y =ax +m(a >0,a ≠1,m ∈R )之间的关系:y =a x +m (a >0,m ∈R )的图象可以由y =a x 的图象变化而来.当m >0时,y =a x的图象向左移动m 个单位得到y =ax +m的图象; 当m <0时,y =a x 的图象向右移动|m |个单位得到y =a x +m的图象.上述规律也简称为“左加右减”.例2 已知定义域为R 的函数f (x )=2x +1+a 是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. 活动:学生审题,考虑解题思路.求值一般是构建方程,求取值范围一般要转化为不等式,如果有困难,教师可以提示,(1)从条件出发,充分利用奇函数的性质,由于定义域为R ,所以f (0)=0,f (-1)=-f (1),(2)在(1)的基础上求出f (x ),转化为关于k 的不等式,利用恒成立问题再转化.(1)解:因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1.所以f (x )=1-2xa +2x +1;。