高三数学基本不等式2
- 格式:ppt
- 大小:324.50 KB
- 文档页数:12
利用基本不等式求最值8大题型命题趋势基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点,在解决数学问题中有着广泛的应用,尤其是在函数最值问题中。
题型通常为选择题与填空题,但它的应用范围几乎涉及高中数学的所有章节,它在高考中常用于大小判断、求最值、求最值范围等。
在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点。
在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用。
利用基本不等式求最值的方法1.直接法:条件和问题间存在基本不等式的关系2.配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
3.代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法;类型2:分母为多项式时方法1:观察法适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系;方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ3a +4b +μa +3b =3λ+μ a +4λ+3μ b∴3λ+μ=14λ+3μ=2 ,解得:λ=15μ=254.消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。
5.构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。
热点题型解读【题型1直接法求最值】【例1】(2022春·辽宁锦州·高三校考阶段练习)已知x >0,y >0,且x +y =12,则xy 的最大值为()A.16B.25C.36D.49【答案】C【解析】因为x >0,y >0,x +y =12≥2xy ,即xy ≤36,当且仅当x =y =6时取到等号,故xy的最大值为36.故选:C【变式1-1】(2022·四川广安·广安二中校考模拟预测)已知3x+9y=18,当x+2y取最大值时,则xy的值为( )A.2B.2C.3D.4【答案】B【解析】由已知3x+9y=18可得3x+32y=18,则18=3x+32y≥23x×32y=23x+2y,即3x+2y≤81,所以x+2y≤4,当且仅当x=2y=2时取等号,即x=2,y=1,此时xy=2.故选:B.【变式1-2】(2023·河南郑州·高三校联考阶段练习)已知正数a,b满足a2+2b2=1,则ab2的最大值是()A.13B.33C.39D.19【答案】C【解析】解:由题知1=a2+2b2=a2+b2+b2≥33a2b2b2,∴3a2b4≤1 3,当且仅当a=b=33时取等号,所以ab2≤39.故选:C.【变式1-3】(2022·上海·高三统考学业考试)已知x>1,y>1且lg x+lg y=4,那么lg x·lg y的最大值是( )A.2B.12C.14D.4【答案】D【解析】∵x>1,y>1,∴lg x>0,lg y>0,∴lg x⋅lg y≤lg x+lg y22=42 2=4,当且仅当lg x=lg y=2,即x=y=100时等号成立.故选:D.【变式1-4】(2022春·云南·高三校联考阶段练习)已知正数a,b满足a+5b2a+b=36,则a+2b的最小值为()A.16B.12C.8D.4【答案】D【解析】因为a+5b2a+b≤a+5b+2a+b22,所以9(a+2b)24≥36.又a>0,b>0.所以a+2b≥4,当且仅当a=83,b=23时,等号成立.故选:D【题型2配凑法求最值】【例2】(2022·全国·高三专题练习)已知-3<x<0,则f x =x9-x2的最小值为________.【答案】-9 2【解析】因为-3<x<0,所以f x =x9-x2=-9-x2⋅x2≥-9-x2+x22=-92,当且仅当9-x 2=x 2,即x =-322时取等,所以f x =x 9-x 2的最小值为-92.【变式2-1】(2022春·上海静安·高三上海市市西中学校考期中)函数f (x )=x +9x -1(x >1)的值域为______.【答案】7,+∞【解析】由题知,x >1,所以x -1>0,所以f (x )=x -1 +9x -1+1≥2x -1 ⋅9x -1+1=7,当且仅当x -1=9x -1,即x =4时取等号,所以函数f (x )=x +9x -1(x >1)的值域为7,+∞ .【变式2-2】(2022春·湖南长沙·高三雅礼中学校考阶段练习)已知x >0,y >0,且x +y =7,则1+x 2+y 的最大值为()A.36B.25C.16D.9【答案】B【解析】由x +y =7,得x +1 +y +2 =10,则1+x 2+y ≤1+x +2+y 2 2=25,当且仅当1+x =2+y ,即x =4,y =3时,取等号,所以1+x 2+y 的最大值为25.故选:B .【变式2-3】(2022春·山东济宁·高三统考期中)已知向量m =a -5,1 ,n =1,b +1 ,若a >0,b >0,且m⊥n ,则13a +2b +12a +3b 的最小值为()A.15B.110C.115D.120【答案】A【解析】根据题意,m ⋅n =a -5+b +1=0,即a +b =4,则3a +2b +2a +3b =20,又a >0,b >0,故13a +2b +12a +3b =12013a +2b +12a +3b 3a +2b +2a +3b =1202+2a +3b 3a +2b +3a +2b 2a +3b≥120×2+22a +3b 3a +2b ×3a +2b 2a +3b =15,当且仅当2a +3b 3a +2b =3a +2b2a +3b,且a +b =4,即a =b =2时取得等号.故选:A .【题型3消元法求最值】【例3】(2022春·湖南永州·高三校考阶段练习)设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为()A.1B.22C.324D.2【答案】C【解析】因为x 2+y 22=1,所以y 2=2-2x 2≥0,解得:x ∈0,1 ,故x 1+y 2=x 1+2-2x 2=x 3-2x 2=222x 23-2x 2 ≤22×2x 2+3-2x 22=324,当且仅当2x 2=3-2x 2,即x =32时,等号成立,故x 1+y 2的最大值为324.【变式3-1】(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知正数a ,b 满足a 2-2ab +4=0,则b-a4的最小值为()A.1 B.2C.2D.22【答案】B【解析】∵a ,b >0,a 2-2ab +4=0,则有b =a 2+2a,∴b -a 4=a 2+2a -a 4=a 4+2a≥2a 4⋅2a =2,当且仅当a 4=2a ,即a =22时等号成立,此时b =322,故选:B .【变式3-2】(2022春·广东广州·高三执信中学校考阶段练习)设正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则xy z的最大值为()A.0B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则z =4x 2-3xy +y 2,则xy z =xy 4x 2-3xy +y 2=14x y +y x -3≤124x y ⋅y x-3=1,当且仅当y =2x >0时取等号.故xy z 的最大值为1.故选:C .【变式3-3】(2023·全国·高三专题练习)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xyz取得最大值时,2x +1y -2z 的最大值为()A.0B.3C.94D.1【答案】D【解析】由正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,∴z =x 2-3xy +4y 2.∴xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤12x y ⋅4y x-3=1,当且仅当x =2y >0时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2=-1y -1 2+1≤1,当且仅当y =1时取等号,即2x +1y -2z的最大值是1.故选:D 【变式3-4】(2022春·湖南长沙·高三湖南师大附中校考阶段练习)(多选)已知a ,b ,c 均为正实数,ab +ac=2,则1a +1b +c +8a +b +c的取值不可能是()A.1B.2C.3D.4【答案】ABC【解析】a ,b ,c 均为正实数,由ab +ac =2得:a b +c =2,即b +c =2a,所以1a +1b +c +8a +b +c =1a +a 2+8a +2a=2+a 22a +8a a 2+2,由基本不等式得:1a +1b +c +8a +b +c =2+a 22a +8a a 2+2≥22+a 22a ⋅8a a 2+2=4,当且仅当2+a 22a =8aa 2+2,即a =2±2时,等号成立.故选:ABC【变式3-5】(2022春·云南昆明·高三云南师大附中校考阶段练习)若x 21+y 21=4,x 22+y 22=4,x 1⋅y 2=-2,则x 2⋅y 1的最大值为___________.【答案】2【解析】x 2⋅y 1 2=4-y 22 4-x 21 =4-4x 214-x 21 =20-44x 21+x 21,由y 2=-2x 1,所以y 2 =-2x 1=2x 1≤2,所以1≤x 1 ≤2,所以x 2⋅y 1 2=20-44x 21+x 21≤20-4×24x 21⋅x 21=4,当且仅当|x 1|=2时,等号成立,所以x 2⋅y 1≤2,当且仅当x 2=2,y 1=2或x 2=-2,y 1=-2时取等号,所以x 2⋅y 1的最大值为2.【题型4代换法求最值】【例4】(2022春·上海崇明·高三上海市崇明中学校考阶段练习)已知x >0,y >0,且4x +y =1,则1x +9y的最小值是_____.【答案】25【解析】因为x >0,y >0,且4x +y =1,所以1x +9y =4x +y 1x +9y =4+36xy +y x+9≥13+236x y ⋅y x=25,当且仅当36x y =y x ,即x =110,y =35时,等号成立.【变式4-1】(2022春·江西·高三九江一中校联考阶段练习)已知a >0,b >0,a +b =2,则b a +4b的最小值为_______.【答案】22+2【解析】因为a >0,b >0,且a +b =2,所以b a +4b =b a +4b a +b 2 =b a +2a b +2≥2b a ×2a b+2=22+2,当且仅当b 2=2a 2时取等号故b a +4b 的最小值为22+2【变式4-2】(2022春·江西抚州·高三金溪一中校考阶段练习)若正实数x ,y 满足2x +y =xy ,则x +2y 的最小值为______.【答案】9【解析】由2x +y =xy 得2y +1x=1,又因为x >0,y >0,所以x +2y =x +2y 2y +1x =2xy +2y x +5≥22x y ⋅2y x +5=9,当且仅当x =y =3时等号成立,故x +2y 的最小值为9.【变式4-3】(2022春·黑龙江鹤岗·高三鹤岗一中校考阶段练习)已知x >-2,y >0,2x +y =3,则x +2y +2x +2+7y的最小值为()A.4B.6C.8D.10【答案】B【解析】因为x >-2,y >0,2x +y =3,所以2x +2 +y =7,x +2>0,所以x +2y +2x +2+7y =x +2y +2x +2+2x +2 +y y =2+2y x +2+2x +2 y≥2+22yx +2⋅2x +2 y=6,当且仅当x +2=y ,即x =13,y =73时等号成立,即x +2y +2x +2+7y 的最小值为6,故选:B .【变式4-4】(2022·广西·统考一模)如图,在△ABC 中,M 为线段BC 的中点,G 为线段AM 上一点且AG=2GM ,过点G 的直线分别交直线AB 、AC 于P 、Q 两点,AB =xAP (x >0),AC =yAQ (y >0),则1x+1y +1的最小值为()A.34B.1C.43D.4【答案】B【解析】由于M 为线段BC 的中点,则AM =12AB +12AC又AG =2GM ,所以AM =32AG ,又AB =xAP (x >0),AC =yAQ (y >0)所以32AG=x 2AP +y 2AQ ,则AG =x 3AP +y 3AQ因为G ,P ,Q 三点共线,则x3+y 3=1,化得x +y +1 =4由1x +1y +1=14x +y +1 1x +1y +1 =14x y +1+y +1x+2 ≥142x y +1⋅y +1x+2=1当且仅当x y +1=y +1x 时,即x =2,y =1时,等号成立,1x +1y +1的最小值为1故选:B 【题型5双换元法求最值】【例5】(2022春·天津河西·高三天津市新华中学校考阶段练习)设x >-1,y >-2,且x +y =4,则x 2x +1+y 2y +2的最小值是__________.【答案】167【解析】令x +1=a (a >0),y +2=b (b >0),则x =a -1,y =b -2,因为x +y =4,则有a +b =7,所以x 2x +1+y 2y +2=(a -1)2a +(b -2)2b =a +1a -2+b +4b -4=7-2-4+1a +4b=1+17(a +b )1a +4b =1+171+4+b a +4a b≥1+17×5+2b a ×4a b =167当且仅当b =2a ,即a =73,b =143时取等号,则x ,y 分别等于43,83时,x 2x +1+y 2y +2的最小值是167.【变式5-1】(2022春·江西南昌·高三南昌二中校考阶段练习)已知正数x ,y 满足3x +2y y +83x +2y x=1,则xy 的最小值是()A.54B.83C.43D.52【答案】D 【解析】xy =xy 3x +2y y +83x +2y x=3x x +2y +8y 3x +2y ,令x +2y =m ,3x +2y =n ,则x =n -m 2,y =3m -n4,xy =3x x +2y +8y 3x +2y =3n 2m +6m n -72≥23n 2m ⋅6m n -72=52,当且仅当3n 2m =6m n 且3x +2y y +83x +2y x =1,即x =5,y =52时,等号成立,所以xy ≥52,故xy 有最小值52.故选:D .【变式5-2】(2022·全国·高三专题练习)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥m 恒成立,则m 的最大值为()A.8 B.16C.22D.42【答案】A【解析】设y -1=b ,2x -1=a ,则y =b +1b >0 ,x =12a +1 a >0 所以4x 2y -1+y 22x -1=a +1 2b +b +1 2a ≥2a +1b +1 ab =2ab +a +b +1ab=2ab +1ab +a +b ab ≥22ab ⋅1ab +2ab ab=2⋅2+2 =8当且仅当a =b =1即x =2,y =1时取等号所以4x 2y -1+y 22x -1的最小值是8,则m 的最大值为8.故选A【变式5-3】(2022春·浙江·高三浙江省新昌中学校联考期中)已知x >0,y >0,若x +y =1,则33x +2y+11+3y的最小值是___________.【答案】85【解析】设x +y +k =λ3x +2y +μ1+3y ,由对应系数相等得1=3λ1=2λ+3μk =μ,得λ=13k =μ=19所以x +y +19=133x +2y +191+3y整理得1=3103x +2y +1101+3y 即1=1109x +6y +1+3y所以33x +2y +11+3y =1109x +6y +1+3y 33x +2y +11+3y=1+11031+3y 3x +2y +9x +6y 1+3y≥85.经验证当x =y =12时,等号可取到.【题型6齐次化求最值】【例6】(2020春·浙江金华·高三浙江金华第一中学校考阶段练习)已知a ,b 都是负实数,则a a +2b +ba +b的最小值是____________ .【答案】22-2【解析】a a +2b +b a +b =a 2+2ab +2b 2a 2+3ab +2b 2=1-ab a 2+3ab +2b2=1-1a b+2b a +3,因为a ,b 都是负实数,所以a b>0,2ba >0,所以a b +2b a ≥2a b ×2b a =22(当且仅当a b=2b a 时等号成立).所以a b +2b a +3≥22+3,所以1a b+2b a +3≤122+3,所以-1a b +2b a +3≥-122+3=22-3,所以1-1a b+2b a +3≥1+22-3=22-2.即a a +2b +b a +b的最小值是22-2.【变式6-1】(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)已知对任意正实数x ,y ,恒有x 2+y 2≤a x 2-xy +y 2 ,则实数a 的最小值是___________.【答案】2【解析】因为x >0,y >0,则x 2-xy +y 2=x -y 2+xy >0,则x2+y2≤a x2-xy+y2,即x2+y2x2-xy+y2≤a,又x2+y2x2-xy+y2=11-xyx2+y2,因为x2+y2≥2xy,所以1-xyx2+y2≥12,所以11-xyx2+y2≤2,即x2+y2x2-xy+y2≤2,当且仅当x=y时,取等号,所以x2+y2x2-xy+y2max=2,所以a≥2,即实数a的最小值是2.【变式6-2】(2022·全国·高三专题练习)已知x>0,y>0,则x2+3y2xy+y2的最小值为____.【答案】2【解析】∵x,y>0,则x2+3y2xy+y2=x2y2+3xy+1,设xy=t,t>0,则x2+3y2xy+y2=t2+3t+1=t+12-2t+1+4t+1=(t+1)+4t+1-2≥2t+1×4t+1-2=4-2=2,当且仅当t+1=4t+1,即t=1时取等号,此时x=y,故x2+3y2xy+y2的最小值为2.【题型7构造不等式法求最值】【例7】(2013春·浙江嘉兴·高三阶段练习)已知正实数a,b满足2ab=a+b+12,则ab的最小值是_____ ______.【答案】9【解析】由2ab=a+b+12得,2ab≥2ab+12,化简得ab-3ab+2≥0,解得ab≥9,所以ab的最小值是9.【变式7-1】已知x>0,y>0,2xy=x+y+4,则x+y的最小值为______.【答案】4【解析】由题知x>0,y>0,由基本不等式得xy≤x+y22,即x+y+4≤2×x+y22,令t=x+y,t>0,则有t+4≤2×t22,整理得t2-2t-8≥0,解得t≤-2(舍去)或t≥4,即x+y≥4,当且仅当x=y=2时等号成立,所以x+y的最小值为4.【变式7-2】(2022·全国·高三专题练习)若4x2+y2+xy=1,则2x+y的最大值是___________.【答案】2105【解析】∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1≥(2x +y )2-322x +y 2 2=58(2x +y )2,当且仅当2x =y 时,等号成立,此时(2x +y )2≤85,所以2x +y ≤2105,即2x +y 的最大值是2105.【变式7-3】(2020春·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)若x >0,y >0,y +1x+4x +2y =5,则2x +y 的最小值为___________.【答案】8【解析】因为x >0,y >0,所以2x +y >0由y +1x +4x +2y=5两边同时乘xy ,得y 2+y +4x 2+2x =5xy ,即4x 2+y 2+4xy +2x +y =5xy +4xy ,则2x +y 2+2x +y =9xy ,因为2xy ≤2x +y 2 2=2x +y 24,所以9xy =92×2xy ≤92×2x +y 24=982x +y2,故2x +y 2+2x +y ≤982x +y 2,整理得2x +y 2-82x +y ≥0,即2x +y 2x +y -8 ≥0,所以2x +y ≥8或2x +y ≤0(舍去),故2x +y 的最小值为8.【题型8多次使用不等式求最值】【例8】(2022春·重庆沙坪坝·高三重庆八中校考阶段练习)已知a >0,b >0,则4b +ba2+2a 的最小值为()A.22 B.42C.42+1D.22+1【答案】B【解析】因为a >0,b >0,所以4b +ba2+2a ≥24b ⋅b a 2+2a =4a+2a ≥24a⋅2a =42,当且仅当4b =b a2且4a =2a ,即a =2,b =22时取等号,即4b +ba2+2a 的最小值为4 2.故选:B .【变式8-1】(2022春·江苏淮安·高三校联考期中)当0<x <2a ,不等式1x 2+12a -x2≥1恒成立,则实数a 的取值范围是()A.2,+∞B.0,2C.0,2D.2,+∞【答案】B【解析】1x 2+12a -x 2≥1恒成立,即1x 2+12a -x 2 min≥1∵0<x <2a ,∴2a -x >0,又1x 2+1(2a -x )2≥21x 2(2a -x )2=2x (2a -x )≥2x +2a -x 22=2a 2,上述两个不等式中,等号均在x =2a -x 时取到,∴1x 2+12a -x 2min=2a 2,∴2a2≥1,解得-2≤a ≤2且a ≠0,又a >0,实数a 的取值范围是0,2 .故选:B .【变式8-2】(2022·全国·模拟预测)已知a >0,b >0,c >1,a +2b =2,则1a +2bc +2c -1的最小值为()A.92B.2C.6D.212【答案】D【解析】1a +2b =121a +2b a +2b =125+2b a +2a b≥125+4 =92,当且仅当a =b =23时等号成立,(应用基本不等式时注意等号成立的条件)所以1a +2bc +2c -1≥92c -1 +2c -1+92≥29c -1 2⋅2c -1+92=212,当且仅当9c -1 2=2c -1,即c =53且a =b =23时,等号成立,故最小值为212,故选:D【变式8-3】(2022春·安徽·高三校联考阶段练习)已知a ,b ,c ∈R +,θ∈-π2,π2,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,则θ的取值范围是()A.-π2,π2B.-π3,π3C.-π4,π4D.-π6,π6【答案】C【解析】因为a ,b ,c ∈R +,θ∈-π2,π2 ,不等式2b a +c a 2+4b 2+c 2≤cos θ恒成立,所以2b a +c a 2+4b 2+c 2 max≤cos θ,因为a ,b ,c ∈R +,所以2ab =12×2a 2b ≤12a 2+2b 2 =12a 2+2b 2,当且仅当a =2b 时等号成立;2bc =12×2c 2b ≤12c 2+2b 2 =12c 2+2b 2,当且仅当c =2b 时等号成立.所以2b a +c a 2+4b 2+c 2=2ab +2bc a 2+4b 2+c 2≤12a 2+2b 2 +12c 2+2b 2a 2+4b 2+c 2=22,当且仅当a =2b =c 时等号成立,所以2b a +c a 2+4b 2+c2的最大值为22,所以cos θ≥22,又因为θ∈-π2,π2,所以θ∈-π4,π4.故选:C.【变式8-4】(2023·全国·高三专题练习)若a,b,c均为正实数,则ab+bca2+2b2+c2的最大值为()A.12B.14C.22D.32【答案】A【解析】因为a,b均为正实数,则ab+bca2+2b2+c2=a+ca2+c2b+2b≤a+c2a2+c2b×2b=a+c22a2+c2=12a2+2ac+c22a2+c2=1212+aca2+c2≤1212+ac2a2×c2=12,当且仅当a2+c2b=2b,且a=c,即a=b=c时取等号,则ab+bca2+2b2+c2的最大值为12.故选:A.限时检测(建议用时:60分钟)1.(2022春·江苏徐州·高三学业考试)若正实数x,y满足1x+2y=1,则x+2y的最小值为()A.7B.8C.9D.10【答案】C【解析】因为x,y是正数,所以有1x+2yx+2y=5+2yx+2xy≥5+22yx∙2xy=9,当且仅当2yx=2xy时取等号,即当且仅当x=y=3时取等号,故选:C2.(2022春·广东湛江·高三校考阶段练习)已知x>2,y=x+1x-2,则y的最小值为()A.2B.1C.4D.3【答案】C【解析】因为x>2,所以x-2>0,1x-2>0,由基本不等式得y=x+1x-2=x-2+1x-2+2≥2x-2⋅1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立,则y的最小值为4.故选:C3.(2022春·河南·高三安阳一中校联考阶段练习)已知a>1,b>1,且aln+4bln=2,则a elog+b e4log的最小值为()A.92lg B.212 C.252 D.12【答案】C【解析】a e log =1a ln ,b e 4log =4b ln ,因为a >1,b >1,故a >0ln ,b ln >0,a e log +b e 4log =1a ln +4b ln =12×a ln +4b ln 1a ln +4bln=12×17+4b ln a ln +4a ln bln≥12×17+24b ln a ln ⋅4a ln bln=252,当且仅当a ln =b ln 时,即a =b =e 25时等号成立.所以a e log +b e 4log 的最小值为252.故选:C4.(2022春·吉林四平·高三四平市第一高级中学校考阶段练习)已知正数a ,b 满足4a +9b =4,则ab 的最大值为()A.19B.16C.13D.12【答案】A【解析】正数a ,b 满足4a +9b =4,由基本不等式得:4a +9b =4≥24a ⋅9b ,解得:ab ≤19,当且仅当4a =9b ,即a =12,b =29时,等号成立,ab 的最大值为19.故选:A 5.(2022春·黑龙江牡丹江·高三牡丹江一中校考期末)已知a >0,b >0,9是3a 与27b 的等比中项,则a 2+2a +3b 2+1b 的最小值为()A.9+26 B.21+264C.7D.14+263【答案】B【解析】由等比中项定义知:3a ⋅27b =3a +3b =92,∴a +3b =4,∴a 2+2a +3b 2+1b =a +3b +2a +1b =4+142a +1b a +3b =4+145+6b a +a b≥4+145+26b a ⋅a b =4+5+264=21+264(当且仅当6b a =ab,即a =46-8,b =43-6 3时取等号),即a 2+2a +3b 2+1b的最小值为21+264.故选:B .6.(2022春·河南南阳·高三校考阶段练习)在△ABC 中,过重心E 任作一直线分别交AB ,AC 于M ,N 两点,设AM =xAB ,AN =yAC ,(x >0,y >0),则4x +y 的最小值是()A.43B.103C.3D.2【答案】C【解析】在△ABC 中,E 为重心,所以AE =23⋅12AB +AC =13AB +AC ,设AM =xAB ,AN =yAC ,(x >0,y >0),所以AB =1x AM ,AC =1y AN ,所以AE =13⋅1x AM +13⋅1yAN .因为M 、E 、N 三点共线,所以13x +13y=1,所以4x +y 13x +13y=43+13+y 3x +4x 3y ≥53+2y 3x ⋅4x 3y =3(当且仅当y 3x =4x 3y ,即x =12,y =1时取等号).故4x +y 的最小值是3.故选:C .7.(2022春·四川德阳·高三阶段练习)已知实数a 、b >0,且函数f x =x 2-2a +b x +2a +b -1的定义域为R ,则a 2b +2a 的最小值是()A.4B.6C.22D.2【答案】A【解析】∵f x =x 2-2a +b x +2a +b -1定义域为R ,∴x 2-2a +b x +2a +b -1≥0在R 上恒成立,∴△=-2a +b 2-4×2a +b -1 ≤0,即:a +b 2-2a +b +1≤0∴a +b -1 2≤0,解得:a +b =1又∵a >0,b >0∴a 2b +2a =1-b 2b +2a =12b +2a -12=12b +2a a +b -12=a 2b +2ba +2≥2a 2b ⋅2b a+2=4当且仅当a 2b =2b a ,即a =23,b =13时取等号.故选:A .8.(2022春·江西宜春·高三校考阶段练习)设x >y >z ,且1x -y +1y -z ≥nx -zn ∈N 恒成立,则n 的最大值为()A.2B.3C.4D.5【答案】C【解析】因为x >y >z ,所以x -y >0,y -z >0,x -z >0,所以不等式1x -y +1y -z ≥n x -z 恒成立等价于n ≤x -z 1x -y +1y -z恒成立.因为x -z =x -y +y -z ≥2x -y y -z ,1x -y +1y -z≥21x -y ⋅1y -z ,所以x -z ⋅1x -y +1y -z≥4x -y y -z⋅1x -y ⋅1y -z =4(当且仅当x -y =y -z 时等号成立),则要使n ≤x -z 1x -y +1y -z恒成立,只需使n ≤4n ∈N ,故n 的最大值为4.故选:C 9.(2022春·重庆沙坪坝·高三重庆南开中学校考阶段练习)(多选)已知实数a ,b 满足4a 2-ab +b 2=1,以下说法正确的是()A.a ≤21515B.a +b <1C.45≤4a 2+b 2≤43D.2a -b ≤2105【答案】ACD【解析】由4a 2-ab +b 2=1,可得b 2-ab +4a 2-1=0,关于b 的方程有解,所以△=-a 2-44a 2-1 ≥0,所以a 2≤415,即a ≤21515,故A 正确;取a =0,b =1,4a 2-ab +b 2=1,则a +b =1,故B 错误;由4a 2-ab +b 2=1,可得4a 2+b 2=ab +1=1+12⋅2ab ,又-4a 2+b 22≤2ab ≤4a 2+b 22,令t=4a 2+b 2,则-t 2≤2t -1 ≤t 2,所以45≤t ≤43,即45≤4a 2+b 2≤43,故C 正确;由4a 2-ab +b 2=1,可得2a -b 2+3ab =1,所以2a -b 2=1-3ab =1+32⋅2a ⋅-b ,令u =2a -b ,由2a ⋅-b ≤2a -b 22,可得u 2≤1+38u 2,所以u 2≤85,即2a -b ≤2105,故D 正确.故选:ACD .10.(2022·浙江·模拟预测)(多选)已知a ,b 为正数,且2a +b -2=0,则()A.a 2+16>8a B.2a +1b≥9 C.a 2+b 2≥255D.32<a +b -5a -2<4【答案】ACD【解析】对于A 选项,a 2+16-8a =a -4 2≥0,当且仅当a =4时等号成立,当a =4时,由于2a +b -2=0,得b =2-2a =2-8=-6,与b 为正数矛盾,故a ≠4,即得a 2+16>8a ,故A 选项正确;对于B 选项,∵2a +b -2=0,∴a +b2=1.又∵a >0,b >0∴2a +1b =2a +1b a +b 2 =2+b a +a b+12≥52+2b a ⋅a b =92,当且仅当b a =a b,即a =b =23时等号成立;故B 选项不正确;对于C 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∵a 2+b 2=a 2+2-2a 2=5a 2-8a +4=5a -45 2+45,∴a 2+b 2≥45,当且仅当a =45时等号成立,∴a 2+b 2≥255,故C 选项正确;对于D 选项,∵2a +b -2=0,∴b =2-2a ,a ∈0,1 .∴a +b -5a -2=a +2-2a -5a -2=-a -3a -2=-a -2 -5a -2=-1-5a -20<a <1 ,当0<a <1时,-2<a -2<-1,∴-5<5a -2<-52,得32<-1-5a -2<4,即32<a +b -5a -2<4,故D 选项正确.故选:ACD11.(2022春·山西·高三校联考阶段练习)(多选)若a >b >1,且a +3b =5,则()A.1a -b +4b -1的最小值为24 B.1a -b +4b -1的最小值为25C.ab -b 2-a +b 的最大值为14 D.ab -b 2-a +b 的最大值为116【答案】BD【解析】由a >b >1,可知a -b >0,b -1>0,a -b +4b -1 =a +3b -4=5-4=1,1a -b +4b -1=a -b +4b -1 a -b +4a -b +4b -1 b -1=17+4b -1 a -b +4a -b b -1≥17+24b -1 a -b ⋅4a -b b -1=25当且仅当a -b =b -1=15 时,等号成立,1a -b +4b -1的最小值为25.又1=a -b +4b -1 ≥2a -b ⋅4b -1 =4a -b ⋅b -1 .当且仅当a -b =4b -1 =12时,等号成立,所以ab -b 2-a +b =a -b ⋅b -1 ≤116,故ab -b 2-a +b 的最大值为116.故选:BD .12.(2022春·山东·高三利津县高级中学校联考阶段练习)(多选)在下列函数中,最小值是4的是()A.y =x +4xB.y =x +5x +1x >0 C.y =x sin +4xsin ,x ∈0,π2D.y =4x +41-x【答案】BD【解析】对于A ,当x >0时,y =x +4x ≥2x ⋅4x =4,当且仅当x =4x,即x =2时取等号;当x <0时,y =x +4x =--x +-4x ≤-2x ⋅4x =-4,当且仅当-x =-4x ,即x =-2时取等号,所以y ∈-∞,-4 ⋃4,+∞ ,A 错误;对于B ,y =x +5x +1=x +1+4x +1=x +1+4x +1,因为x >0,所以x +1>1,x +1+4x +1≥2x +1⋅4x +1=4,当且仅当x +1=4x +1,即x =3时取等号,所以y =x +5x +1x >0 的最小值为4,B 正确;对于C ,因为x ∈0,π2,所以x sin ∈0,1 ,由对勾函数性质可知:y =x sin +4x sin ,x ∈5,+∞ ,C 错误;对于D ,4x >0,y =4x +41-x =4x +44x ≥24x ×44x =4,当且仅当4x =44x ,即x =12时取等号,所以y =4x +41-x 的最小值为4,D 正确.故选:BD13.(2022春·山东·高三利津县高级中学校联考阶段练习)已知正实数x ,y 满足4x +7y =4,则2x +3y+12x +y的最小值为______.【答案】94【解析】因为4x +7y =4,所以2x +3y +12x +y =142x +3y +2x +y 2x +3y +12x +y ,所以2x +3y +12x +y =144+2x +3y 2x +y +22x +y x +3y +1,因为x ,y 为正实数,所以2x +3y 2x +y >0,22x +yx +3y>0,所以2x +3y 2x +y +22x +y x +3y≥22x +3y 2x +y ⋅22x +yx +3y =4,当且仅当x +3y =2x +y 4x +7y =4时等号成立,即x =815,y =415时等号成立,所以2x +3y +12x +y ≥144+4+1 =94,当且仅当x =815,y =415时等号成立,所以2x +3y +12x +y 的最小值为94.14.(2022春·天津静海·高三静海一中校考阶段练习)若a ,b ∈R ,且b 2-a 2=1,则a +b2-a 2b的最大值为___________.【答案】2【解析】由题知,a ,b ∈R ,且b 2-a 2=1,即b 2=a 2+1,所以a +b2-a 2b =a +1b ,当a =0时,b 2=1,即b =±1,此时a +1b =±1,所以a +b 2-a 2b的最大值为1,当a ≠0时,a +1b2=a 2+2a +1b 2=1+2a a 2+1≤1+2a 2a =2,当且仅当a =1时取等号,此时-2≤a +1b ≤2;所以a +a 2-b 2b 的最大值为2.综上,a +a 2-b 2b的最大值为2.15.(2022春·天津和平·高三耀华中学校考阶段练习)已知正数x ,y 满足83x 2+2xy +3xy +2y 2=1,则xy的最小值是_________.【答案】52【解析】根据题意,由83x 2+2xy +3xy +2y 2=1可得8xy +2y 2 +33x 2+2xy 3x 2+2xy xy +2y 2=1,即16y 2+9x 2+14xy =3x 3y +8x 2y 2+4xy 3=xy 4y 2+3x 2+8xy所以16y 2+9x 2+14xy 4y 2+3x 2+8xy =xy =16y 2x2+9+14y x 4y 2x2+3+8y x ;又因为x ,y 均是正数,令y x =t ∈0,+∞ ,则xy =f t =16t 2+14t +94t 2+8t +3所以, f t =16t 2+14t +94t 2+8t +3=4-18t +34t 2+8t +3=4-14t 2+8t +318t +3令 g t =4t 2+8t +318t +3,则g t =29t +1127+16918t +3=29t +16 +16918t +3+1027≥229t +16 ×16918t +3+1027=1827当且仅当29t +16 =16918t +3,即t =12时,等号成立;所以f t =4-14t 2+8t +318t +3≥4-11827=4518=52所以f t 的最小值为f t min =52;即当t =y x =12,x =2y =5时,即x =5,y =52时,等号成立.16.(2022春·陕西商洛·高三校联考阶段练习)已知正实数a ,b ,c 满足a 2+ab +b 2-12c 2=0,则当a +bx取得最大值时,a -b 2+c 的最大值为______.【答案】916【解析】由a 2+ab +b 2-12c 2=0,可得12c 2=a +b 2-ab ≥a +b 2-a +b 22=34a +b 2,即a +bc≤4,当且仅当a =b 时,等号成立,所以当a +b c 取得最大值时,a =b ,c =a +b 4=a 2,所以a -b 2+c =32a -a 2=-a -342+916,故当a =34,b =34,c =38时,a -b 2+c 取最大值916.。
基本不等式:0,0)2a ba b +≥≥≥ (1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.一、基本不等式12a b+ (1)基本不等式成立的条件:0,0a b >>. (2)等号成立的条件,当且仅当a b =时取等号. 2.算术平均数与几何平均数设0,0a b >>,则a 、b 的算术平均数为2a b+,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 3.利用基本不等式求最值问题(1)如果积xy 是定值P ,那么当且仅当x y =时,x +y 有最小值是简记:积定和最小)(2)如果和x +y 是定值P ,那么当且仅当x y =时,xy 有最大值是24P .(简记:和定积最大)4.常用结论(1)222(,)a b ab a b +≥∈R (2)2(,)b aa b a b+≥同号 (3)2()(,)2a b ab a b +≤∈R (4)222()(,)22a b a b a b ++≤∈R (5)2222()()(,)a b a b a b +≥+∈R(6)222()(,)24a b a b ab a b ++≥≥∈R (7)222(0,0)1122a b a b ab a b a b++≥≥≥>>+二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等.题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解; 2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及(0,by ax a x=+> 0)b >等.解答函数应用题中的最值问题时一般利用二次函数的性质,基本不等式,函数的单调性或导数求解.考向一 利用基本不等式求最值利用基本不等式求最值的常用技巧:(1)若直接满足基本不等式条件,则直接应用基本不等式.(2)若不直接满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等.常见的变形手段有拆、并、配. ①拆——裂项拆项对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定积创造条件. ②并——分组并项目的是分组后各组可以单独应用基本不等式,或分组后先由一组应用基本不等式,再组与组之间应用基本不等式得出最值. ③配——配式配系数有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配式与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值. (3)若一次应用基本不等式不能达到要求,需多次应用基本不等式,但要注意等号成立的条件必须要一致.注:若可用基本不等式,但等号不成立,则一般是利用函数单调性求解.典例1 若正数a ,b 满足111a b +=,则1911a b +--的最小值为 A .1 B .6 C .9 D .16【答案】B【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.1.(1)已知54x <,求函数14145y x x =-+-的最大值; (2)已知*,x y ∈R (正实数集),且191x y+=,求x y +的最小值. 考向二 基本不等式的实际应用有关函数最值的实际问题的解题技巧:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)设变量时一般要把求最大值或最小值的变量定义为函数. (3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.典例2 2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级.最近北斗三号工程耗资元建成一大型设备,已知这台设备维修和消耗费用第一年为元,以后每年增加元(是常数),用表示设备使用的年数,记设备年平均维修和消耗费用为,即 (设备单价设备维修和消耗费用)设备使用的年数. *网 (1)求关于的函数关系式;(2)当,时,求这种设备的最佳更新年限.答:这种设备的最佳更新年限为15年.【名师点睛】利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的问题背景,通过相关的关系建立关系式.在解题过程中尽量向模型0,0,0)bax a b x x+≥>>>上靠拢.2.要制作一个体积为39m ,高为1m 的有盖长方体容器,已知该容器的底面造价是每平方米10元,侧面造价是每平方米5元,盖的总造价为100元,求该容器长为多少时,容器的总造价最低为多少元?考向三 基本不等式的综合应用基本不等式是高考考查的热点,常以选择题、填空题的形式出现.通常以不等式为载体综合考查函数、方程、三角函数、立体几何、解析几何等问题.主要有以下几种命题方式:(1)应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式问题.通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.典例3 下列不等式一定成立的是 A .21lg()lg (0)4x x x +>> B .1sin 2(,)sin x x k k x+≥≠π∈Z C .212||()x x x +≥∈R D .211()1x x >∈+R 【答案】C【解析】对于A :214x x +≥(当12x =时,214x x +=),A 不正确; 对于B :1sin 2(sin (0,1])sin x x x +≥∈,1sin 2(sin [1,0))sin x x x+≤-∈-,B 不正确; 对于C :222||1(||1)0()x x x x -+=-≥∈R ,C 正确; 对于D :21(0,1]()1x x ∈∈+R ,D 不正确. 故选C.【思路点拨】利用基本不等式判断不等关系及比较大小的思路:基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.3.设正实数,x y 满足1,12x y >>,不等式224121x y m y x +≥--恒成立,则m 的最大值为 A. B.C .8D .16典例4 设正项等差数列{}n a 的前n 项和为n S ,若20176051S =,则4201414a a +的最小值为______. 【答案】32【名师点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值. 学*4.已知函数()log 22a y x m n =--+恒过定点()3,2,其中0a >且1a ≠,,m n 均为正数,则1112m n++的最小值是_____________.1.函数1(0)4y x x x=+>取得最小值时,x 的值为 A .12-B .12C .1D .22.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是 A .a+b ≥2 B .+≥2 C .|+|≥2D .a 2+b 2>2ab3.()的最大值为 A . B . C .D .4.已知,,x y z 为正实数,则222xy yzx y z +++的最大值为A B .45C .2D .235.若正实数a ,b 满足1a b +=,则A .11a b+有最大值4 BC .ab 有最小值14D .22a b +有最小值26.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第层楼时,上下楼造成的不满意度为,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第层楼时,环境不满意度为,则同学们认为最适宜的教室应在楼 A . B . C .D .7.若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是 A .(-∞,-8]∪[0,+∞) B .(-∞,-4) C .[-8,4)D .(-∞,-8]8.若对任意正数x ,不等式211ax x≤+恒成立,则实数a 的最小值为A .1BC .2D .129.已知1x >,1y >,且2log x ,14,2log y 成等比数列,则xy 有A B .最小值2CD .最大值210.如图,在ABC △中,点是线段上两个动点,且,则的最小值为A .B .C .D .11.已知正实数满足当取最小值时,的最大值为A .2B .C .D .12.在锐角ABC △中,为角所对的边,且,若,则的最小值为A .4B .5C .6D .713.函数的图象恒过定点,若定点在直线 上,则的最小值为A .13B .14C .16D .1214.已知满足,的最大值为,若正数满足,则的最小值为A .9B .C .D .15.当x >0时,22()1xf x x =+的最大值为 . 16.已知函数==,当时,函数()()g x f x 的最小值为 . 17.在公比为的正项等比数列中,,则当取得最小值时,_ . 18.已知,,则的最小值为 .19.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为2*182()5y x x x =-+-∈N ,则当每台机器运转 年时,年平均利润最大,最大值是________万元.20.某物流公司引进了一套无人智能配货系统,购买系统的费用为80万元,维持系统正常运行的费用包括保养费和维修费两部分.每年的保养费用为1万元.该系统的维修费为:第一年万元,第二年万元,第三年2万元,…,依等差数列逐年递增.(1)求该系统使用n 年的总费用(包括购买设备的费用);(2)求该系统使用多少年报废最合算(即该系统使用多少年平均费用最少).21.已知函数).(1)若,求当时函数的最小值;(2)当时,函数有最大值-3,求实数的值.22.(1)设x,y是正实数,且2x+y=4,求lg x+lg y的最大值.(2)若实数a,b满足ab-4a-b+1=0(a>1),求(a+1)(b+2)的最小值.△中,,,分别为角,,所对的边长,且.23.已知在ABC(1)求角的值;(2)若,求的取值范围.1.(2017山东理科)若,且,则下列不等式成立的是 A . B . C . D .2.(2015陕西理科)设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是 A .q r p =< B .q r p => C .p r q =<D .p r q =>3.(2018天津理科)已知,a b ∈R ,且360a b -+=,则128ab+的最小值为 . 4.(2017江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.5.(2018江苏)在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________. 学*科*网∴当4,12x y ==时,()min 16x y +=.3.【答案】C【解析】224121x y y x +--=()()22(21)2211(1)211121x x y y y x -+-+-+-++≥-- ≥=8,当且仅当12121x x -=-,111y y -=-时等号成立.所以m .故选C . 4.【答案】43【解析】由题意得:3﹣m ﹣2n =1,故m +2n =2, 即(m +1)+2n =3, 故1112m n ++=13(11m ++12n )[(m +1)+2n ]=13(1+21n m ++12m n ++1)≥23=43, 当且仅当m +1=2n 时“=”成立,故填43.1.【答案】B当且仅当14x x =时取等号,此时12x =,故选B. 2.【答案】C【解析】当a ,b 都是负数时,A 不成立; 当a ,b 一正一负时,B 不成立; 当a =b 时,D 不成立, 因此只有选项C 是正确的. 3.【答案】B 【解析】∵,∴, ∴()()36922a a -++≤=,当且仅当,即时等号成立,∴()的最大值为.故选B . 学&【方法点睛】分子、分母有一个一次、一个二次的分式结构的函数以及含有两个变量的函数,适合用基本不等式求最值. 5.【答案】B【解析】∵正实数a ,b 满足1a b +=,∴11224a b a b b a a b a b a b +++=+=++≥+=,当且仅当12a b ==时取等号.故有最小值4,故A 不正确;由于212a b +=++=+≤,∴⩽,故有最大值,故B 正确;由基本不等式可得a +b =1⩾2,∴14ab ≤,故ab 有最大值14,故C 不正确; ∵()22211212122a b a b ab ab +=+-=-≥-=,故有最小值12,故D 不正确. 故选B.6.【答案】B7.【答案】D【解析】由9x +(4+a )·3x+4=0得4+a =943x x +-=-(3x +)≤--4,即a ≤-8, 当且仅当3x =2时等号成立.8.【答案】D 【解析】由题意可得21x a x ≥+恒成立. 由于211112x x x x=≤++(当且仅当1x =时取等号),故21x x +的最大值为12, 12a ∴≥,即a 的最小值为12,故选D . 9.【答案】A【解析】∵x >1,y >1,∴22log 0,log 0x y >>,又∵2log x ,14,2log y 成等比数列,∴221log log 16x y =⨯,由基本不等式可得221log log 2x y +≥=, 当且仅当22log log x y =,即x y =时取等号, 故21log 2xy ≥,即xy ≥xy本题选择A 选项.10.【答案】D【解析】易知x ,y 均为正,设,共线,,,则,()141141419552222y x x y x y x y x y ⎛⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4y x x y =,即24,33x y ==时等号成立. 则的最小值为,故选D . 学&科*网11.【答案】C12.【答案】C【解析】由正弦定理及题中条件,可得,即.因为,所以.又,所以,所以,则,所以选C.13.【答案】D【解析】时,函数的值恒为,函数的图象恒过定点,又点在直线上,,又,当且仅当时取“=”,则的最小值为,故选D .14.【答案】B当且仅当取等号,故选B .15.【答案】1【解析】∵x >0,∴2222()1112x f x x x x==≤=++, 当且仅当1x x=,即x =1时取等号.16.【答案】【解析】由题意可得()()g x f x =23212x x x++=311122x x ++≥1(当且仅当3122x x =,即x =).17.【答案】14【解析】2242642222244a a a a q q q q ⎛⎫+=+=+≥⨯= ⎪⎝⎭故答案为. 学&20.【解析】(1)设该系统使用年的总费用为依题意,每年的维修费成以为公差的等差数列,则年的维修费为则(2)设该系统使用的年平均费用为则()20.2280800.22210f n n n S n n n n ++===++≥=, 当且仅当即时等号成立.故该系统使用20年报废最合算.22.【解析】(1)因为x >0,y >0,所以由基本不等式得≥,因为2x+y =4,所以≤2,所以xy ≤2,当且仅当2x =y 时,等号成立,由242x y x y +=⎧⎨=⎩ ,解得12x y =⎧⎨=⎩, 所以当x =1,y =2时,xy 取得最大值2,所以lg x+lg y =lg(xy )≤lg 2,当且仅当x =1,y =2时,lg x+lg y 取得最大值lg 2.(2)因为ab-4a-b+1=0,所以b =,ab =4a+b-1.所以(a+1)(b+2)=ab+2a+b+2=6a+2b+1=6a+×2+1=6a++1=6a+8++1=6(a-1)++15.因为a >1,所以a-1>0.所以原式=6(a-1)++15≥2+15=27.当且仅当(a-1)2=1,即a =2时等号成立.故所求最小值为27. 学#科#网1.【答案】B【解析】因为0a b >>,且1ab =,所以12112log ()a b a a b a a b b b+>+>+⇒+>+,所以选B. 2.【答案】C【解析】p f ==,11(()())ln 22r f a f b ab =+==()0,+∞上单调递增,因为,所以,所以,故选C .3.【答案】【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.4.【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.5.【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,。
高三数学基本不等式试题答案及解析1.若且(I)求的最小值;(II)是否存在,使得?并说明理由.【答案】(1)最小值为;(2)不存在a,b,使得.【解析】(1)根据题意由基本不等式可得:,得,且当时等号成立,则可得:,且当时等号成立.所以的最小值为;(2)由(1)知,,而事实上,从而不存在a,b,使得.试题解析:(1)由,得,且当时等号成立.故,且当时等号成立.所以的最小值为.(2)由(1)知,.由于,从而不存在a,b,使得.【考点】1.基本不等式的应用;2.代数式的处理2.已知点A(m,n)在直线x+2y-1=0上,则2m+4n的最小值为________.【答案】2【解析】因为点A(m,n)在直线x+2y-1=0上,所以有m+2n=1;2m+4n=2m+22n≥2=2=2,当且仅当m=2n时“=”成立.3.已知,且,成等比数列,则xy( )A.有最大值e B.有最大值C.有最小值e D.有最小值【答案】C【解析】解:因为,所以又,成等比数列,所以(当且仅当即时等号成立)所以,故选C.【考点】1、基本不等式的应用;2、对数函数的性质.4.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0,则当取得最小值时,x+2y﹣z的最大值为()A.0B.C.2D.【答案】C【解析】∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z为正实数,∴=+﹣3≥2﹣3=1(当且仅当x=2y时取“=”),即x=2y(y>0),∴x+2y﹣z=2y+2y﹣(x2﹣3xy+4y2)=4y﹣2y2=﹣2(y﹣1)2+2≤2.∴x+2y﹣z的最大值为2.故选C.5.若2x+2y=1,则x+y的取值范围是()A.[0,2]B.[﹣2,0]C.[﹣2,+∞)D.(﹣∞,﹣2]【答案】D【解析】∵1=2x+2y≥2•(2x2y),变形为2x+y≤,即x+y≤﹣2,当且仅当x=y时取等号.则x+y的取值范围是(﹣∞,﹣2].故选D.6.设是半径为的球面上的四个不同点,且满足,,,用分别表示△、△、△的面积,则的最大值是 .【答案】2【解析】设则有即的最大值为2.【考点】基本不等式7.若(其中,),则的最小值等于.【答案】.【解析】,因此的最小值等于.【考点】基本不等式8.已知正数满足,则的最小值为.【答案】9【解析】由,得,当且仅当,即,也即时等号成立,故最小值是9.【考点】基本不等式.9.若正实数满足,且恒成立,则的最大值为.【答案】1【解析】,恒成立,那么,即,所以的最大值为1.【考点】基本不等式求最值10.已知,且,则的最小值是.【答案】【解析】∵,∴==≥=,当且仅当=取等号,故最小值为.【考点】1.利用基本不等式求最值;2.转化与化归思想.11.若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5D.6【答案】C【解析】因为x>0,y>0,x+3y=5xy,所以+=1,所以(+)(3x+4y)=++++≥+2×=5,当且仅当=时,等号成立,所以选C.12.设,,若,则的最小值为A.B.6C.D.【答案】A【解析】因为,,,所以,;所以,当且仅当时,“=”成立,故答案为A.【考点】基本不等式13.在平面直角坐标系xoy中,过坐标原点的一条直线与函数的图像交于P、Q两点,则线段PQ长的最小值是____【答案】【解析】因为过坐标原点的一条直线与函数的图像交于P、Q两点,则线段PQ长,由对称性只要研究部分,设,所以,所以当且仅当时取等号.所以的最小值为.故填.【考点】1.直线与双曲线的关系.2.两点间的距离.3.基本不等式的应用.14.在实数集中定义一种运算“”,对任意,为唯一确定的实数,且具有性质:(1)对任意,;(2)对任意,.则函数的最小值为()A.B.C.D.【答案】B【解析】依题意可得,当且仅当时“=”成立,所以函数的最小值为,选.【考点】基本不等式,新定义问题.15.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.【答案】(1)k=-(2)【解析】(1)f(x)>k⇔kx2-2x+6k<0.由已知{x|x<-3,或x>-2}是其解集,得kx2-2x+6k=0的两根是-3,-2,由根与系数的关系可知(-2)+(-3)=,即k=-.(2)∵x>0,f(x)==≤=.当且仅当x=时取等号,由已知f(x)≤t对任意x>0恒成立,故t≥.即t的取值范围是.16.(-6≤a≤3)的最大值为 ().A.9B.C.3D.【答案】B【解析】由于-6≤a≤3,所以=≤,当且仅当a=-时等号成立.17.若直线ax+by+1=0(a>0,b>0)平分圆x2+y2+8x+2y+1=0,则+的最小值为________.【答案】16【解析】直线平分圆,∴直线过圆心,又圆心坐标为(-4,-1),∴-4a-b+1=0,∴4a+b=1,∴+=(4a+b) =4+++4≥16,当且仅当b=4a,即a=,b=时等号成立,∴+的最小值为16.18.在直角坐标系中,定义两点之间的“直角距离”为,现给出四个命题:①已知,则为定值;②用表示两点间的“直线距离”,那么;③已知为直线上任一点,为坐标原点,则的最小值为;④已知三点不共线,则必有.A.②③B.①④C.①②D.①②④【答案】C【解析】①;②【考点】1.基本不等式;2.三角函数的性质.19.设均为正数,且证明:(1);(2).【答案】(1)证明:见解析;(2)证明:见解析.【解析】(1)利用基本不等式,得到,,,利用,首先得到,得证;(2)为应用,结合求证式子的左端,应用基本不等式得到,,,同向不等式两边分别相加,即得证.试题解析:(1),,, 2分所以 4分所以 5分(2),, 7分10分【考点】基本不等式,不等式证明方法.20.已知,,则的最小值为____________.【答案】【解析】由得,当且仅当时取等号;两边平方得,,当且仅当时取等号.【考点】基本不等式求最值.21.已知函数的定义域为,则实数的取值范为 .【答案】【解析】由函数定义域可知为正数,根据均值不等式,恒成立即可.【考点】均值不等式求最值.22.在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.【答案】详见解析;直线MN过定点(0,-3),△GMN面积的最大值.【解析】先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由及知:,用换元法利用基本不等式求出△GMN面积的最大值是.试题解析:(Ⅰ)∵,∴, 1分又则直线的方程为① 2分又则直线的方程为②由①②得∵∴直线与的交点在椭圆上 4分(Ⅱ)①当直线的斜率不存在时,设不妨取∴ ,不合题意 5分②当直线的斜率存在时,设联立方程得则7分又即将代入上式得解得或(舍)∴直线过定点 10分∴,点到直线的距离为∴由及知:,令即∴当且仅当时, 13分【考点】1.直线的方程;2.解析几何;3.基本不等式.23.设,若直线与轴相交于点,与轴相交于点,且坐标原点到直线的距离为,则的面积的最小值为A.B.2C.3D.4【答案】C【解析】原点到直线的距离,,在直线的方程中,令可得,即直线与轴交于点,令可得,即直线与轴交于点,,当且仅当时上式取等号,由于,故当时,面积取最小值.【考点】原点到直线的距离,,在直线的方程中,令可得,即直线与轴交于点,令可得,即直线与轴交于点,,当且仅当时上式取等号,由于,故当时,面积取最小值.24.已知正数满足,,则的取值范围是______.【答案】【解析】由,,又,得,所以,故.【考点】不等式性质,基本不等式的应用.25.设若是与的等比中项,则的最小值【答案】4【解析】根据题意,由于若是与的等比中项,则可知,则,当a=b时等号成立故答案为4.【考点】不等式的运用点评:主要是考查了均值不等式来求解最值的运用,属于中档题。
第二节基本不等式1.基本不等式:ab ≤a +b 2.(1)基本不等式成立的条件:01a >0,b >0.(2)等号成立的条件:当且仅当02a =b 时,等号成立.(3)其中03a +b2叫做正数a ,b 的算术平均数,04ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 205≥2ab (a ,b ∈R ).(2)b a +ab 06≥2(a ,b同号).(3)(a ,b ∈R ).(a ,b ∈R ).以上不等式等号成立的条件均为09a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当10x =y 时,和x +y 有最小值112P .(简记:积定和最小)(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当12x =y 时,积xy 有最大值1314S 2.(简记:和定积最大)注意:(1)利用基本不等式求最值应满足三个条件“一正、二定、三相等”,其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)形如y =x +ax (a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.1.连续使用基本不等式求最值要求每次等号成立的条件要一致.2.若a >0,b >0,则21a +1b ≤ab ≤a +b2≤a 2+b 22,当且仅当a =b 时,等号成立.3.常见求最值的模型模型一:mx +nx≥2mn (m >0,n >0,x >0),当且仅当x =nm时,等号成立;模型二:mx +n x -a =m (x -a )+nx -a +ma ≥2mn +ma (m >0,n >0,x >a ),当且仅当x -a =n m时,等号成立;模型三:xax 2+bx +c =1ax +b +c x ≤12ac +b(a >0,c >0,x >0),当且仅当x =ca时,等号成立;模型四:x (n -mx )=mx (n -mx )m ≤1m ·>0,n >0,0<x 当且仅当x =n 2m时,等号成立.4.三个正数的均值不等式:若a ,b ,c >0,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =x +1x 的最小值是2.()(2)|b a +a b |≥2.()(3)已知0<x <12,则x (1-2x )的最大值为18.()(4)函数f (x )=sin x +4sin x 的最小值为4.()答案(1)×(2)√(3)√(4)×2.小题热身(1)设a >0,则9a +1a 的最小值为()A .4B .5C .6D .7答案C 解析9a +1a≥29a ·1a =6,当且仅当9a =1a ,即a =13时,等号成立.(2)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是()A .4 B.92C.322D .2答案B解析依题意,可得a >0,b >0,则6=a +2b ≥2a ·2b =22·ab ,当且仅当a =2b 时取等号,所以ab ≤628=92,即矩形面积的最大值为92.故选B.(3)(2024·河南郑州高三模拟)已知实数a >0,b >0,a +b =2,则1a +ab 的最小值为________.答案12+2解析1a +a b =12×a +b a +a b =12+b 2a +a b ≥12+2b 2a ·a b =12+2,当且仅当b 2a =ab,即a =22-2,b =4-22时,等号成立.(4)(人教A 必修第一册习题2.2T1(2)改编)函数y =x (3-2x )(0≤x ≤1)的最大值是________.答案98解析因为0≤x ≤1,所以3-2x >0,所以y =12·2x ·(3-2x )≤122x +(3-2x )22=98,当且仅当2x =3-2x ,即x =34时取等号.(5)(人教A 必修第一册复习参考题2T5改编)已知a ,b >0,且ab =a +b +3,则ab 的取值范围为________.答案[9,+∞)解析因为a,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).考点探究——提素养考点一利用基本不等式求最值(多考向探究)考向1配凑法求最值例1(1)(2024·福建福州四校高三期中联考)已知0<x<2,则y=x4-x2的最大值为() A.2B.4C.5D.6答案A解析因为0<x<2,所以y=x4-x2=x2(4-x2)≤x2+(4-x2)2=2,当且仅当x2=4-x2,即x=2时,等号成立,即y=x4-x2的最大值为2.故选A.(2)函数y=x2+3x+3x+1(x<-1)的最大值为()A.3B.2C.1D.-1答案D解析y=x2+3x+3x+1=(x+1)2+(x+1)+1x+1=--(x+1)+1-(x+1)+1≤-1=-1,当且仅当x+1=1x+1=-1,即x=-2时,等号成立.故选D.【通性通法】配凑法求最值的关键点【巩固迁移】1.函数y =3x ()A .8B .7C .6D .5答案D解析因为x >13,所以3x -1>0,所以y =3x +43x -1=(3x -1)+43x -1+1≥2(3x -1)·43x -1+1=5,当且仅当3x -1=43x -1,即x =1时,等号成立,故函数y =3x 值为5.故选D.2.(2023·浙江杭州高三教学质量检测)已知a >1,b >1,且log 2a =log b 4,则ab 的最小值为()A .4B .8C .16D .32答案C解析∵log 2a =log b 4,∴12log 2a =log b 4,即log 2a =2log 24log 2b ,∴log 2a ·log 2b =4.∵a >1,b >1,∴log 2a >0,log 2b >0,∴log 2(ab )=log 2a +log 2b ≥2log 2a ·log 2b =4,当且仅当log 2a =log 2b =2,即a =b =4时取等号,所以ab ≥24=16,当且仅当a =b =4时取等号,故ab 的最小值为16.故选C.考向2常数代换法求最值例2(1)已知0<x <1,则9x +161-x 的最小值为()A .50B .49C .25D .7答案B解析因为0<x <1,所以9x +161-x =(x +1-x )25+9(1-x )x+16x 1-x ≥25+29(1-x )x ·16x 1-x =49,当且仅当9(1-x )x=16x 1-x ,即x =37时,等号成立,所以9x +161-x 的最小值为49.故选B.(2)已知a >0,b >0,a +2b =3,则1a +1b 的最小值为()A.223B.233C .1+223D .1+233答案C解析因为a +2b =3,所以13a +23b =1,+23b =13+23+a 3b +2b 3a≥1+2a 3b ·2b3a=1+223,当且仅当a 3b =2b3a ,即a =3(2-1),b =3(2-2)2时,等号成立.故选C.【通性通法】常数代换法求最值的基本步骤【巩固迁移】3.若正实数x ,y 满足2x +y =9,则-1x -4y 的最大值是()A.6+429B .-6+429C .6+42D .-6-42答案B解析因为1x +4y =19x +y )+y x +8x y+6+429,当且仅当y x =8xy ,即x =9(2-1)2,y =9(2-2)时,等号成立,所以-1x -4y ≤-6+429.故选B.4.(2024·湖北荆门三校高三联考)已知实数a ,b 满足lg a +lg b =lg (a +2b ),则2a +b 的最小值是()A .5B .9C .13D .18答案B解析由lg a +lg b =lg (a +2b ),可得lg (ab )=lg (a +2b ),所以ab =a +2b ,即2a +1b =1,且a >0,b >0,则2a +b =(2a +b 5+2b a +2ab ≥5+22b a ·2a b =9,当且仅当2b a =2ab,即a =b =3时,等号成立,所以2a +b 的最小值为9.故选B.考向3消元法、换元法求最值例3(1)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是()A.14B.45C.255D .2答案B解析因为5x 2y 2+y 4=1,所以x 2=1-y 45y 2,又x 2≥0,所以y 2∈(0,1],所以x 2+y 2=y 2+1-y 45y2=4y 4+15y 2=y 2≥15×24y 2·1y 2=45,当且仅当4y 2=1y 2,即y 2=12,x 2=310时取等号,所以x 2+y 2的最小值是45.故选B.(2)(2024·浙江嘉兴第一中学高三期中)若x >0,y >0,且1x +1+1x +2y=1,则2x +y 的最小值为()A .2B .23C.12+3D .4+23答案C解析设x +1=a ,x +2y =b ,则x =a -1,y =b -a +12,且a >0,b >0,则1a +1b =1,2x +y=2(a -1)+b -a +12=3a +b 2-32,而3a +b =(3a +b 4+3a b +ba ≥4+23a b ·ba=4+23,当且仅当3a b =ba ,即a =3+33,b =3+1时,等号成立,则2x +y ≥4+232-32=12+ 3.故选C.【通性通法】当所求最值的代数式中变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【巩固迁移】5.(2023·江苏南京高三调研)设a ≥0,b ≥0,且2a +b =1,则ab 的最小值为__________.答案解析因为2a +b =1,所以a =(b -1)24,所以a b =(b -1)24b=b 4+14b -12≥2b 4·14b-12=0,当且仅当a =0,b =1时取等号.6.(2024·湖北襄阳五中高三质量检测)若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是________.答案223-12解析设u =2-2a ,v =2-b ,则a =2-u 2,b =2-v ,则u +v =3(u >0,v >0),所以a 2-2a +b2-b=1-12u u+2-v v =1u +2v -32=13(u +v 32+v u +-32+321+223-32=223-12,当且仅当v =6-32,u =32-3时,等号成立,所以a 2-2a +b 2-b 的最小值为223-12.考向4“和”“积”互化求最值例4(多选)设a >1,b >1,且ab -(a +b )=1,那么()A .a +b 有最小值22+2B .a +b 有最大值22-2C .ab 有最大值3-22D .ab 有最小值3+22答案AD解析∵a >1,b >1,∴ab -1=a +b ≥2ab ,当a =b 时取等号,即ab -2ab -1≥0,解得ab ≥2+1,∴ab ≥(2+1)2=3+22,∴ab 有最小值3+2 2.又ab ,当a =b 时取等号,∴1=ab -(a +b )-(a +b ),即(a +b )2-4(a +b )≥4,则[(a +b )-2]2≥8,解得a +b -2≥22,即a +b ≥22+2,∴a +b 有最小值22+2.故选AD.【通性通法】“和”“积”互化求最值的方法(1)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值.(2)如果条件中含有两个变量的和与积的形式,可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解,或者通过构造一元二次方程,利用根的分布解决问题.【巩固迁移】7.正实数x ,y 满足4x 2+y 2+xy =1,则xy 的最大值为________,2x +y 的最大值为________.答案152105解析∵1-xy =4x 2+y 2≥4xy ,∴5xy ≤1,∴xy ≤15,当且仅当y =2x ,即x =1010,y =105时取等号.∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,∴(2x +y )2-1=3xy =32·2x ·y,即(2x +y )2-1≤38(2x +y )2,∴(2x +y )2≤85,∴2x +y ≤2105,当且仅当2x =y ,即x =1010,y=105时取等号.考点二基本不等式的综合应用例5(2024·河南濮阳外国语学校模拟)若对任意正数x ,不等式2x 2+4≤2a +1x恒成立,则实数a 的取值范围为()A .[0,+∞) B.-14,+∞C.14,+∞ D.12,+∞答案B解析依题意得,当x >0时,2a +1≥2x x 2+4=2x +4x恒成立,又x +4x ≥4,当且仅当x =2时取等号,所以2x +4x 的最大值为12,所以2a +1≥12,解得实数a 的取值范围为-14,+故选B.【通性通法】1.利用基本不等式求参数的值或范围时,要观察题目的特点,先确定是恒成立问题还是有解问题,再利用基本不等式确定等号成立的条件,最后通过解不等式(组)得到参数的值或范围.2.当基本不等式与其他知识相结合时,往往是为其他知识提供一个应用基本不等式的条件,然后利用常数代换法求最值.【巩固迁移】8.在等腰三角形ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则△ABC 面积的最大值是()A .6B .12C .18D .24答案A解析设AB =AC =2m ,BC =2n ,因为∠ADB =π-∠CDB ,所以m 2+9-4m 26m =-m 2+9-4n 26m,整理得m 2=9-2n 2.设△ABC 的面积为S ,则S =12BC =12×2n ×4m 2-n 2=3n 4-n 2=3n 2(4-n 2)≤3×n 2+4-n 22=6,当且仅当n =2时,等号成立.故选A.考点三基本不等式的实际应用例6网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案37.5解析由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.【通性通法】利用基本不等式解决实际应用问题的技巧【巩固迁移】9.一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为m g ,则()A .m >10B .m =10C .m <10D .以上都有可能答案A解析由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a ≠b ,设先称得黄金为xg ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =5a b ,y =5b a ,∴x +y =5a b +5ba=5×2a b ·b a =10,当且仅当a b =ba,即a =b 时,等号成立,但a ≠b ,等号不成立,即x +y >10.因此顾客实际购得的黄金克数m >10.故选A.课时作业一、单项选择题1.当x <0时,函数y =x +4x ()A .有最大值-4B .有最小值-4C .有最大值4D .有最小值4答案A解析y =x +4x=-(-x )-4,当且仅当x =-2时,等号成立.故选A.2.(2023·陕西咸阳高三模拟)已知x >0,y >0,若2x +y =8xy ,则xy 的最小值是()A.18B.14C.24D.22答案A解析因为2x +y ≥22xy ,所以8xy ≥22xy ,解得xy ≥18,当且仅当2x =y ,即x =14,y =12时,等号成立.故选A.3.已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6答案C解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|=9,当且仅当|MF 1|=|MF 2|=3时,等号成立.故选C.4.(2024·浙江绍兴第一中学高三期中)已知直线ax +by -1=0(ab >0)过圆(x -1)2+(y -2)2=2024的圆心,则1a +1b 的最小值为()A .3+22B .3-22C .6D .9答案A解析由圆的方程知,圆心为(1,2).∵直线ax +by -1=0(ab >0)过圆的圆心,∴a +2b =1(ab >0),∴1a +1b =(a +2b )=3+a b +2ba≥3+2a b ·2b a=3+当且仅当a b =2ba,即a =2b ,∴1a +1b的最小值为3+2 2.故选A.5.(2023·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是()A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则第一种方案:两次加油的平均价格为40x +40y 80=x +y 2>xy ,第二种方案:两次加油的平均价格为400200x +200y =2xyx +y <xy ,故无论油价如何起伏,第二种方案都比第一种方案更划算.故选B.6.(2023·浙江杭州调研)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为()A .4 B.92C.2D .22答案D 解析由m 2-amn +2n 2≥0得m 2+2n 2≥amn ,即a ≤m 2+2n 2mn=m n +2n m 恒成立,因为m n +2nm≥2m n ·2n m =22,当且仅当m n =2nm,即m =2n 时取等号,所以a ≤22,故实数a 的最大值为2 2.故选D.7.(2024·浙江名校协作体高三模拟)设x ,y 为正实数,若2x +y +2xy =54,则2x +y 的最小值是()A .4B .3C .2D .1答案D解析因为x ,y 为正实数,且54=2x +y +2xy =(2x +1)(y +1)-1,令m =2x +1,n =y +1,则mn =94,所以2x +y =m +n -2≥2mn -2=1,当且仅当m =n ,即y =12,x =14时取等号.故选D.8.(2024·湖北襄阳第四中学高三适应性考试)若a ,b ,c 均为正数,且满足a 2+2ab +3ac +6bc =1,则2a +2b +3c 的最小值是()A .2B .1C.2D .22答案A解析因为a 2+2ab +3ac +6bc =1,所以a (a +2b )+3c (a +2b )=(a +2b )(a +3c )=1,又a ,b ,c 均为正数,(a +2b )(a +3c )=(2a +2b +3c )24,当且仅当a +2b =a +3c =1时取等号,所以(2a+2b+3c)24≥1,即2a+2b+3c≥2.故选A.二、多项选择题9.下列四个函数中,最小值为2的是()A.y=sin xxB.y=ln x+1ln x(x>0,x≠1)C.y=x2+6 x2+5D.y=4x+4-x 答案AD解析对于A,因为0<x≤π2,所以0<sin x≤1,则y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,故y=sin x x2,符合题意;对于B,当0<x<1时,ln x<0,此时y=ln x+1ln x为负值,无最小值,不符合题意;对于C,y=x2+6x2+5=x2+5+1x2+5,设t=x2+5,则t≥5,则y≥5+15=655,其最小值不是2,不符合题意;对于D,y=4x+4-x=4x+14x≥24x·14x=2,当且仅当x=0时取等号,故y=4x+4-x的最小值为2,符合题意.故选AD.10.(2024·湖北部分名校高三适应性考试)已知正实数a,b满足ab+a+b=8,下列说法正确的是()A.ab的最大值为2B.a+b的最小值为4C.a+2b的最小值为62-3D.1a(b+1)+1b的最小值为12答案BCD解析对于A,因为ab+a+b=8≥ab+2ab,即(ab)2+2ab-8≤0,解得0<ab≤2,则ab≤4,当且仅当a=b=2时取等号,故A错误;对于B,ab+a+b=8≤(a+b)24+(a+b),即(a+b)2+4(a+b)-32≥0,解得a+b≤-8(舍去),a+b≥4,当且仅当a=b=2时取等号,故B正确;对于C,由题意可得b(a+1)=8-a,所以b=8-aa+1>0,解得0<a<8,a+2b=a+2·8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D ,因为1a (b +1)+1b =181a (b +1)+1b [a (b +1)+b ]=182+b a (b +1)+a (b +1)b ≥18+2)=12,当且仅当b a (b +1)=a (b +1)b ,即b =4,a =45时取等号,故D 正确,故选BCD.11.已知a >0,b >0,且a +b =1,则()A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D.a +b ≤2答案ABD解析对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.三、填空题12.(2023·山东滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案3解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.13.(2024·河北衡水中学高三第三次综合素养评价)已知实数a >b >1,满足a +1a -1≥b +1b -1,则a +4b 的最小值是________.答案9解析由已知条件,得a -b ≥1b -1-1a -1=(a -1)-(b -1)(b -1)(a -1)=a -b (b -1)(a -1),∵a -b >0,∴1≥1(b -1)(a -1),又a -1>0,b -1>0,∴(b -1)(a -1)≥1,∴a +4b =(a -1)+4(b -1)+5≥2(a -1)·4(b -1)+5=9,-1=4(b -1),-1)(a -1)=1,=3,=32时,等号成立.14.(2023·湖北荆宜三校高三模拟)已知正数a ,b 满足a +3b +3a +4b =18,则a +3b 的最大值是________.答案9+36解析设t =a +3b ,则3a +4b =18-t ,所以t (18-t )=(a +3b 15+9b a +4ab≥15+29b a ·4ab=27,当且仅当2a =3b 时取等号.所以t 2-18t +27≤0,解得9-36≤t ≤9+36,即a +3b 的最大值是9+36,当且仅当2a =3b ,即a =3+6,b =2+263时取等号.15.(2024·浙江名校联盟高三上学期第一次联考)已知正实数x ,y 满足1x +4y +4=x +y ,则x+y 的最小值为()A.13-2B .2C .2+13D .2+14答案C解析因为正实数x ,y 满足1x +4y+4=x +y ,等式两边同乘以x +y ,可得(x +y )2=4(x +y )+5+y x +4xy≥4(x +y )+5+2y x ·4xy =4(x +y )+9,所以(x +y )2-4(x +y )-9≥0,因为x +y >0,所以x +y ≥2+13,当且仅当y =2x 时,等号成立.因此x +y 的最小值为2+13.故选C.16.已知点E 是△ABC 的中线BD 上的一点(不包括端点),若AE →=xAB →+yAC →,则2x +1y 的最小值为()A .4B .6C .8D .9答案C解析设BE →=λBD →(0<λ<1),∵AE →=AB →+BE →=AB →+λBD →=AB →+λ(AD →-AB →)=(1-λ)AB →+λ2AC →,∴x =1-λ,y =λ2(x >0,y >0),∴2x +1y =21-λ+2λ=-λ)+λ]=4+2λ1-λ+2(1-λ)λ≥4+22λ1-λ·2(1-λ)λ=8,当且仅当2λ1-λ=2(1-λ)λ,即λ=12时取等号,故2x +1y 的最小值为8.故选C.17.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析由x 2+y 2-xy =1得(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1得x 2+y 2-1=xy ,又x 2+y 2≥2x 2·y2=2|xy |,所以|x 2+y 2-1|≤x2+y 22即-x 2+y 22≤x 2+y 2-1≤x 2+y 22,所以23≤x 2+y 2≤2,当且仅当x =y =±1时,x 2+y 2=2,当x =33,y =-33或x =-33,y =33时,x 2+y 2=23,所以C 正确,D 错误.故选BC.18.(多选)(2024·湖北襄阳第五中学高三月考)若a >b >0,且a +b =1,则()A .2a +2b ≥22B .2a +ab ≥2+22C .(a 2+1)(b 2+1)<32D .a 2a +2+b 2b +1≥14答案BD解析因为a >b >0,且a +b =1,所以0<b <12,12<a <1.对于A ,因为2a +2b ≥22a ·2b =22a +b=22,当且仅当a =b =12时取等号,但a >b >0,所以等号取不到,故A 错误;对于B ,因为b a >0,a b >0,由基本不等式,得2a +a b =2a +2b a +a b =2+2b a +a b ≥2+22b a ·ab=2+22,当且仅当2b a =a b ,即a =2-2,b =2-1时,等号成立,所以2a +ab≥2+22,故B 正确;对于C ,因为a +b =1,所以(a 2+1)(b 2+1)=a 2b 2+a 2+b 2+1=a 2b 2+(a +b )2-2ab +1=a 2b 2-2ab +2=(ab -1)2+1,其中ab ≤(a +b )24=14,当且仅当a =b 时取等号,但a >b >0,所以等号取不到,所以0<ab <14,(a 2+1)(b 2+1)=(ab -1)2+1故C 错误;对于D ,a 2a +2+b 2b +1=[(a +2)-2]2a +2+[(b +1)-1]2b +1=(a +2)+4a +2-4+(b +1)+1b +1-2=4a +2+1b +1-2,因为a +b=1,所以a +2+b +1=4,故a +24+b +14=1,所以4a +2+1b +1==1+14+b +1a +2+a +24(b +1)≥54+2b +1a +2·a +24(b +1)=94,当且仅当b +1a +2=a +24(b +1),即a =23,b =13时,等号成立,所以a 2a +2+b 2b +1=4a +2+1b +1-2≥94-2=14,故D 正确.故选BD.19.(2024·湖北百校高三联考)已知正数x ,y 满足3x +4y =4,则y是________.答案1解析因为x ,y 是正数,所以=y xy +3+y 2xy +1=1x +3y +12x +1y,且x +3y +2x +1y =3x +4y =4,所以y=14+3y +2x·=+2x +1y x +3y +≥14×(2+2)=1,当且仅当2x +1y x +3y =x +3y 2x +1y,即x =45,y =52,等号成立,所以y 1.20.(2023·广东深圳高三二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的底线宽AB =72码,球门宽EF =8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P ,使得∠EPF 最大,这时候点P 就是最佳射门位置.当攻方球员甲位于边线上的点O 处(OA =AB ,OA ⊥AB )时,根据场上形势判断,有OA →,OB →两条进攻线路可供选择.若选择线路OA →,则甲带球________码时,到达最佳射门位置;若选择线路OB →,则甲带球________码时,到达最佳射门位置.答案72-165722-165解析若选择线路OA →,设AP =t ,其中0<t ≤72,AE =32,AF =32+8=40,则tan ∠APE =AEAP=32t ,tan ∠APF =AF AP =40t ,所以tan ∠EPF =tan(∠APF -∠APE )=tan ∠APF -tan ∠APE 1+tan ∠APF tan ∠APE=40t -32t 1+1280t 2=8t 1+1280t2=8t +1280t ≤82t ·1280t =520,当且仅当t =1280t ,即t =165时,等号成立,此时OP =OA -AP =72-165,所以若选择线路OA →,则甲带球72-165码时,到达最佳射门位置;若选择线路OB →,以线段EF 的中点N 为坐标原点,BA →,AO →的方向分别为x ,y 轴正方向建立如图所示的空间直角坐标系,则B (-36,0),O (36,72),F (-4,0),E (4,0),k OB =7236+36=1,直线OB 的方程为y =x +36,设点P (x ,x +36),其中-36<x ≤36,tan ∠AFP =k PF =x +36x +4,tan ∠AEP =k PE =x +36x -4,所以tan ∠EPF =tan(∠AEP -∠AFP )=tan ∠AEP -tan ∠AFP1+tan ∠AEP tan ∠AFP=x +36x -4-x +36x +41+x +36x -4·x +36x +4=8(x +36)x 2-161+(x +36)2x 2-16=8(x +36)+x 2-16x +36,令m =x +36∈(0,72],则x =m -36,所以x +36+x 2-16x +36=m +(m -36)2-16m =2m +1280m -72≥22m ·1280m72=3210-72,当且仅当2m =1280m,即m =810,即x =810-36时,等号成立,所以tan ∠EPF =82m+1280m-72≤83210-72=1410-9,当且仅当x=810-36时,等号成立,此时|OP|=2·|36-(810-36)|=722-165,所以若选择线路OB→,则甲带球722-165码时,到达最佳射门位置.。
基本不等式基础过关练题组一 对基本不等式的理解1.若a ,b ∈R,且ab >0,则下列不等式恒成立的是 ( ) A.a 2+b 2>2ab B.a +b ≥2√aa C.1a +1a >√aaD.a a +a a≥22.不等式(x -2y )+1a -2a ≥2成立的前提条件为 ( ) A.x ≥2y B.x >2y C.x ≤2y D.x <2y3.(2020山东德州夏津一中高一月考)不等式9a -2+(x -2)≥6(其中x >2)中等号成立的条件是 ( ) A.x =5 B.x =-3C.x =3 D.x =-54.(2020浙江杭州高一月考)下列不等式一定成立的是 ( ) A.3x +12a≥√6 B.3x 2+12a 2≥√6C.3(x 2+1)+12(a 2+1)≥√6D.3(x 2-1)+12(a 2-1)≥√6题组二 利用基本不等式比较大小5.(多选)(2021辽宁葫芦岛高一质量检测)已知两个不等正数a ,b 满足a +b =1,则下列说法正确的是 ( ) A.ab <14 B.1a +1a<4C.√a +√a <√2D.a 2+b 2>126.若0<a <b ,则下列不等式一定成立的是 ( ) A.b >a +a 2>a >√aa B.b >√aa >a +a 2>aC.b >a +a 2>√aa >aD.b >a >a +a 2>√aa7.小W 从A 地到B 地和从B 地到A 地的速度分别为m 和n (m >n ),其全程的平均速度为v ,则 ( ) A.a +a 2<v <m B.n <v <√aaC.√aa <v <a +a 2D.v =a +a 28.若a >b >c ,则a -a 2与√(a -a )(a -a )的大小关系是 .9.某商店出售的某种饮料需分两次提价,提价方案有两种,方案甲:第一次提价p%,第二次提价q%;方案乙:每次都提价a +a 2%,若p ,q >0,且p ≠q ,则提价多的方案是 .题组三 利用基本不等式求最值10.已知实数x ,y >0,则x +y +4a +1a 的最小值为 ( ) A.4√2 B.6 C.2√10 D.3√611.(2020浙江诸暨高二期末)已知函数y =x +4a -1(x >1),则函数的最小值等于 ( )A.4√2B.4√2+1C.5D.912.(2021宁夏大学附属中学高二上期中)若-2<x <0,则函数y =-x (x +2)的最大值为 ( ) A.1 B.2 C.4 D.513.已知a >b >0,则a 2+16a (a -a )的最小值为 ( ) A.8 B.8√2 C.16D.16√214.若正数x ,y 满足x +4y -xy =0,则当x +y 取得最小值时,x 的值为 ( )A.9B.8C.6D.315.(2021江苏溧阳高一期末检测)已知正实数x ,y 满足x +y =1,则1a +1a的最小值是 .16.(2021黑龙江鹤岗第一中学高一上月考)(1)已知a >0,b >0,且4a +b =1,求ab 的最大值; (2)已知x <54,求4x -2+14a -5的最大值.题组四 利用基本不等式证明不等式17.(2021福建三明第一中学高一上月考)已知a ,b 均为正实数,求证:a 2b 2+a 2+b 2≥ab (a +b +1).18.(2021安徽六安城南中学高二上开学考试)已知a ,b ,c 是三个不全相等的正数. 求证:a +a -a a +a +a -a a +a +a -aa>3.19.设x >0,求证:x +22a +1≥32.题组五 利用基本不等式解决实际问题20.某人要用铁管做一个形状为直角三角形且面积为1m 2的铁架框(铁管的粗细忽略不计),在下面四种长度的铁管中,最合理(够用,又浪费最少)的是 ( ) A.4.6m B.4.8m C.5mD.5.2m21.(2020广东广州荔湾高二期末)为满足人民日益增长的美好生活需要,实现群众对舒适的居住条件、更优美的环境、更丰富的精神文化生活的追求,某大型广场计划进行升级改造.改造的重点工程之一是新建一个矩形音乐喷泉综合体A1B1C1D1,该项目由矩形核心喷泉区ABCD(阴影部分)和四周的绿化带组成.规划核心喷泉区ABCD的面积为1000m2,绿化带的宽分别为2m和5m(如图所示).当整个项目A1B1C1D1占地面积最小时,核心喷泉区的边BC的长度为()A.20mB.50mC.10√10mD.100m22.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层,每层建筑面积为4000平方米的楼房.经初步估计得知,若将楼房建为x(x≥12,x∈N*)层,则每平方米的平均建筑费用s=3000+50x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用的最小值是多少? 注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积能力提升练题组一利用基本不等式求最值1.(2020广东惠州高二期末,)已知x>0,y>0,且2x+y=1,则xy的最大值是()A.14B.4C.18D.82.(2021黑龙江大庆实验中学高一上开学考试,)已知a >0,b >0,a +b =1,则a 2+4a +a 2+4a 的最小值为 ()A.6B.8C.15D.173.(2021河北辛集中学高一上月考,)已知a >0,b >0,a +b =4ab ,则a +b 的最小值为 ( )A.12 B.1 C.2 D.44.(2020河南三门峡外国语高级中学高一下期中,)设正数x ,y 满足x 2+a 22=1,则x √1+a 2的最大值为( )A.32 B.3√22C.34D.3√245.(2020浙江丽水高一期末,)设正数a ,b 满足a 2+4b 2+1aa =4,则a = ,b = .6.(2020河北唐山第一中学高一下月考,)已知x >0,则a 2+3a +6a +1的最小值是.7.(2020湖北麻城一中高一月考,)已知a ,b ∈R,且a >b >0,a +b =1,则a 2+2b 2的最小值为 ,4a -a +12a的最小值为 . 8.(2021江苏苏州高一期末,)已知a ,b 均为正实数且ab +a +3b =9,则a +3b 的最小值为 .9.(2021吉林长春东北师范大学附属中学高一上段考,)已知x >0,y >0,4x 2+y 2+xy =1,求:(1)4x 2+y 2的最小值; (2)2x +y 的最大值.题组二 利用基本不等式证明不等式 10.()已知a ,b为正数,求证:1a +4a ≥2(√2+1)22a +a.11.()若a>b,且ab=2,求证:a2+a2a-a≥4.12.(2021湖南长沙长郡中学高一上检测,)已知a>0,b>0,a+b=1,求证:(1)1a +1a+1aa≥8;(2)(1+1a )(1+1a)≥9.13.()(1)已知a,b,c∈R,求证:√a2+a2+√a2+a2+√a2+a2≥√2(a+b+c);(2)若0<x<1,a>0,b>0,求证:a2a +a21-a≥(a+b)2.题组三基本不等式在实际问题中的应用14.(2021山东日照五莲高一上期中,)某工厂过去的年产量为a,技术革新后,第一年的年产量增长率为p(p>0),第二年的年产量增长率为q(q>0,p≠q),这两年的年产量平均增长率为x,则()A.x=a+a2B.x=√aaC.x>a+a2D.x<a+a215.(2020湖北宜昌高三期末,)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似表示为y=12x2-300x+80000,为使每吨的平均处理成本最低,则该厂每月的处理量应为()A.300吨B.400吨C.500吨D.600吨16.(2021山东菏泽第一中学等六校高一上联考,)欲在如图所示的锐角三角形空地中建一个内接矩形花园(阴影部分),则矩形花园面积的最大值为m2.17.(2021四川绵阳南山中学高三上开学考试,)网店和实体店各有利弊,两者的结合将在未来一段时间内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月的运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足关系式x=3-2a+1.已知网店每月固定的各种费用支出为3万元,每1万件产品的进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是万元.18.(2020山东滨州高一上期末,)物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络,其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费为y1(单位:万元),仓库到车站的距离为x(单位:千米),x>0,其中y1与x+1成反比,每月库存货物费y2(单位:万元)与x成正比,若在距离车站9千米处建仓库,则y1和y2分别为2万元和7.2万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最少?最少费用是多少?答案全解全析基础过关练1.D∵a2+b2-2ab=(a-b)2≥0,∴A不符合题意;当a<0,b<0时,明显B,C不符合题意;∵ab>0,∴aa >0,aa>0,∴aa+aa≥2√aa·aa=2,当且仅当a=b时等号成立,∴D符合题意.2.B 因为不等式成立的前提条件是x -2y 和1a -2a均为正数,所以x -2y >0,即x >2y ,故选B .3.A 当x >2时,9a -2+(x -2)≥2√9a -2·(a -2)=6,等号成立的条件是9a -2=x -2,即(x -2)2=9,解得x =5(x =-1舍去).故选A .4.B 对于A,x 可能是负数,不成立;对于B,由基本不等式可知,3x 2+12a 2≥√6,当且仅当3x 2=12a 2,即x 4=16时取等号,故成立;对于C,当3(x 2+1)=12(a 2+1)时,(a 2+1)2=16,x 无解,不成立;对于D,x 2-1可能是负数,不成立.故选B .5.ACD A.因为a ,b 为两个不等正数,所以√aa <a +a 2=12,可得ab <14,故选项A 正确;B.因为1a +1a =a +aaa =1aa,所以由选项A 可知,1aa>4,故选项B 不正确;C.因为(√a +√a )2=a +b +2√aa =1+2√aa ,所以由选项A 可知选项C 正确; D.因为a 2+b 2=(a +b )2-2ab =1-2ab ,所以由选项A 可知,a 2+b 2=1-2ab >12,故选项D 正确.6.C ∵0<a <b ,∴2b >a +b ,∴b >a +a 2>√aa .∵b >a >0,∴ab >a 2,∴√aa >a. 故b >a +a 2>√aa >a.7.B 设从A 地到B 地的路程为s ,小W 从A 地到B 地和从B 地到A 地所用的时间分别为t 1,t 2,则t 1=aa ,t 2=aa ,其全程的平均速度为v =2aa 1+a 2=2aaa +aa=2aaa +a.∵m >n >0,∴v =2aaa +a <2√aa=√aa ,v -n =2aaa +a -n =2aa -aa -a 2a +a=a (a -a )a +a>0,∴n <v <√aa . 故选B . 8.答案a -a 2≥√(a -a )(a -a )解析 因为a >b >c ,所以a -a 2=(a -a )+(a -a )2≥√(a -a )(a -a ),当且仅当a -b =b -c ,即2b =a +c 时,等号成立.9.答案 乙解析 不妨设原价为1,则按方案甲提价后的价格为(1+p%)(1+q%),按方案乙提价后的价格为(1+a +a 2%)2,易知√(1+a %)(1+a %)≤1+a %+1+a %2=1+a %+a %2,当且仅当1+p%=1+q%,即p =q 时等号成立,又p ≠q ,故(1+p%)(1+q%)<(1+a +a 2%)2,所以提价多的方案是乙.10.B ∵x ,y >0,∴x +y +4a +1a≥2√a ·4a+2√a ·1a=4+2=6,当且仅当x =4a且y =1a,即x =2,y =1时等号成立.故选B .11.C 因为x >1,所以y =x +4a -1=(x -1)+4a -1+1≥2√(a -1)·4a -1+1=5,当且仅当x -1=4a -1,即x =3时,等号成立.故选C . 12.A ∵-2<x <0,∴-x >0,x +2>0,∴y =-x (x +2)≤(-a +a +22)2=1,当且仅当-x =x +2,即x =-1时等号成立. 故选A .规律总结 1.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,缺一不可.2.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分,消元或配凑因式.13.C ∵a >b >0,∴由基本不等式的变形可得b (a -b )≤(a +a -a 2)2=a 24,∴a 2+16a (a -a )≥a 2+16a 24=a 2+64a 2≥2√a 2×64a 2=16,当且仅当{a -a =a ,a 2=64a2,即{a =2√2,a =√2时,等号成立.误区警示 利用基本不等式求最值,若需多次应用基本不等式,则要注意等号成立的条件必须一致,如本题中第一次利用基本不等式取等号的条件为b =a -b ,第二次利用基本不等式取等号的条件为a 2=64a 2,故最终的最值应该是在这两个条件下共同取得的. 14.C ∵x >0,y >0,x +4y =xy ,∴4a +1a =1, ∴x +y =(x +y )(4a +1a )=5+a a +4a a ≥5+2√a a ·4aa=9,当且仅当x =2y 时,等号成立,此时{a =2a ,a +4a =aa ,解得{a =6,a =3.故选C . 15.答案 4解析 由题意可得,1a +1a =a +a a+a +aa=2+a a +aa ≥2+2√aa ·aa =4, 当且仅当x =y =12时等号成立.16.解析 (1)∵1=4a +b ≥2√4aa =4√aa ,∴√aa ≤14,∴ab ≤116,当且仅当4a =b ,即a =18,b =12时取等号, 故ab 的最大值为116.(2)∵x <54,∴5-4x >0, ∴4x -2+14a -5=-(5-4a +15-4a)+3≤-2√(5-4a )×15-4a +3=1, 当且仅当5-4x =15-4a ,即x =1时,等号成立,故4x -2+14a -5的最大值为1. 17.证明 由基本不等式得a 2b 2+a 2≥2a 2b ,a 2b 2+b 2≥2ab 2,b 2+a 2≥2ab , 三式相加得2a 2b 2+2a 2+2b 2≥2a 2b +2ab 2+2ab =2ab (a +b +1). 所以a 2b 2+a 2+b 2≥ab (a +b +1).18.证明 ∵a ,b ,c 是三个不全相等的正数,∴三个不等式a a +a a≥2,a a +a a≥2,a a +a a≥2的等号不能同时成立, 则a a +a a +a a +a a +a a +aa >6, ∴(aa +aa -1)+(aa +aa -1)+a a +aa-1>3,即a +a -a a +a +a -a a +a +a -aa>3. 19.证明 因为x >0,所以x +12>0,所以x +22a +1=x +1a +12=x +12+1a +12-12≥2√(a +12)·1a +12-12=32,当且仅当x +12=1a +12,即x =12时,等号成立.故x >0时,x +22a +1≥32.20.C 设直角三角形两直角边长分别为x m,y m,则12xy =1,即xy =2. 周长l =x +y +√a 2+a 2≥2√aa +√2aa =2√2+2≈4.83(m), 当且仅当x =y 时等号成立.结合实际问题,可知选C . 21.B 设BC =x m,则CD =1000am,所以a 矩形a 1a 1a 1a 1=(x +10)(1000a+4)=1040+4x +10000a≥1040+2√4a ·10000a=1440,当且仅当4x =10000a,即x =50时,等号成立,所以当BC 的长度为50m 时,整个项目占地面积最小.故选B . 22.解析 设楼房每平方米的平均综合费用为y 元. 依题意得y =s +8000×100004000a=50x +20000a+3000(x ≥12,x ∈N *).因为50x +20000a+3000≥2×√50a ·20000a+3000=5000,当且仅当50x =20000a,即x =20时,等号成立,所以当x =20时,y 取得最小值5000.所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用的最小值为5000元.能力提升练1.C 由题意得,xy =12×2xy ≤12×(2a +a 2)2=12×(12)2=18,当且仅当2x =y ,即x =14,y =12时等号成立,所以xy 的最大值是18.故选C . 2.D易得a 2+4a +a 2+4a =a +b +4a +4a =1+4(a +a )aa =1+4aa.又ab ≤(a +a 2)2=14,∴1aa ≥4,∴1+4aa ≥17,∴a 2+4a+a 2+4a ≥17,当且仅当a =b =12时取等号.故选D .3.B ∵a +b =4ab ,a >0,b >0,∴等式两边同除以ab ,得1a +1a =4, ∴a +b =(a +b )·14(1a +1a )=12+14(a a +aa ) ≥12+14×2√a a ·a a =12+12=1, 当且仅当a a =a a ,即a =b =12时取等号.故选B . 4.D ∵正数x ,y 满足x 2+a 22=1,∴2x 2+y 2=2, ∴x √1+a 2=√22×√2x ×√1+a 2≤√22×(√2a )2+(√1+a 2)22=√22×2a 2+a 2+12=3√24,当且仅当{2a 2+a 2=2,√2a =√1+a 2,即{a =√32,a =√22时取等号,∴x √1+a 2的最大值为3√24.5.答案 1;12解析 a 2+4b 2+1aa =(a -2b )2+4ab +1aa ≥(a -2b )2+2√4aa ·1aa =(a -2b )2+4,当且仅当a -2b =0且4ab =1aa ,即a =1,b =12时,等号成立,所以a =1,b =12. 6.答案 5解析 ∵x >0,∴x +1>1,∴a 2+3a +6a +1=(a +1)2+(a +1)+4a +1=x +1+1+4a +1≥2√(a +1)·4a +1+1=5, 当且仅当x +1=4a +1,即x =1时,等号成立, ∴a 2+3a +6a +1的最小值是5.7.答案 23;9解析 因为a +b =1,所以a =1-b ,因为a >b >0,所以0<b <12.所以a 2+2b 2=(1-b )2+2b 2=3b 2-2b +1=3(a -13)2+23,所以当b =13时,a 2+2b 2有最小值且最小值为23. 易得4a -a +12a =41-2a +12a ,故4a -a +12a =(41-2a +12a )(1-2b +2b )=5+8a1-2a +1-2a 2a ≥5+2√8a 1-2a ·1-2a 2a=5+4=9,当且仅当8a1-2a =1-2a 2a,即b =16时等号成立,故4a -a +12a 的最小值为9.8.答案 6解析 ∵ab +a +3b =9,∴a =9-3aa +1,由题意可知,a =9-3aa +1>0,故0<b <3, ∵a +3b =9-3aa +1+3b =12-3(a +1)a +1+3b =12a +1+3(b +1)-6≥2√12a +1×3(a +1)-6=6,当且仅当12a +1=3(b +1),即{a =3,a =1时取等号.方法点睛 求含多个字母的代数式的最值,常见的方法有消元法、基本不等式法等.应用消元法时要注意变元范围的传递.应用基本不等式法时,需遵循“一正、二定、三相等”的原则,如果原代数式中没有积为定值或和为定值,则需要将给定的代数式变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.9.解析 (1)∵4x 2+y 2≥2·2x ·y =4xy ,∴xy ≤4a 2+a 24,当且仅当2x =y 时等号成立,又4x 2+y 2+xy =1,∴1=4x 2+y 2+xy ≤4x 2+y 2+4a 2+a 24,∴4x 2+y 2≥45,当且仅当x =√1010,y =√105时等号成立, ∴4x 2+y 2的最小值是45.(2)由4x 2+y 2+xy =1,得(2x +y )2-1=3xy. 又∵2xy ≤(2a +a )24,当且仅当2x =y 时等号成立,∴(2x +y )2-1≤32×(2a +a )24,解得(2x +y )2≤85,∴2x +y ≤2√105.当且仅当x =√1010,y =√105时等号成立, ∴2x +y 的最大值是2√105.10.证明 因为a >0,b >0,所以(2a +b )(1a +4a )=6+a a +8a a ≥6+2√a a ·8aa=6+4√2=2(√2+1)2(当且仅当b =2√2a 时,等号成立).因为2a +b >0, 所以1a +4a ≥2(√2+1)22a +a.11.证明a 2+a 2a -a =(a -a )2+2aa a -a =(a -a )2+4a -a =(a -b )+4a -a ≥2√(a -a )·4a -a=4,当且仅当a =1+√3,b =-1+√3或a =1-√3,b =-1-√3时等号成立.所以a 2+a 2a -a≥4. 12.证明 (1)∵a +b =1,a >0,b >0, ∴1a +1a +1aa =1a +1a +a +aaa =2(1a +1a ), 1a +1a=a +a a +a +a a=2+a a +a a ≥2+2=4,当且仅当a =b =12时等号成立,∴1a +1a +1aa ≥8.(2)证法一:∵a >0,b >0,a +b =1, ∴1+1a =1+a +a a =2+aa, 同理,1+1a =2+aa ,∴(1+1a )(1+1a )=(2+a a )(2+aa)=5+2(a a +a a )≥5+4=9,当且仅当a =b =12时等号成立, ∴(1+1a )(1+1a)≥9. 证法二:(1+1a )(1+1a )=1+1a +1a +1aa . 由(1)知,1a +1a +1aa≥8,故(1+1a )(1+1a )=1+1a +1a +1aa ≥9,当且仅当a =b =12时,等号成立. 13.证明 (1)∵a +a 2≤√a2+a 22,∴√a 2+a 2≥√2=√22(a +b )(当且仅当a =b 时,等号成立).同理,√a 2+a 2≥√22(b +c )(当且仅当b =c 时,等号成立),√a 2+a 2≥√22(a +c )(当且仅当a =c 时,等号成立).三式相加得√a 2+a 2+√a 2+a 2+√a 2+a 2≥√22(a +b )+√22(b +c )+√22(a +c )=√2(a +b +c )(当且仅当a =b =c 时,等号成立). (2)∵0<x <1,∴1-x >0. 又∵a >0,b >0,∴不等式左边=(x +1-x )(a 2a+a 21-a )=a 2+b 2+a 1-a ·b 2+1-a a ·a 2≥a 2+b 2+2√a 1-a ·a 2·1-a a·a 2=a 2+b 2+2ab =(a +b )2=右边当且仅当a1-a ·b 2=1-aa·a 2,即x =aa +a 时,等号成立.故a 2a +a 21-a≥(a +b )2. 14.D 由题意可得a (1+p )(1+q )=a (1+x )2,即(1+p )(1+q )=(1+x )2. 易得(1+p )(1+q )≤(1+a +1+a 2)2,当且仅当p =q 时取等号,∵p ≠q ,∴(1+p )(1+q )<(1+a +1+a 2)2,则1+x <2+a +a2=1+a +a 2,即x <a +a 2.故选D .15.B 设每吨的平均处理成本为s 元, 由题意可得s =a a =12a 2-300a +80000a=a 2+80000a -300,其中300≤x ≤600.由基本不等式可得a 2+80000a -300≥2√a 2·80000a-300=400-300=100, 当且仅当a 2=80000a,即x =400时,每吨的平均处理成本最低.故选B .16.答案 400解析 如图,设矩形花园的一边DE 的长为x (x >0)m,邻边长为y (y >0)m,则矩形花园的面积为xy m 2,∵花园是矩形,∴△ADE 与△ABC 相似, ∴aa aa =aaaa ,又∵AG =BC =40, ∴AF =DE =x ,FG =y ,∴x +y =40.由基本不等式可得x +y ≥2√aa ,则xy ≤400,当且仅当x =y =20时,等号成立,故矩形花园的面积的最大值为400m 2. 17.答案 37.5解析 由题意,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足x =3-2a +1, 即t =23-a-1(1<x <3),设月利润为y 万元,则y =(48+a 2a )x -32x -3-t =16x -a 2-3=16x -13-a +12-3 =45.5-[16(3-a )+13-a ]≤45.5-2√16=37.5, 当且仅当16(3-x )=13-a ,即x =114时取等号, 故该公司的最大月利润为37.5万元. 18.解析 设y 1=aa +1(k ≠0),y 2=mx (m ≠0),其中x >0.当x =9时,y 1=a9+1=2,y 2=9m =7.2, 解得k =20,m =0.8, 所以y 1=20a +1,y 2=0.8x ,设两项费用之和为z (单位:万元), 则z =y 1+y 2=20a +1+0.8x =20a +1+0.8(x +1)-0.8 ≥2√20a +1·0.8(a +1)-0.8=7.2.=0.8(x+1),即x=4时,等号成立,当且仅当20a+1所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最少,最少费用是7.2万元.解题模板已知函数类型的应用问题,可以用待定系数法求出解析式;含分式的函数求最大(小)值,往往利用基本不等式求解,解题时要注意验证基本不等式成立的三个条件.。
高中数学第一轮复习04基本不等式·知识梳理·模块01:平均值不等式一、平均值不等式有关概念1、通常我们称a b+2为正数a b 、a b 、的几何平均值。
2、定理:两个正数的算术平均数大于等于它们的几何平均值,即对于任意的正数b a 、,有2a b+≥,且等号当且仅当a b =时成立.3、定理:对于任意的实数b a 、,有2()2a b ab +≥,且等号当且仅当b a =时成立。
即对任意的实数b a 、,有222a b ab +≥,且等号当且仅当b a =时成立。
[注意事项]:222a b ab +≥和2a b+≥两者的异同:(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数;(2)取等号的条件在形式上是相同的,都是“当且仅当a b =时取等号”;(3)222a b ab +≥可以变形为:222a b ab +≤;2a b +≥可以变形为:2(2a b ab +≤。
4、平均值不等式的几何证明法:如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =.这个圆的半径为2b a +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b =时,等号成立.[知识拓展]1、当0a b <≤时,2112a ba b a b+≤≤≤+(调和平均值≤几何平均值≤算术平均值≤平方平均值)2、123,,,,n a a a a 是n 个正数,则12na a a n+++ 称为这n个正数的算术平均数,称为这n 个正数的几何平均数,它们的关系是:12n a a a n+++≥ ,当且仅当12n a a a ===时等号成立.二、利用基本不等式求最值问题(1)“积定和最小”:a b +≥⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值;(2)“和定积最大”:2(2a b ab +≤⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S .[注意事项]:基本不等式求最值需注意的问题:(1)各数(或式)均为正;(2)和或积为定值;(3)等号能否成立,即“一正、二定、三相等”这三个条件缺一不可。
历年高三数学高考考点之<基本不等式>必会题型及答案体验高考1.(2015·四川)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,那么mn 的最大值为( )A .16B .18C .25 D.812答案 B解析 ①当m =2时,∵f (x )在[12,2]上单调递减, ∴0≤n <8,mn =2n <16.②m ≠2时,抛物线的对称轴为x =-n -8m -2. 据题意得,当m >2时,-n -8m -2≥2,即2m +n ≤12, ∵2m ·n ≤2m +n 2≤6, ∴mn ≤18,由2m =n 且2m +n =12得m =3,n =6.当m <2时,抛物线开口向下,据题意得,-n -8m -2≤12,即m +2n ≤18, ∵2n ·m ≤2n +m 2≤9, ∴mn ≤812, 由2n =m 且m +2n =18得m =9>2,故应舍去.要使得mn 取得最大值,应有m +2n =18(m <2,n >8).∴mn =(18-2n )n <(18-2×8)×8=16,综上所述,mn 的最大值为18,故选B.2.(2015·陕西)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q 答案 C解析 ∵0<a <b ,∴a +b 2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝ ⎛⎭⎪⎫a +b 2>f (ab ),即q >p . 又r =12(f (a )+f (b ))=12(ln a +ln b ) =12ln a +12ln b =ln(ab )12=f (ab )=p .故p =r <q .选C.3.(2015·天津)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.答案 4解析 log 2a ·log 2(2b )=log 2a ·(1+log 2b )≤⎝⎛⎭⎪⎫log 2a +1+log 2b 22=⎝ ⎛⎭⎪⎫log 2ab +122 =⎝ ⎛⎭⎪⎫log 28+122=4, 当且仅当log 2a =1+log 2b ,即a =2b 时,等号成立,此时a =4,b =2.4.(2016·江苏)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.答案 8解析 在△ABC 中,A +B +C =π,sin A =sin[π-(B +C )]=sin(B +C ),由已知,sin A =2sin B sin C ,∴sin(B +C )=2sin B sin C .∴sin B cos C +cos B sin C =2sin B sin C ,A ,B ,C 全为锐角,两边同时除以cos B cos C 得:tan B +tan C =2tan B tan C .又tan A =-tan(B +C )=-tan B +tan C 1-tan B tan C =tan B +tan C tan B tan C -1. ∴tan A (tan B tan C -1)=tan B +tan C .则tan A tan B tan C -tan A =tan B +tan C ,∴tan A tan B tan C =tan A +tan B +tan C=tan A +2tan B tan C ≥22tan A tan B tan C , ∴tan A tan B tan C ≥22,∴tan A tan B tan C ≥8.5.(2016·上海)设a >0,b >0.若关于x ,y 的方程组⎩⎪⎨⎪⎧ ax +y =1,x +by =1无解,则a +b 的取值范围是________.答案 (2,+∞)解析 由已知,ab =1,且a ≠b ,∴a +b >2ab =2.高考必会题型题型一 利用基本不等式求最大值、最小值1.利用基本不等式求最值的注意点(1)在运用基本不等式求最值时,必须保证“一正,二定,三相等”,凑出定值是关键.(2)若两次连用基本不等式,要注意等号的取得条件的一致性,否则就会出错.2.结构调整与应用基本不等式基本不等式在解题时一般不能直接应用,而是需要根据已知条件和基本不等式的“需求”寻找“结合点”,即把研究对象化成适用基本不等式的形式.常见的转化方法有:(1)x +bx -a =x -a +bx -a +a (x >a ).(2)若a x +b y =1,则mx +ny =(mx +ny )×1=(mx +ny )·⎝ ⎛⎭⎪⎫a x +b y ≥ma +nb +2abmn (字母均为正数).例1 (1)已知正常数a ,b 满足1a +2b=3,则(a +1)(b +2)的最小值是________. 答案 509解析 由1a +2b =3,得b +2a =3ab , ∴(a +1)(b +2)=2a +b +ab +2=4ab +2,又a >0,b >0,∴1a +2b ≥22ab ,∴ab ≥89(当且仅当b =2a 时取等号), ∴(a +1)(b +2)的最小值为4×89+2=509. (2)求函数y =x 2+7x +10x +1(x >-1)的最小值. 解 设x +1=t ,则x =t -1(t >0),∴y =t -12+7t -1+10t=t +4t+5≥2 t ·4t +5=9. 当且仅当t =4t,即t =2,且此时x =1时,取等号, ∴y min =9.点评 求条件最值问题一般有两种思路:一是利用函数单调性求最值;二是利用基本不等式.在利用基本不等式时往往都需要变形,变形的原则是在已知条件下通过变形凑出基本不等式应用的条件,即“和”或“积”为定值.等号能够取得.变式训练1 已知x >0,y >0,且2x +5y =20,(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,即xy ≤10,当且仅当2x =5y 时等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧ x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2x y时等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =10 10-203,y =20-4103. ∴1x +1y 的最小值为7+2 1020. 题型二 基本不等式的综合应用例2 (1)某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x 8天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件答案 B 解析 平均每件产品的费用为y =800+x 28x =800x +x 8≥2 800x ×x 8=20,当且仅当800x =x 8,即x =80时取等号,所以每批应生产产品80件,才能使平均到每件产品的生产准备费用与仓储费用之和最小.(2)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?解 设铁栅长为x 米,一侧砖墙长为y 米,则顶部面积S =xy ,依题设,得40x +2×45y +20xy =3 200,由基本不等式得 3 200≥2 40x ·90y +20xy =120 xy +20xy =120 S +20S ,则S +6S -160≤0,即(S -10)·(S +16)≤0,故0<S ≤10,从而0<S ≤100,所以S 的最大允许值是100平方米,取得此最大值的条件是40x =90y 且xy =100,解得x =15,即铁栅的长应设计为15米.点评 基本不等式及不等式性质应用十分广泛,在最优化实际问题,平面几何问题,代数式最值等方面都要用到基本不等式,应用时一定要注意检验“三个条件”是否具备.变式训练2 (1)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是________. 答案 92 解析 圆的方程变形为(x -1)2+(y -2)2=5,由已知可得直线ax +by -6=0过圆心O (1,2),∴a +2b =6(a >0,b >0),∴6=a +2b ≥22ab ,∴ab ≤92(当且仅当a =2b 时等号成立), 故ab 的最大值为92. (2)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. ①写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;②当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 ①当0<x <80时, L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250. 当x ≥80时, L (x )=1 000x ×0.05-(51x +10 000x -1 450)-250 =1 200-(x +10 000x). ∴L (x )=⎩⎪⎨⎪⎧ -13x 2+40x -2500<x <80,1 200-x +10 000x x ≥80.②当0<x <80时,L (x )=-13x 2+40x -250. 对称轴为x =60,即当x =60时,L (x )最大=950(万元).当x ≥80时,L (x )=1 200-(x +10 000x)≤1 200-2 10 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元),综上所述,当x =100时,年获利最大.高考题型精练1.已知x >1,y >1,且14ln x ,14,ln y 成等比数列,则xy ( ) A .有最大值e B .有最大值 eC .有最小值eD .有最小值 e答案 C解析 ∵x >1,y >1,且14ln x ,14,ln y 成等比数列,∴ln x ·ln y =14≤⎝ ⎛⎭⎪⎫ln x +ln y 22,∴ln x +ln y =ln xy ≥1⇒xy ≥e.2.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6答案 C解析 方法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x5y +12y5x ≥135+125=5(当且仅当3x 5y =12y5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5.方法二 由x +3y =5xy 得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y=135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15 ≥135+2 3625=5, 当且仅当y =12时等号成立, ∴3x +4y 的最小值是5.3.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( ) A .1B .6C .9D .16 答案 B解析 ∵正数a ,b 满足1a +1b=1, ∴b =a a -1>0,解得a >1.同理可得b >1, ∴1a -1+9b -1=1a -1+9a a -1-1 =1a -1+9(a -1)≥2 1a -1·9a -1=6,当且仅当1a -1=9(a -1),即a =43时等号成立, ∴最小值为6.故选B.4.已知a >0,b >0,若不等式m 3a +b -3a -1b≤0恒成立,则m 的最大值为( ) A .4 B .16 C .9 D .3答案 B解析 因为a >0,b >0,所以由m 3a +b -3a -1b ≤0恒成立得m ≤(3a +1b )(3a +b )=10+3b a +3a b恒成立.因为3b a +3a b ≥23b a ·3a b=6, 当且仅当a =b 时等号成立,所以10+3b a +3a b≥16, 所以m ≤16,即m 的最大值为16,故选B.5.已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y(m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4答案 D解析 由2x -3=(12)y 得x +y =3, 1x +m y =13(x +y )(1x +m y) =13(1+m +y x +mx y) ≥13(1+m +2m )(当且仅当y x =mx y时取等号) ∴13(1+m +2m )=3,解得m =4,故选D. 6.已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( )A .9B .8C .4D .2答案 A解析 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6,所以圆心为C (0,1),因为直线ax +by +c -1=0经过圆心C ,所以a ×0+b ×1+c -1=0,即b +c =1.因此4b +1c =(b +c )(4b +1c)=4c b +b c +5. 因为b ,c >0,所以4c b +b c ≥24cb ·b c=4. 当且仅当4c b =b c时等号成立. 由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c取得最小值9. 7.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 6解析 由已知得x =9-3y 1+y.方法一 (消元法)∵x >0,y >0,∴0<y <3,∴x +3y =9-3y 1+y +3y =121+y +3(y +1)-6 ≥2121+y ·3y +1-6=6,当且仅当121+y=3(y +1), 即y =1,x =3时,(x +3y )min =6.方法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时等号成立.设x +3y =t >0,则t 2+12t -108≥0,∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6.8.已知三个正数a ,b ,c 成等比数列,则a +cb +b a +c 的最小值为________. 答案 52解析 由条件可知a >0,b >0,c >0,且b 2=ac ,即b =ac ,故a +c b ≥2ac b =2,令a +c b =t ,则t ≥2,所以y =t +1t在[2,+∞)上单调递增, 故其最小值为2+12=52. 9.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号),又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号),综上可知4≤x 2+4y 2≤12.10.当x ∈(0,1)时,不等式41-x ≥m -1x 恒成立,则m 的最大值为________. 答案 9解析 方法一 (函数法)由已知不等式可得 m ≤1x +41-x, 设f (x )=1x +41-x =1-x +4x x 1-x =3x +1-x 2+x ,x ∈(0,1).令t =3x +1,则x =t -13,t ∈(1,4), 则函数f (x )可转化为g (t )=t-⎝ ⎛⎭⎪⎫t -132+t -13=t -19t 2+59t -49=9t -t 2+5t -4=9-t +4t+5, 因为t ∈(1,4),所以5>t +4t≥4, 0<-(t +4t )+5≤1,9-t +4t +5≥9, 即g (t )∈[9,+∞),故m 的最大值为9.方法二 (基本不等式法)由已知不等式可得m ≤1x +41-x,因为x ∈(0,1),则1-x ∈(0,1),设y =1-x ∈(0,1),显然x +y =1.故1x +41-x =1x +4y =x +y x +4x +y y=5+(y x +4x y )≥5+2y x ·4x y=9, 当且仅当y x =4x y ,即y =23,x =13时等号成立. 所以要使不等式m ≤1x +41-x恒成立,m 的最大值为9. 11.运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)设所用时间为t =130x(小时), y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610, 当且仅当2 340x =13x 18, 即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解 (1)设每件定价为t 元,依题意,有⎝ ⎛⎭⎪⎫8-t -251×0.2t ≥25×8, 整理得t 2-65t +1 000≤0,解得25≤t ≤40.∴要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解, 等价于x >25时,a ≥150x +16x +15有解, ∵150x +16x ≥2150x ·16x =10(当且仅当x =30时,等号成立),∴a ≥10.2, ∴当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.。
新高考数学复习考点知识与解题方法专题讲解专题2.2 基本不等式及其应用【考纲解读与核心素养】1. 掌握基本不等式ab b a ≥+2(a ,b >0)及其应用. 2.培养学生的数学抽象、数学运算、数学建模、逻辑推理等核心数学素养.【知识清单】1.重要不等式当a 、b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a=b 时,等号成立.2.基本不等式当a >0,b >0时有ab b a ≥+2,当且仅当a=b 时,等号成立. 3.基本不等式与最值已知x 、y 都是正数.(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.4.常用推论(1)22ab 2a b +≤(,R a b ∈)(2)2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ (3)20,0)112a b a b a b +≤≤>>+ 【典例剖析】高频考点一 :利用基本不等式证明不等式例1. 已知a 、b 、c 都是正数,求证:()()()8a b b c c a abc +++≥【答案】见解析【解析】∵a 、b 、c 都是正数∴0a b +≥> (当且仅当a b =时,取等号)0b c +≥> (当且仅当b c =时,取等号)0c a +≥> (当且仅当c a =时,取等号)∴()()()8a b b c c a abc +++≥=(当且仅当a b c ==时,取等号) 即()()()8a b b c c a abc +++≥.【方法技巧】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.【变式探究】1.已知a >0,b >0,a +b =1,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 【答案】见解析【解析】∵0a >,0b >,1a b +=, ∴11+=1+=2+a b b a a a+.同理,11+=2+a b b . ∴111122b a a b a b ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=5+25+4=9b a a b ⎛⎫+≥ ⎪⎝⎭, 当且仅当b a a b=,即1a=b=2时取“=”. ∴11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当12a b ==时等号成立. 2.求证:47(3)3a a a +≥>- 【答案】见解析【解析】证明:443333a a a a +=+-+--由基本不等式和3a >得4433333a a a a +=+-+≥--=237= 当且仅当433a a =--即5a =时取等号. 高频考点二:利用基本不等式求最值例2. (2019年高考天津卷文)设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】92 【解析】(1)(21)2212525x y xy y x xy xy xy xy xy++++++===+. 因为0,0,24x y x y >>+=, 所以2422x y x y +=≥⋅,即22,02xy xy ≤<≤,当且仅当22x y ==时取等号成立.又因为192255=22xy +≥+⨯, 所以(1)(21)x y xy ++的最小值为92. 例3.(浙江省金丽衢十二校2019届高三第一次联考)若实数、满足,且,则的最小值是__________,的最大值为__________.【答案】2【解析】实数、满足,且,则,则,当且仅当,即时取等号,故的最小值是2,,当且仅当,即时取等号 故的最大值为,故答案为:2,.【规律方法】利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法(2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量.(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点: ① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围. 注意:形如(0)a y x a x=+>的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.【变式探究】1.(陕西省2019年高三第三次教学质量检测)若正数,m n 满足12=+n m ,则11m n +的最小值为( ) A .223+ B .32+ C .222+ D .3 【答案】A【解析】由题意,因为12=+n m ,则111122()(2)332322n m n m m n m n m n m n m n+=+⋅+=++≥+⋅=+, 当且仅当2n m m n =,即2n m =时等号成立, 所以11m n+的最小值为223+,故选A. 2.设当________时,取到最小值.【答案】【解析】 因为,所以,当且仅当时取等号, 故当时,取得最小值是,故答案是.【总结提升】通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标;(3)拆项、添项应注意检验利用基本不等式的前提.高频考点三:基本不等式的实际应用例4. (2017·江苏高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 .【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【规律方法】1.用均值不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.2.利用基本不等式求解实际应用题注意点:(1)此类型的题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.【易错警示】忽视不等式等号成立的条件!【变式探究】如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积最大值为( )A.6B.2C.4D.22【答案】C【解析】设EH x =,EF y =,由条件可知EBH ∆和EFA ∆为等直角三角形,所以2EB x =,22AE y =.AB EB AE =+222x y +≥2222x y ⋅=2xy ,即2xy 4xy ≤,所以绿地面积最大值为4,故选C .高频考点四:基本不等式的综合运用例5. (2020·黑龙江省佳木斯一中高一期中(理))已知函数2()(1)1f x m x mx m =+-+-(m R ∈).(1)若不等式()0f x <的解集为∅,求m 的取值范围;(2)当2m >-时,解不等式()f x m ≥;(3)若不等式()0f x ≥的解集为D ,若[11]D -⊆,,求m 的取值范围. 【答案】(1)3m ≥;(2)1|11x x m ⎧⎫≤≤-⎨⎬+⎩⎭.;(3)3m ≥. 【解析】(1)①当10m +=即1m =-时,()2f x x =-,不合题意; ②当10m +≠即1m ≠-时,()()210{4110m m m m +>∆=-+-≤,即21{340m m >--≥,∴1{33m m m >-≤-≥,∴m ≥ (2)()f x m ≥即()2110m x mx +--≥即()()1110m x x ⎡⎤++-≥⎣⎦①当10m +=即1m =-时,解集为{|1}x x ≥②当10m +>即1m >-时,()1101x x m ⎛⎫+-≥ ⎪+⎝⎭∵1011m -<<+,∴解集为1{|1}1x x x m ≤-≥+或 ③当10m +<即21m -<<-时,()1101x x m ⎛⎫+-≤ ⎪+⎝⎭ ∵21m -<<-,所以110m -<+<,所以111m ->+ ∴解集为1{|1}1x x m ≤≤-+ (3)不等式()0f x ≥的解集为D ,[]1,1D -⊆,即对任意的[]1,1x ∈-,不等式()2110m x mx m +-+-≥恒成立,即()2211m x x x -+≥-+恒成立,因为210x x -+>恒成立,所以22212111x x m x x x x -+-≥=-+-+-+恒成立, 设2,x t -=则[]1,3t ∈,2x t =-, 所以()()2222131332213x t t x x t t t t t t-===-+-+---++-,因为3t t+≥,当且仅当t =时取等号,所以22313x x x -≤=-+,当且仅当2x =所以当2x =22max11x x x ⎛⎫-+= ⎪-+⎝⎭所以233 m例6.设函数(Ⅰ)若不等式对任意恒成立,求实数的取值范围;(Ⅱ)在(Ⅰ)的条件下,当取最大值时,设,且,求的最小值.【答案】(1);(2).【解析】(Ⅰ)因为函数的对称轴为,且开口向上,所以在上单调递减,所以,∴.(Ⅱ)根据题意,由(Ⅰ)可得,即,所以.所以.∵,则当且仅当,即,时,等号成立.所以的最小值为.【总结提升】基本不等式的综合应用求解策略(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.【变式探究】1.(2019·北京海淀模拟)已知f(x)=32x-(k+1)·3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是( )A.(-∞,-1) B.(-∞,22-1)C.(-1,22-1) D.(-22-1,22-1)【答案】B【解析】由f(x)>0得32x-(k+1)3x+2>0,解得k+1<3x+23x.而3x+23x≥22(当且仅当3x=23x,即x=log32时,等号成立),∴k+1<22,即k<22-1.2.(天津市河北区2019届高三二模)已知首项与公比相等的等比数列中,若,n*∈N,满足,则的最小值为__________.【答案】1【解析】设等比数列公比为,则首项由得:,则:,,,,m n*∈N,.则(当且仅当,即时取等号).故填.。