专题一 集合与常用逻辑用语第二讲 常用逻辑用语
- 格式:doc
- 大小:731.50 KB
- 文档页数:8
第一章集合与常用逻辑用语第一章集合与常用逻辑用语§1.1集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A的任意一个元素都是集合B的元素(若则),则称集合A为集合B的子集,记为AB或BA;如果AB,并且AB,这时集合A称为集合B的真子集,记为AB或BA.4.集合的相等:如果集合A、B同时满足AB、BA,则A=B.5.补集:设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为.6.全集:如果集合S包含所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A且属于B的元素构成的集合,称为A与B的交集,记作AB.8.并集:一般地,由所有属于集合A或者属于B的元素构成的集合,称为A与B的并集,记作AB.9.空集:不含任何元素的集合称为空集,记作.10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N,正整数集记作N+或N,整数集记作Z,有理数集记作Q,实数集记作R.二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B=易漏掉的情况.5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n个元素的集合的所有子集个数为:,所有真子集个数为:-1三、经典例题导讲[例1] 已知集合M={y|y=x2+1,x∈R},N={y|y =x+1,x∈R},则M∩N=()A.(0,1),(1,2)B.{(0,1),(1,2)}C.{y|y=1,或y=2}D.{y|y≥1}错解:求M∩N及解方程组得或∴选B错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是实数对(x,y),因此M、N是数集而不是点集,M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集.正解:M={y|y=x2+1,x∈R}={y|y≥1},N={y|y=x+1,x∈R}={y|y∈R}.∴M∩N={y|y≥1}∩{y|(y∈R)}={y|y≥1},∴应选D.注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x ∈R},这三个集合是不同的.[例2] 已知A={x|x2-3x+2=0},B={x|ax-2=0}且A∪B=A,求实数a组成的集合C.错解:由x2-3x+2=0得x=1或2.当x=1时,a=2,当x=2时,a=1.错因:上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A.当a=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴BA又A={x|x2-3x+2=0}={1,2}∴B=或∴C={0,1,2}[例3]已知mA,nB, 且集合A=,B=,又C=,则有:()A.m+nA B. m+nB C.m+nC D.m+n不属于A,B,C中任意一个错解:∵mA,∴m=2a,a,同理n=2a+1,aZ,∴m+n=4a+1,故选C错因是上述解法缩小了m+n的取值范围.正解:∵mA,∴设m=2a1,a1Z, 又∵n,∴n=2a2+1,a2 Z ,∴m+n=2(a1+a2)+1,而a1+a2 Z , ∴m+nB, 故选B.[例4]已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,求实数p的取值范围.错解:由x2-3x-10≤0得-2≤x≤5.欲使BA,只须∴p的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设.正解:①当B≠时,即p+1≤2p-1p≥2.由BA得:-2≤p+1且2p-1≤5.由-3≤p≤3.∴2≤p≤3②当B=时,即p+1>2p-1p<2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,AB 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a+b,a+2b},B={a,ac,ac2}.若A=B,求c的值.分析:要解决c的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a+b=ac且a+2b=ac2,消去b得:a+ac2-2ac=0,a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c2-2c+1=0,即c=1,但c=1时,B中的三元素又相同,此时无解.(2)若a+b=ac2且a+2b=ac,消去b得:2ac2-ac-a=0,∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0,又c≠1,故c=-.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A是实数集,满足若a∈A,则A,且1?A.⑴若2∈A,则A中至少还有几个元素?求出这几个元素.⑵A能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.⑷求证:集合A中至少含有三个不同的元素.解:⑴2∈A ? -1∈A ? ∈A ? 2∈A∴A中至少还有两个元素:-1和⑵如果A为单元素集合,则a=即=0该方程无实数解,故在实数范围内,A不可能是单元素集⑶a∈A ? ∈A ? ∈A?A,即1-∈A⑷由⑶知a∈A时,∈A,1-∈A.现在证明a,1-, 三数互不相等.①若a=,即a2-a+1=0,方程无解,∴a≠②若a=1-,即a2-a+1=0,方程无解∴a≠1-③若1-=,即a2-a+1=0,方程无解∴1-≠.综上所述,集合A中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨. [例7] 设集合A={|=,∈N+},集合B={|=,∈N+},试证:AB.证明:任设∈A,则==(+2)2-4(+2)+5(∈N+),∵n∈N*,∴n+2∈N*∴a∈B故①显然,1,而由B={|=,∈N+}={|=,∈N+}知1∈B,于是A≠B②由①、②得AB.点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x2-3x-10≤0,x∈Z},B={x|2x2-x-6>0,x∈Z},则A∩B的非空真子集的个数为()A.16B.14C.15 D.322.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,-2 } B.{-2,-}C.{±2,±} D.{,-}3.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于()A.P B.QC.D.不知道4. 若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有()A.P∩Q=B.P Q C.P=QD.P Q5.若集合M={},N={|≤},则MN=()A.B.C.D.6.已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩R+=,则实数m的取值范围是_________.7.(06高考全国II卷)设,函数若的解集为A,,求实数的取值范围.8.已知集合A=和B=满足A∩B=,A∩B=,I=R,求实数a,b的值.§1.2.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、“非”分别用符号“”“”“”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p或q;p且q;非p5.四种命题的构成:原命题:若p则q;逆命题:若q则p;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p则q”“若q 则p ”.7.反证法:欲证“若p则q”,从“非q”出发,导出矛盾,从而知“若p则非q”为假,即“若p则q”为真.8.充分条件与必要条件:①pq:p是q的充分条件;q是p的必要条件;②pq:p是q的充要条件.9.常用的全称量词:“对所有的”、“对任意一个”“对一切”“对每一个”“任给”等;并用符号“”表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、“有的”、“对某个”;并用符号“”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的. (4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明的充要条件是;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一.注:常见关键词的否定:关键词是都是(全是)()至少有一个至多有一个任意存在否定不是不都是(全是)()一个也没有至少有两个存在任意。
专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q⇒p)A Bp是q的必要不充分条件(q⇒p,p⇒q)B Ap是q的充要条件(p⇔q)A=Bp是q的既不充分也不必要条件(p⇒q,q⇒p)A与B互不包含1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2.(2013·北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A-B的定义是解答本题的关键,要和补集区别开来.答案(1)D(2)D解析(1)由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2. 反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用数轴解决. 答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数,∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈C .∀xD ∈∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈Q ”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D. 二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3}, 集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}. 故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎨⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎨⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真, 当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧ a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。
专题1 集合与常用逻辑用语1.1集合的含义与表示 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{|具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().1.2集合间的基本关系(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.解析获取vx :lingzi980N N *N +Z Q R a M a M ∈a M ∉x x x ∅A (1)n n ≥2n21n-21n-22n -1.3 集合的基本运算1. 2.注意:1. 元素与集合的关系,.2.德摩根公式.3.包含关系4.容斥原理.【例1】(2022•新高考Ⅰ)若集合 }4|{,<=x x M }13| {,≥=x x N 则=N MA .}40|{<≤x xB . }231|{<≤x x C .}163|{<≤x x D . }1631|{<≤x x 【例2】(2022•新高考II )已知集合{}4211,,,-=A ,{}11≤-=x x B ,则=⋂B A A.{}21,- B.{}21, C.{}41, D.{}41,-【例3】(2022•乙卷理)设全集{1U =,2,3,4,5},集合M 满足{1U M =,3},则( )AB {|x x ∈A A A =A∅=∅A B A ⊆A B B ⊆AB {|x x ∈A A A =AA ∅=AB A ⊇AB B ⊇U A {|x x ()U A A =∅()U A A U =U x A xC A ∈⇔∉U x C A x A ∈⇔∉();()U U U U U U C A B C A C B C A B C A C B ==A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+()()()UU U A B A B =()()()U U U A B A B =A .2M ∈B .3M ∈C .4M ∉D .5M ∉【例4】(2019•全国)设集合P ={x |x 2﹣2>0},Q ={1,2,3,4},则P ∩Q 的非空子集的个数为( ) A .8B .7C .4D .3【例5】(2020•上海)集合A ={1,3},B ={1,2,a },若A ⊆B ,则a = . 【例6】已知集合{0A =,1,2},{|B ab a A =∈,}b A ∈,则集合B 中元素个数为( ) A .2B .3C .4D .5【例7】已知集合{{}A =∅,}∅,下列选项中均为A 的元素的是( ) (1){}∅;(2){{}}∅;(3)∅;(4){{}∅,}∅. A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)【例8】已知函数2()f x x ax b =++,集合{|()0}A x f x =,集合5|(())4B x f f x ⎧⎫=⎨⎬⎩⎭,若A B =≠∅,则实数a 的取值可以是( ) A .2B .3C .4D .5【例9】向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.则下列说法正确的是( ) A .赞成A 的不赞成B 的有9人 B .赞成B 的不赞成A 的有11人 C .对A 、B 都赞成的有21人D .对A 、B 都不赞成的有8人【例10】(2015•上海)设集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,21{|0}Q x x x b =++>,22{|20}Q x x x b =++>,其中a ,b R ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集 C .存在a ,1P 不是2P 的子集,对任意b ,1Q 不是2Q 的子集 D .存在a ,1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集1.(2022•乙卷文)集合{}{}2,4,6,8,10,16M N x x ==-<<,则MN =( )A. {2,4}B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}2.(2022•上海)已知集合A =(﹣1,2),集合B =(1,3),则A ∩B = .3.(2021•新高考Ⅰ)设集合A ={x |﹣2<x <4},B ={2,3,4,5},则A ∩B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}4.(2021•上海)已知集合A ={x |x >﹣1,x ∈R },B ={x |x 2﹣x ﹣2≥0,x ∈R },则下列关系中,正确的是( ) A .A ⊆BB .∁R A ⊆∁R BC .A ∩B =∅D .A ∪B =R5.(2022•天津)设全集{2U =-,1-,0,1,2},集合{0A =,1,2},{1B =-,2},则()(U A B =⋂)A .{0,1}B .{0,1,2}C .{1-,1,2}D .{0,1-,1,2}6.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}7.(2022•北京)已知全集{|33}U x x =-<<,集合{|21}A x x =-<,则(UA = )A .(2-,1]B .(3,2)[1--,3) C .[2-,1)D .(3-,2](1,3)- 8.(2021•乙卷)已知集合{|21S s s n ==+,}n Z ∈,{|41T t t n ==+,}n Z ∈,则(S T = )A .∅B .SC .TD .Z9.(2020•全国)若集合A 共有5个元素,则A 的真子集的个数为( ) A .32B .31C .16D .1510.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2B .3C .4D .611.(2017•江苏)已知集合{1A =,2},{B a =,23}a +.若{1}A B =,则实数a 的值为 .12.(2022•重庆期末)下列说法正确的是( ) A .任何集合都是它自身的真子集B .集合{a ,}b 共有4个子集C .集合{|31x x n =+,}{|32n Z x x n ∈==-,}n Z ∈D .集合2{|1x x a =+,*2}{|45a N x x a a ∈==-+,*}a N ∈13.(2021•重庆期末)已知全集为U ,A ,B 是U 的非空子集且UA B ⊆,则下列关系一定正确的是()A .x U ∃∈,x A ∉且xB ∈ B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈14.(2021•虎丘区月考)江苏省实验中学科技城校举行秋季运动会,高一某班共有30名同学参加比赛,有20人参加田赛,13人参加径赛,有19人参加球类比赛,同时参加田赛与径赛的有8人,同时参加田赛与球类比赛的有9人,没有人同时参加三项比赛.以下说法正确的有( ) A .同时参加径赛和球类比赛的人数有3人 B .只参加球类一项比赛的人数有2人C .只参加径赛一项比赛的人数为0人D .只参加田赛一项比赛的人数为3人1.4 充分条件与必要条件充要条件(1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.抓住关键词:大必小充。
第02讲常用逻辑用语第一部分:思维导图1、充分条件、必要条件与充要条件的概念(1)若,则是的充分条件,是的必要条件; (2)若且,则是的充分不必要条件; (3)若且,则是的必要不充分条件;(4)若,则是的充要条件; (5)若且,则是的既不充分也不必要条件.拓展延伸一:等价转化法判断充分条件、必要条件(1)p 是q 的充分不必要条件⇔q ⌝是p ⌝的充分不必要条件; (2)p 是q 的必要不充分条件⇔q ⌝是p ⌝的必要不充分条件; (3)p 是q 的充要条件⇔q ⌝是p ⌝的充要条件;第二部分:知识点(4)p 是q 的既不充分也不必要条件⇔q ⌝是p ⌝的既不充分也不必要条件. 拓展延伸二:集合判断法判断充分条件、必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即p :{|()}A x p x =,q :{|()}B x q x =,则 (1)若A B ⊆,则p 是q 的充分条件; (2)若B A ⊆,则p 是q 的必要条件; (3)若A B ⊂≠,则p 是q 的充分不必要条件; (4)若B A ⊂≠,则p 是q 的必要不充分条件; (5)若A B =,则p 是q 的充要条件;(6)若A B ⊂≠且B A ⊂≠,则p 是q 的既不充分也不必要条件. 拓展延伸三:充分性必要性高考高频考点结构 (1)p 是q 的充分不必要条件⇔p q ⇒且q p (注意标志性词:“是”,此时p 与q 正常顺序) (2)p 的充分不必要条件是q ⇔q p ⇒且p q (注意标志性词:“的”,此时p 与q 倒装顺序)2、全称量词与存在量词 (1)全称量词短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示. (2)存在量词短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示. (3)全称量词命题及其否定(高频考点)①全称量词命题:对M 中的任意一个x ,有()p x 成立;数学语言:,()x M p x ∀∈. ②全称量词命题的否定:,()x M p x ∃∈⌝. (4)存在量词命题及其否定(高频考点)①存在量词命题:存在M 中的元素x ,有()p x 成立;数学语言:,()x M p x ∃∈. ②存在量词命题的否定:,()x M p x ∀∈⌝. (5)常用的正面叙述词语和它的否定词语1.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件2.命题“0x ∀>,20x x ->”的否定是( ).A .0x ∀>,20x x -≤B .00x ∃<,2000x x -≤C .0x ∀<,20x x -≤D .00x ∃>,2000x x -≤ 3.命题“0x R ∃∈,00e 1xx -≥”的否定是( )A .0x R ∃∈,00e 1x x -<B .0x R ∃∈,00e 1xx -<C .x R ∀∈,e 1x x -≤D .x R ∀∈,e 1x x -<4.设x ∈R ,则“13x -≤≤”是“|2|13x -≤”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件5.“0<x <4”成立的一个必要不充分条件是( )A .x >0B .x <0或x >4C .0<x <3D .x <0高频考点一:充分条件与必要条件的判断1.祖暅原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A ,B 为两个等高的几何体,p :A 、B 的体积相等,q :A 、B 在同一高处的截面积相等.根据祖暅原理可知,p 是q 的( ) A .充分必要条件B .充分不必要条件C .必要不充分条件 D .既不充分也不必要条件 2.若:12p x -≤≤,:11q x -≤≤,则p 为q 的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件3.已知a ,b R ∈,则“1≥ab ”是“222a b +≥”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件4.设R x ∈,则“12x -<”是“111x >-”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件5.“50k -<<”是“函数2y x -kx -k 的值恒为正值”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件高频考点二:充分条件与必要条件的应用1.已知()2160x a +->”的必要不充分条件是“2x -≤或3x ≥”,则实数a 的最大值为( ) A .-2B .-1C .0D .12.函数2()f x x bx c =++在[0,)+∞上单调递增的充分不必要条件是( )A .,[)0b ∈+∞B .(0,)b ∈+∞C .,)(0b ∈-∞D .,](0b ∈-∞3.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________. 4.已知命题p :122x x -≥-,命题q :22x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围是________. 5.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈. (1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围.高频考点三:充分条件与必要条件(“是”,“的”)结构对比1.设p :3x <,q :()()130x x +-<,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件2.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.使不等式2(1)(2)0x x +->成立的一个充分不必要条件是( ) A .1x >-且2x ≠ B .13x C .1x <D .3x >4.使不等式260x x --<成立的充分不必要条件是( ) A .20x -<< B .23x -<< C .05x <<D .24x -<<5.命题:x R ∃∈,20020ax ax -->为假命题的一个充分不必要条件是( )A .(][),80,-∞-⋃+∞B .()8,0-C .(],0-∞D .[]8,0-6.已知0m >,()():120p x x +-≤,:11q m x m -≤≤+.若p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围.高频考点四:全称量词命题与存在量词命题的真假判断1.下列四个命题中,是真命题的为( )A .任意R x ∈,有230x +<B .任意N x ∈,有21x >C .存在Z x ∈,使51x <D .存在Q x ∈,使23x = 2.下列命题中的假命题是( )A .230,x x x ∃>>B .,ln 0x R x ∀∈>C .,sin 1x R x ∃∈>-D .,20x x R ∀∈>3.在下列命题中,是真命题的是( )A .2R,30x x x ∃∈++=B .2R,20x x x ∀∈++>C .2R,x x x ∀∈>D .已知{}{}2,3A aa n Bb b m ====∣∣,则对于任意的*,n m N ∈,都有A B =∅ 4.下列命题为真命题的是( ) A .,,2x y R x y xy ∀∈+≥ B .1,2x R x x∀∈+≥ C .2000,230x R x x ∃∈-+≤ D .,sin x R x x +∀∈≥5.下列命题中的假命题的是( ) A .B .C .D .高频考点五:含有一个量词的命题的否定1.命题“1x ∀>,20x x ->”的否定是( )A .01x ∃≤,2000x x ->B .01x ∃>,2000x x -≤ C .1x ∀>,20x x -≤D .1x ∀>,20x x ->2.命题“0x ∀>,01xx >-”的否定是( ) A .0x ∃<,01x x ≤- B .0x ∃>,01x ≤≤ C .0x ∀<,01x x ≤- D .0x ∀<,01x ≤≤ 3.命题“x ∀∈R ,都有210x x +>+”的否定是___________.4.命题“0x R x x ∈∃,”的否定是___________. 高频考点六:根据全称(特称)命题的真假求参数1.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( ) A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞2.已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是( ) A .13aa ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13aa ⎧⎫≥⎨⎬⎩⎭∣ 3.已知命题“x R ∃∈,使()212102x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .1a <-B .13a -<<C .3a >-D .31a -<<4.存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1B .14C .12D .-15.命题“2,430x R ax ax ∀∈++>”为真,则实数a 的范围是__________6.已知()24f x x mx =-+,()2log g x x =,若“[]11,4x ∀∈,[]22,4x ∃∈,使得()()12f x g x >成立”为真命题,则实数m 的取值范围是_________.7.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 8.命题“0x ∃∈R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.9.命题1:,12p x ⎡⎤∀∈⎢⎥⎣⎦,4x a x +>恒成立是假命题,则实数a 的取值范围是________________.10.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___.1.已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨2.已知a ∈R ,则“6a >”是“236a >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件3.“x =1”是“2320x x -+=”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件4.已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件6.设a ∈R ,则“1a >”是“2a a >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件7.下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x R ∀∈,20x ≥一、单选题1.设命题:p n N ∃∈,22n n >,则p ⌝为( ).A .n N ∀∈,22n n >B .n N ∀∈,22n n ≤C .n N ∃∈,22n n >D .n N ∃∈,22n n ≤ 2.若“x R ∃∈,2390ax ax -+≤”是假命题,则a 的取值范围为( ) A .[0,4]B .(0,4)C .[0,4)D .(0,4]3.已知命题“存在()3,27x ∈,使得3log 03xx m +->”是假命题,则m 的取值范围是( )A .[)2,+∞B .()2,+∞C .[)12,+∞D .()12,+∞4.已知集合{}32,A x x n n Z ==-∈,{}64,B y y n n Z ==+∈,则“x A ∈”是“x B ∈”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知,a b ∈R ,则“1a b -<”是“1a b +<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 6.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x ∈R ,均有210x x ++≥7.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( )A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞ ⎪⎝⎭D .11,26a ⎛⎫∈- ⎪⎝⎭8.“函数()221xx f x a =++有零点”的充要条件是( )A .1a <-B .10a -<<C .01a <<D .0a <二、填空题9.已知“321a x a -<<-”是“2560x x -+<”成立的必要不充分条件,请写出符合条件的整数a 的一个值____________.10.已知24:()9,:log (3)1p x m q x -<+<,若¬q 是¬p 的必要不充分条件,则m 的取值范围是__.11.已知函数2()23=-+f x x x ,2()log g x x m =+,若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,则实数m 的取值范围为______.12.已知函数2()f x x x a =++,若存在实数[1,1]x ∈-,使得(())4()f f x a af x +>成立,则实数a 的取值范围是_______. 三、解答题13.已知集合()(){}3|10,|12A x x a x a B x x ⎧⎫=--+≤=>⎨⎬+⎩⎭. (1)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围;(2)设命题22:,(21)8p x B x m x m m ∃∈+++->,若命题p 为假命题,求实数m 的取值范围.14.在①x ∃∈R ,2220x ax a ++-=,②a ∃∈R ,使得区间()2,4A =,(),3B a a =满足A B =∅这两个条件中任选一个,补充在下面的横线上,并解答.已知命题p :[]1,2x ∀∈,20x a -≥,命题q :______,p ,q 都是真命题,求实数a 的取值范围.15.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.第02讲 常用逻辑用语第一部分:思维导图1、充分条件、必要条件与充要条件的概念(1)若,则是的充分条件,是的必要条件; (2)若且,则是的充分不必要条件; (3)若且,则是的必要不充分条件;(4)若,则是的充要条件; (5)若且,则是的既不充分也不必要条件.拓展延伸一:等价转化法判断充分条件、必要条件(1)p 是q 的充分不必要条件⇔q ⌝是p ⌝的充分不必要条件; (2)p 是q 的必要不充分条件⇔q ⌝是p ⌝的必要不充分条件; (3)p 是q 的充要条件⇔q ⌝是p ⌝的充要条件;第二部分:知识点(4)p 是q 的既不充分也不必要条件⇔q ⌝是p ⌝的既不充分也不必要条件. 拓展延伸二:集合判断法判断充分条件、必要条件若p 以集合A 的形式出现,q 以集合B 的形式出现,即p :{|()}A x p x =,q :{|()}B x q x =,则 (1)若A B ⊆,则p 是q 的充分条件; (2)若B A ⊆,则p 是q 的必要条件; (3)若A B ⊂≠,则p 是q 的充分不必要条件; (4)若B A ⊂≠,则p 是q 的必要不充分条件;(5)若A B =,则p 是q 的充要条件; (6)若A B ⊂≠且B A ⊂≠,则p 是q 的既不充分也不必要条件. 拓展延伸三:充分性必要性高考高频考点结构 (1)p 是q 的充分不必要条件⇔p q ⇒且q p (注意标志性词:“是”,此时p 与q 正常顺序)(2)p 的充分不必要条件是q ⇔q p ⇒且p q (注意标志性词:“的”,此时p 与q 倒装顺序)2、全称量词与存在量词 (1)全称量词短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示. (2)存在量词短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示. (3)全称量词命题及其否定(高频考点)①全称量词命题:对M 中的任意一个x ,有()p x 成立;数学语言:,()x M p x ∀∈. ②全称量词命题的否定:,()x M p x ∃∈⌝. (4)存在量词命题及其否定(高频考点)①存在量词命题:存在M 中的元素x ,有()p x 成立;数学语言:,()x M p x ∃∈. ②存在量词命题的否定:,()x M p x ∀∈⌝. (5)常用的正面叙述词语和它的否定词语1.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( )A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件【答案】B“返回家乡”的前提条件是“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要不充分条件故选:B2.命题“0x ∀>,20x x ->”的否定是( ).A .0x ∀>,20x x -≤B .00x ∃<,2000x x -≤C .0x ∀<,20x x -≤D .00x ∃>,2000x x -≤【答案】D解:因为全称命题的否定是特称命题,所以命题“,”的否定是:,故选:D3.命题“0x R ∃∈,00e 1xx -≥”的否定是( )A .0x R ∃∈,00e 1x x -<B .0x R ∃∈,00e 1xx -<C .x R ∀∈,e 1x x -≤D .x R ∀∈,e 1x x -<【答案】D 命题“,”为特称量词命题,其否定为,;故选:D4.设x ∈R ,则“13x -≤≤”是“|2|13x -≤”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B 因为,所以,显然由推不出,由可推出,所以“”是“”的必要不充分条件,故选:B.5.“0<x <4”成立的一个必要不充分条件是( )A .x >0B .x <0或x >4C .0<x <3D .x <0 【答案】A设p: 0<x <4,所求的命题为q ,则原表述可以改写为q 是p 的必要不充分条件,即q 推不出p ,但p ⇒q .,显然由: 0<x <4,能推出x >0,推不出x <0或x >4、0<x <3、x <0, 故选:A高频考点一:充分条件与必要条件的判断1.祖暅原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如在等高处的截面积相等,体积相等.设A ,B 为两个等高的几何体,p :A 、B 的体积相等,q :A 、B 在同一高处的截面积相等.根据祖暅原理可知,p 是q 的( ) A .充分必要条件B .充分不必要条件C .必要不充分条件 D .既不充分也不必要条件 【答案】C已知A ,B 为两个等高的几何体,由祖暅原理知,而p 不能推出,可举反例,两个相同的圆锥,一个正置,第四部分:例题剖析一个倒置,此时两个几何体等高且体积相等,但在同一高处的截面积不相等,则p 是的必要不充分条件 故选:C2.若:12p x -≤≤,:11q x -≤≤,则p 为q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件【答案】C对于p ,如果x =1.5,则q 不能成立,如果 ,则x 必然在 区间内,因此p 为q 的必要不充分条件; 故选:C.3.已知a ,b R ∈,则“1≥ab ”是“222a b +≥”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件【答案】A 当时,由,故充分性成立,当时,比如,满足,但,故必要性不成立.故选:A4.设R x ∈,则“12x -<”是“111x >-”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件【答案】B 解不等式可得,,又,反之不成立,所以“”是“111x >-”的必要不充分条件, 故选:B.5.“50k -<<”是“函数2y x -kx -k 的值恒为正值”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 函数-kx -k 的值恒为正值,则,∵,∴“”是“函数-kx -k 的值恒为正值”的必要不充分条件.故选:B.高频考点二:充分条件与必要条件的应用1.已知()2160x a +->”的必要不充分条件是“2x -≤或3x ≥”,则实数a 的最大值为( ) A .-2 B .-1C .0D .1【答案】D 由,得或,因为”的必要不充分条件是“或”,所以,解得,所以实数a 的最大值为1,故选:D2.函数2()f x x bx c =++在[0,)+∞上单调递增的充分不必要条件是( ) A .,[)0b ∈+∞ B .(0,)b ∈+∞C .,)(0b ∈-∞D .,](0b ∈-∞【答案】B函数2()f x x bx c =++的单调递增区间是,依题意,,于是得,解得,所以函数2()f x x bx c =++在[0,)+∞上单调递增的充分不必要条件是. 故选:B3.已知集合{}2280A x x x =--<,非空集合{}23B x x m =-<<+,若x B ∈是x A ∈成立的一个充分而不必要条件,则实数m 的取值范围是___________. 【答案】由题意得,,由是成立的一个充分而不必要条件,得,即解得,,故答案为:.4.已知命题p :122x x -≥-,命题q :22x a -<,若命题p 是命题q 的充分不必要条件,则实数a 的取值范围是________. 【答案】或(4,6]解析:122x x -≥-移项整理可得,解得.22x a -<得.由题意得:122a -+≤且132a+>,从而得出.故答案为:5.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈. (1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围. 【答案】(1);(2). (1)由题设,,当时,所以;(2)由题设,,且,若p 是的必要不充分条件,则,又a 为正实数,即,解得,故的取值范围为. 高频考点三:充分条件与必要条件(“是”,“的”)结构对比1.设p :3x <,q :()()130x x +-<,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 解不等式得:,即,显然{|13}x x -<< ,所以p 是q 成立的必要不充分条件. 故选:C2.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 解:因为,所以,解得;由,即,解得;所以与互相不能推出,故“”是“”的既不充分也不必要条件;故选:D3.使不等式2(1)(2)0x x +->成立的一个充分不必要条件是( ) A .1x >-且2x ≠ B .13x C .1x < D .3x >【答案】D 因为,故不等式的解集为且,故不等式成立的一个充分不必要条件所构成的集合应是且的真子集,显然,满足题意的只有.故选:D.4.使不等式260x x --<成立的充分不必要条件是( ) A .20x -<< B .23x -<< C .05x << D .24x -<<【答案】A 解不等式得:,对于A ,因 ,即是成立的充分不必要条件,A 正确;对于B ,是成立的充要条件,B 不正确;对于C ,因,且,则是成立的不充分不必要条件,C 不正确; 对于D ,因,则是成立的必要不充分条件,D 不正确. 故选:A5.命题:x R ∃∈,20020ax ax -->为假命题的一个充分不必要条件是( )A .(][),80,-∞-⋃+∞B .()8,0-C .(],0-∞D .[]8,0- 【答案】B命题”为假命题,命题“,220ax ax --”为真命题,当时,20-成立, 当时,,故方程的解得:80a -<,故的取值范围是:,要满足题意,则选项是集合真子集,故选项B 满足题意.故选:B6.已知0m >,()():120p x x +-≤,:11q m x m -≤≤+.若p ⌝是q ⌝的充分不必要条件,求实数m 的取值范围. 【答案】.因是的充分不必要条件,则p 是q 的必要不充分条件,于是得,解得,所以实数m的取值范围是.高频考点四:全称量词命题与存在量词命题的真假判断1.下列四个命题中,是真命题的为( )A .任意R x ∈,有230x +<B .任意N x ∈,有21x >C .存在Z x ∈,使51x <D .存在Q x ∈,使23x = 【答案】C 由于对任意,都有,因而有,故A 为假命题.由于,当时,不成立,故B 为假命题.由于,当时,,故C 为真命题.由于使成立的数只有,而它们都不是有理数,因此没有任何一个有理数平方等于3,故D 是假命题.故选:C2.下列命题中的假命题是( )A .230,x x x ∃>>B .,ln 0x R x ∀∈>C .,sin 1x R x ∃∈>-D .,20x x R ∀∈>【答案】B 解:对A :取,则成立,故选项A 正确;对B :当时,没有意义,故选项B 错误;对C :取,则成了,故选项C 正确;对D :由指数函数的性质有成立,故选项D 正确.故选:B.3.在下列命题中,是真命题的是( )A .2R,30x x x ∃∈++=B .2R,20x x x ∀∈++>C .2R,x x x ∀∈>D .已知{}{}2,3A aa n Bb b m ====∣∣,则对于任意的*,n m N ∈,都有A B =∅ 【答案】B 选项A ,,即有实数解,所以,显然此方程无实数解,故排除;选项B ,,,故该选项正确;选项C ,,而当,不成立,故该选项错误,排除;选项D ,,当时,当取得6的正整数倍时,,所以,该选项错误,排除. 故选:B.4.下列命题为真命题的是( ) A .,,2x y R x y xy ∀∈+≥ B .1,2x R x x∀∈+≥ C .2000,230x R x x ∃∈-+≤ D .,sin x R x x +∀∈≥【答案】D对于A 选项,当0x <且,,A 选项错误;对于B 选项,当0x <时,,B 选项错误;对于C 选项,,C 选项错误;对于D 选项,构造函数,其中,则()1sin 0f x x '=-≥,所以,函数在区间上单调递增,则,所以,,,D 选项正确.故选:D.5.下列命题中的假命题的是( ) A .B .C .D .【答案】B 当时,,显然选项B 错误,故选B. 高频考点五:含有一个量词的命题的否定1.命题“1x ∀>,20x x ->”的否定是( )A .01x ∃≤,2000x x ->B .01x ∃>,2000x x -≤ C .1x ∀>,20x x -≤D .1x ∀>,20x x ->【答案】B∵全称命题的否定是特称命题,即先将量词“”改为量词“”,再将结论否定, ∴“,”的否定为“,”,故选:. 2.命题“0x ∀>,01xx >-”的否定是( ) A .0x ∃<,01x x ≤- B .0x ∃>,01x ≤≤ C .0x ∀<,01x x ≤- D .0x ∀<,01x ≤≤ 【答案】B 由得:0x <或,所以的否定是.所以,命题的否定是“,”.故选:B.3.命题“x ∀∈R ,都有210x x +>+”的否定是___________. 【答案】,有 题“,都有”的否定是:.故答案为:.4.命题“0x R x x ∈∃+≥,”的否定是___________. 【答案】,.特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.高频考点六:根据全称(特称)命题的真假求参数1.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( ) A .(),4-∞- B .(),4-∞C .[)4,-+∞D .[)4,+∞【答案】C 由题意可知,命题“,”是真命题.当时,则有,不合乎题意;当时,由,可得,则有,,当且仅当时,等号成立,所以,.综上所述,实数的取值范围是.故选:C.2.已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是( ) A .13aa ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13aa ⎧⎫≥⎨⎬⎩⎭∣ 【答案】C 先求当命题p :,为真命题时的的取值范围 (1)若,则不等式等价为,对于不成立,(2)若不为0,则,解得13a >,∴命题p 为真命题的的取值范围为13aa ⎧⎫>⎨⎬⎩⎭∣, ∴命题p 为假命题的的取值范围是13aa ⎧⎫≤⎨⎬⎩⎭∣. 故选:C3.已知命题“x R ∃∈,使()212102x a x +-+≤”是假命题,则实数a 的取值范围是( ) A .1a <- B .13a -<<C .3a >-D .31a -<<【答案】B 因为命题“,使”是假命题,所以恒成立, 所以,解得,故实数的取值范围是.故选:B .4.存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1 B .14C .12D .-1【答案】C由不等式230x mx m +-≥,可化为,设,则,当时,,单调递减;当时,,单调递增,又由,所以函数的最大值为,要使得存在,使得230x mx m +-≥,则,则的最大值为.故选:C.5.命题“2,430x R ax ax ∀∈++>”为真,则实数a 的范围是__________ 【答案】(由题意知:不等式对x ∈R 恒成立,当时,可得,恒成立满足;当时,若不等式恒成立则需,解得304a <<,所以的取值范围是(,故答案为:(.6.已知()24f x x mx =-+,()2log g x x =,若“[]11,4x ∀∈,[]22,4x ∃∈,使得()()12f x g x >成立”为真命题,则实数m 的取值范围是_________. 【答案】当,有,则,,使得()()12f x g x >成立,等价于,,即,在上恒成立, 参变分离可得:,当,,当时取等,所以,故答案为:.7.命题“x R ∀∈,使得不等式210mx mx ++≥”是真命题,则m 的取值范围是________. 【答案】解:因为命题“,使得不等式”是真命题当时,10≥恒成立,满足条件; 当时,则解得综上可得即故答案为:8.命题“0x ∃∈R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________. 【答案】若,使是假命题,则,使是真命题,当转化,不合题意; 当,使即恒成立,即,解得或(舍),所以,故答案为:9.命题1:,12p x ⎡⎤∀∈⎢⎥⎣⎦,4x a x +>恒成立是假命题,则实数a 的取值范围是________________.【答案】∵ 命题,恒成立是假命题,∴ ,,∴ ,,又函数在为减函数,∴ ,∴,∴ 实数a 的取值范围是(, 故答案为:(.10.若“存在x ∈[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___. 【答案】存在x ∈[﹣1,1],成立,即在上有解,设,,易得y =f (x )在[﹣1,1]为减函数,所以,即,即,即,所以,故答案为:.1.已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .()p q ⌝∨【答案】A 由于,所以命题p 为真命题;由于在R 上为增函数,0x ≥,所以,所以命题为真第五部分:高考真题命题;所以为真命题,、、为假命题.故选:A .2.已知a ∈R ,则“6a >”是“236a >”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】A 由题意,若,则,故充分性成立;若,则或6a <-,推不出,故必要性不成立;所以“”是“”的充分不必要条件.故选:A.3.“x =1”是“2320x x -+=”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】A 将代入中可得,即“”是“”的充分条件; 由可得,即或2x =,所以“”不是“”的必要条件,故选:A4.已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 若函数在上单调递增,则在上的最大值为,若在上的最大值为,比如,但在为减函数,在1,13⎡⎤⎢⎥⎣⎦为增函数,故在上的最大值为推不出在上单调递增, 故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,故选:A.5.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】A 当时,集合,,可得,满足充分性,若,则或,不满足必要性,所以“”是“”的充分不必要条件,故选:A.6.设a ∈R ,则“1a >”是“2a a >”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件【答案】A 求解二次不等式可得:或,据此可知:是的充分不必要条件.故选:A.7.下列命题为真命题的是( )A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x R ∀∈,20x ≥【答案】D A 项:因为,所以且是假命题,A 错误;B 项:根据、易知B 错误;C 项:由余弦函数性质易知,C 错误;D 项:2x 恒大于等于,D 正确,故选:D.一、单选题1.设命题:p n N ∃∈,22n n >,则p ⌝为( ).A .n N ∀∈,22n n >B .n N ∀∈,22n n ≤C .n N ∃∈,22n n >D .n N ∃∈,22n n ≤ 【答案】B 因为命题,,所以为,.故选:B.2.若“x R ∃∈,2390ax ax -+≤”是假命题,则a 的取值范围为( ) A .[0,4] B .(0,4)C .[0,4)D .(0,4]【答案】C 因为 “,”是假命题,所以 “,”是真命题,所以当时,90>成立;当时,则,解得04a <<,综上:04a ≤<,所以a 的取值范围为, 故选:C3.已知命题“存在()3,27x ∈,使得3log 03xx m +->”是假命题,则m 的取值范围是( )A .[)2,+∞B .()2,+∞C .[)12,+∞D .()12,+∞【答案】C 因为命题“存在,使得”是假命题,所以命题“对任意,都有”是真命题.令函数,显然在上单调递增,则,故,即12m ≥.故选:C4.已知集合{}32,A x x n n Z ==-∈,{}64,B y y n n Z ==+∈,则“x A ∈”是“x B ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B第六部分:课后测试因为 ,但,故不充分;因为,所以当时,,故必要;故选:B5.已知,a b ∈R ,则“1a b -<”是“1a b +<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B由绝对值三角不等式得:,当且仅当时,等号成立,所以1a b -<⇒,而1a b +<⇒,所以“”是“”的必要不充分条件.故选:B6.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x ∈R ,均有210x x ++≥【答案】C A.令,由,解得,由二次函数的性质知:t 在上递增,在上递减,又lg y t =在上递增,由复合函数的单调性知:在上递增,故正确;B. 当时,2x -4x +3=0成立,故充分,当2x -4x +3=0成立时,解得或,故不必要,故正确;C.若集合中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当时,,当时,,解得,所以或,故错误;D.因为命题p :.存在0x R ∈,使得是存在量词命题,则其否定为全称量词命题,即p 任意x ∈R ,均有,故正确;故选:C7.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( )A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞ ⎪⎝⎭D .11,26a ⎛⎫∈- ⎪⎝⎭【答案】C,若在上不单调,令,对称轴方程为,则函数与 轴在上有交点.当时,显然不成立;当时,有解得或.四个选项中的范围,只有为的真子集,∴在上不单调的一个充分不必要条件是.故选:C .8.“函数()221xx f x a =++有零点”的充要条件是( )A .1a <-B .10a -<<C .01a <<D .0a <【答案】B 由得,因为,所以,所以,所以,所以.故选:B 二、填空题9.已知“321a x a -<<-”是“2560x x -+<”成立的必要不充分条件,请写出符合条件的整数a 的一个值____________. 【答案】 由,得,令,,“”是“”成立的必要不充分条件,BA ∴.(等号不同时成立),解得,故整数的值可以为.故答案为:中任何一个均可.10.已知24:()9,:log (3)1p x m q x -<+<,若¬q 是¬p 的必要不充分条件,则m 的取值范围是__.【答案】.因为¬q 是¬p 的必要不充分条件,所以p 是q 的必要不充分条件,由不等式,可得,由不等式,可得,所以, 因为p 是q 的必要不充分条件,所以,解得,故实数m 的取值范围是.故答案为:.11.已知函数2()23=-+f x x x ,2()log g x x m =+,若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,则实数m 的取值范围为______. 【答案】因为若对,,使得,所以,因为的对称轴为,所以,因为,,所以所以,即所以12.已知函数2()f x x x a =++,若存在实数[1,1]x ∈-,使得(())4()f f x a af x +>成立,则实数a 的取值范围是_______. 【答案】。
全国中小学个性化教育辅导专家 ------佳绩改变未来第1讲 集合的含义与基本关系强化训练1.设全集U M N =⋃={1,2,3,4,5}(M ,⋂U ðN )={2,4},则N 等于( )A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}2.已知A ={x |512x -<-},若B ={x |x +4<-x },则集合A B ð等于( ) A.{x |23x -≤<} B.{x |23x -<≤}C.{x |-2<x <3}D.{x |23x -≤≤}3.设集合A ={x ||x -a |<1,x ∈R },B ={x |15x x <<,∈R },若A B ⋂=∅,则实数a 的取值范围是 .题组一 集合的基本概念1.设全集U =R ,A ={x |10x<},则U A ð等于( ) A.{x |10x >} B.{x |x >0} C.{x |0x ≥} D.{x |10x≥}2.设集合A ={1,2,3},集合B ={2,3,4},则A B ⋂等于( )A.{1}B.{1,4}C.{2,3}D.{1,2,3,4}3.已知集合M ={x |24x <},N ={x |2230x x --<},则集合M N ⋂等于( )A.{x |x <-2}B.{x |x >3}C.{x |-1<x <2}D.{x |2<x <3}题组二 集合间的基本关系4.已知集合A ={1,2a },B ={a ,b },若A ∩B =⎩⎨⎧⎭⎬⎫12,则A ∪B 为( ) A.⎩⎨⎧⎭⎬⎫12,1,b B.⎩⎨⎧⎭⎬⎫-1,12 C.⎩⎨⎧⎭⎬⎫1,12 D.⎩⎨⎧⎭⎬⎫-1,12,15.若集合M ={y |21y x =},P ={y |y =那么M P ⋂等于( ) A.(0),+∞ B. [0),+∞ C.(1),+∞ D.[1),+∞ 题组三 集合的运算6.(2011广东)已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x 、y 为实数,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .3题组四 集合的综合应用7.给定集合A 、B ,定义A *B ={x |x m n m A =-,∈,n ∈B },若A ={4,5,6},B ={1,2,3},则集合A *B 中的所有元素之和为( )A.15B.14C.27D.-14第2讲 命题及其关系、充分条件与必要条件、逻辑联结词强化训练1.若a ∈R ,则”a =1”是”|a |=1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.命题”若m >0,则方程20x x m +-=有实数根”的逆命题是 .题组一 命题的概念及其真假判断1.函数f (x )的定义域为A,若12x x A ,∈且1()f x =2()f x 时总有12x x =,则称f (x )为单函数.例如,函数f (x )21(x x =+∈R )是单函数,下列命题: ①函数2()(f x x x =∈R )是单函数;②指数函数()2(x f x x =∈R )是单函数;③若f (x )为单函数12x x A ,,∈且12x x ≠,则1()f x ≠2()f x ;④在定义域上具有单调性的函数一定是单函数.其中的真命题是 .(写出所有真命题的编号)题组二 充分条件、必要条件的判断5.以下有关命题的说法错误的是( )A.命题”若2320x x -+=,则x =1”的逆否命题为”若x ≠1,则2320xx -+≠” B.”x =1”是”2320x x -+=”的充分不必要条件C.若p ∧q 为假命题,则p q 、均为假命题D.对于命题p :x ∃∈R ,使得210x x ++<,则p ⌝:x ∀∈R ,则210x x ++≥6.”x >1”是”|x |>1”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件1.(2011年湖南)设集合M ={1,2},N ={a 2},则“a =1”是“N ⊆M ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件2.(2010年陕西)“a >0”是“|a |>0”的( )A .充分不必要条件 B.必要不充分条件C .充要条件D .既不充分也不必要条件3.a 、b 为非零向量,“a ⊥b ”是“函数f (x )=(a x +b )·(x b -a )为一次函数”的( )A .充分而不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.(2010年广东)“m <14”是“一元二次方程x 2+x +m =0”有实数解的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分必要条件5.对任意实数a ,b ,c ,给出下列命题:①“a =b ”是“ac =bc ”的充要条件;②“a +5是无理数”是“a 是无理数”的充要条件;③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件.其中真命题的个数是( )A .1B .2C .3D .46.(2011年山东)已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3B .若a +b +c =3,则a 2+b 2+c 2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =31.(2011年北京)若p 是真命题,q 是假命题,则( )A .p ∧q 是真命题B .p ∨q 是假命题C .非p 是真命题D .非q 是真命题2.(2010年湖南)下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0D .∀x ∈R,2x >03.下列四个命题中的真命题为( )A .若sin A =sinB ,则∠A =∠BB .若lg x 2=0,则x =1C .若a >b ,且ab >0,则1a <1bD .若b 2=ac ,则a ,b ,c 成等比数列4.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( )A .∃a ∈R ,f (x )是偶函数B .∃a ∈R ,f (x )是奇函数C .∀a ∈R ,f (x )在(0,+∞)上是增函数D .∀a ∈R ,f (x )在(0,+∞)上是减函数5.(揭阳二模)已知命题p :∃x ∈R ,cos x =54;命题q :∀x ∈R ,x 2-x +1>0.则下列结论正确的是() A .命题p ∧q 是真命题 B .命题p ∧非q 是真命题C .命题p ∧q 是真命题D .命题非p ∧非q 是假命题6.(汕头)命题“∀x >0,都有x 2-x ≤0”的否定是( )A .∃x >0,使得x 2-x ≤0B .∃x >0,使得x 2-x >0C .∀x >0,都有x 2-x >0D .∀x ≤0,都有x 2-x >0第1讲 集合的含义与基本关系强化训练1.答案:B 解析:画出韦恩图,可知N ={1,3,5}.2.答案:A 解析:集合A ={x |x <3},B={x |x <-2},故选A.3.答案:0a ≤或6a ≥解析:由|x -a |<1得-1<x -a <1,即a -1<x <a +1.如图所示.由图可知11a +≤或15a -≥,所以0a ≤或6a ≥.题组一 集合的基本概念1.答案:C 解析:∵A ={x |x <0},∴U A =ð{x |0x ≥}.2.答案:C 解析:∵A ={1,2,3},B ={2,3,4},∴A B ⋂={1,2,3}⋂{2,3,4}={2,3}.故选C.3.答案:C 解析:∵M ={x |-2<x <2},N ={x |-1<x <3}, ∴M ⋂N ={x |-1<x <2}.故选C. 题组二 集合间的基本关系4.5.答案:A 解析:M ={y |21y x =}={y |y >0},P ={y |0y ≥},故(0)M P ⋂=,+∞,选A. 题组三 集合的运算6.答案:C题组四 集合的综合应用7.答案:A 解析:由题意可得A *B ={1,2,3,4,5},又1+2+3+4+5=15.故选A.第2讲 命题及其关系、充分条件与必要条件、逻辑联结词1.答案:A2.答案:若方程20x x m +-=有实数根,则m >0题组一 命题的概念及其真假判断1.答案:②③④解析:对于①,若12()()f x f x =,则12x x =±,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件.题组二 充分条件、必要条件的判断5答案:C 解析:若p ∧q 为假命题,则只需p ,q 至少有一个为假命题即可.故选C.6.答案:A 解析:因”x >1”⇒”|x |>1”,反之”|x |>1”⇒”x >1或x <-1”,不一定有”x >1”.1.A 2.A 3.B 4.A 5.B 6.A1.D2.C3.C4.A5.C6.B。
集合与常用逻辑用语数学专题一:集合与常用逻辑用语发布:徐雄 时间:2009-3-19 20:50:27 来源:兴庆区教育局信息中心 一、考纲解读1、考纲要求(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。
②能用自然语言、图形语言、符号语言(列举法或描述法)描述不同的具体问题。
(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。
②在具体情境中,了解全集与空集的含义。
(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
③能使用韦恩图表达集合的关系及运算。
(4)命题及其关系①理解命题的概念。
②了解“若p,则q”形式的命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系。
③理解必要条件、充分条件与充要条件的意义。
(5)简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义。
(6)全称量词与存在量词①理解全称量词与存在量词的意义。
②能正确地对含有一个量词的命题进行否定。
2、考纲解读集合与常用逻辑用语是高中数学的重要重要基础知识,是高考的必考内容。
本章知识的高考命题热点有以下两个方面:一是对集合的运算、集合的有关术语和符号、集合的简单应用、命题的真假判断、四种命题的关系、充要条件的判定、逻辑联结词、全称量词与存在量词等作基础性知识的考查,题型多以选择题、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言为表现形式,结合逻辑知识考查数学思想、数学方法和数学能力,题型常以解答题的形式出现。
二、要点知识分析1、集合的概念:(1)集合中元素特征:确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(1)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N={0,1,2,3,…};②描述法。
知识点集合与常用逻辑用语集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]知识点——集合与常用逻辑用语【知识梳理】一、集合及其运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或?表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.3.【知识拓展】1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1.2.A?B?A∩B=A?A∪B=B.3.A∩(?U A)=?;A∪(?U A)=U;?U(?U A)=A.二、命题及其关系、充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p?q,则p是q的充分条件,同时q是p的必要条件;(2)如果p?q,但q p,则p是q的充分不必要条件;(3)如果p?q,且q?p,则p是q的充要条件;(4)如果q?p,且p q,则p是q的必要不充分条件;(5)如果p q,且q p,则p是q的既不充分也不必要条件.【知识拓展】1.两个命题互为逆否命题,它们具有相同的真假性.2.若A={x|p(x)},B={x|q(x)},则(1)若A?B,则p是q的充分条件;(2)若A?B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A?B,则p是q的充分不必要条件;(5)若A?B,则p是q的必要不充分条件;(6)若A B且A?B,则p是q的既不充分也不必要条件.【易错提醒】1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.易混淆0,?,{0}:0是一个实数;?是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0??,而??{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.4.空集是任何集合的子集.由条件A ?B ,A ∩B =A ,A ∪B =B 求解集合A 时,务必分析研究A =?的情况.5.区分命题的否定与否命题,已知命题为“若p ,则q ”,则该命题的否定为“若p ,则q ⌝”,其否命题为“若p ⌝,则q ⌝”.6.对充分、必要条件问题,首先要弄清谁是条件,谁是结论. 【必会习题】1.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3 D .1或3答案 B解析 ∵A ∪B =A ,∴B ?A ,∴m ∈{1,3,m },∴m =1或m =3或m =m , 由集合中元素的互异性易知m =0或m =3.2.设集合A ={x |1<x <2},B ={x |x <a },若A ?B ,则a 的取值范围是( )A .{a |a ≥2}B .{a |a ≤1}C .{a |a ≥1}D .{a |a ≤2} 答案 A解析 若A ?B ,则a ≥2,故选A.3.已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >5},则M ∪N 等于( ) A .{x |-3<x <5} B .{x |-5<x <5} C .{x |x <-5或x >-3} D .{x |x <-3或x >5} 答案 C解析 在数轴上表示集合M 、N ,则M ∪N ={x |x <-5或x >-3},故选C. 4.满足条件{a }?A ?{a ,b ,c }的所有集合A 的个数是( )A .1B .2C .3D .4 答案 D解析 满足题意的集合A 可以为{a },{a ,b },{a ,c },{a ,b ,c },共4个.5.已知集合U =R (R 是实数集),A ={x |-1≤x ≤1},B ={x |x 2-2x <0},则A ∪(?U B )等于( )A .[-1,0]B .[1,2]C .[0,1]D .(-∞,1]∪[2,+∞) 答案 D解析B={x|x2-2x<0}=(0,2),A∪(?UB)=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D.6.“x<0”是“ln(x+1)<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B解析ln(x+1)<0,解得0<x+1<1,∴-1<x<0,所以“x<0”是“-1<x<0”的必要不充分条件.7.给出以下四个命题:①若ab≤0,则a≤0或b≤0;②若a>b,则am2>bm2;③在△ABC中,若sin A=sin B,则A=B;④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是( )A.① B.② C.③ D.④答案C8.设U为全集,对集合A,B定义运算“*”,A*B=?U(A∩B),若X,Y,Z为三个集合,则(X*Y)*Z等于( )A.(X∪Y)∩?U Z B.(X∩Y)∪?U Z C.(?U X∪?U Y)∩Z D.(?U X∩?U Y)∪Z答案B解析∵X*Y=?U(X∩Y),∴对于任意集合X,Y,Z,( X*Y )*Z=?U(X∩Y)*Z=?U[?U(X∩Y)∩Z]=(X∩Y)∪?U Z.9.已知M是不等式ax+10ax-25≤0的解集且5?M,则a的取值范围是________________.答案(-∞,-2)∪[5,+∞)解析若5∈M,则5a+105a-25≤0,∴(a+2)(a-5)≤0且a≠5,∴-2≤a<5,∴5?M时,a<-2或a≥5.10.设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2+2x-8>0,若q是p的必要不充分条件,则实数a的取值范围是________.答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a ,∵q 是p 的必要不充分条件,∴a ≤-4,∴a ∈(-∞,-4].11.已知命题p :⎪⎪⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m 的取值范围是________. 答案 (2,+∞)解析 ∵⎪⎪⎪⎪⎪⎪1-x +12≤1?-1≤x +12-1≤1?0≤x +12≤2?-1≤x ≤3,∴p :-1≤x ≤3; ∵x 2-2x +1-m 2<0(m >0)?[x -(1-m )][x -(1+m )]<0?1-m <x <1+m ,∴q :1-m <x <1+m . ∵p 是q 的充分不必要条件,∴[-1,3]是(1-m,1+m )的真子集,则⎩⎨⎧1-m <-1,1+m >3,解得m >2.。
集合与常用逻辑用语知识点应用举例一、集合的概念与运算集合是由若干个元素组成的整体。
常见的集合运算有并集、交集和补集。
1. 并集并集是指将两个集合中的所有元素合并为一个集合。
例如,设集合A={1,2,3},集合B={3,4,5},则A和B的并集为{1,2,3,4,5}。
2. 交集交集是指两个集合中共有的元素组成的集合。
例如,设集合A={1,2,3},集合B={3,4,5},则A和B的交集为{3}。
3. 补集补集是指在某个全集中,与某个集合中元素不相同的元素组成的集合。
例如,设全集为U={1,2,3,4,5},集合A={1,2,3},则A在U中的补集为{4,5}。
二、常用逻辑用语及其应用举例1. 如果...那么...该逻辑用语表示当某个条件成立时,将会发生某个结果。
例如,“如果下雨,那么我就会带伞。
”表示当下雨时,我会带伞。
2. 只有...才...该逻辑用语表示除了某个条件外,其他条件都不会产生某个结果。
例如,“只有下雨,我才会带伞。
”表示只有下雨时,我才会带伞。
3. 不是所有的...都...该逻辑用语表示并非所有情况下都会产生某个结果。
例如,“不是所有的人都喜欢吃苹果。
”表示并非所有人都喜欢吃苹果。
4. 无论...还是...该逻辑用语表示不论发生什么情况,结果都是一样的。
例如,“无论是下雨还是晴天,我都会带伞。
”表示不论下雨还是晴天,我都会带伞。
结论通过学习集合的概念与运算,以及常用的逻辑用语及其应用举例,我们可以更准确地表达思想和推理。
这对于解决问题、进行论证和表达意见都非常有帮助。
同时,我们也应当根据实际情况灵活运用这些知识点,以达到更好的沟通和理解。
专题01 集合与常用逻辑用语§1-1 集 合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况). 4.集合的三种运算:交集、并集、补集. 【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集. 2.能正确区分和表示元素与集合,集合与集合两类不同的关系. 3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算. 4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等. 【例题分析】例1 给出下列六个关系:(1)0∈N * (2)0∉{-1,1} (3)∅∈{0} (4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0} 其中正确的关系是______.例2 已知全集U ={小于10的正整数},其子集A ,B 满足条件(U A )∩(U B )={1,9},A ∩B ={2},B ∩(U A )={4,6,8}.求集合A ,B .例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.例4 设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( ) (A)1(B)2(C)3(D)42.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是( ) (A)M N(B)N M(C)M =N(D)M ∩N =∅3.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是( ) (A)U =A ∪B (B)U =(U A )∪B (C)U =A ∪(U B ) (D)U =(U A )∪(U B )二、填空题4.已知集合A ={x |x <-1或2≤x <3},B ={x |-2≤x <4},则A ∪B =______. 5.设M ={1,2},N ={1,2,3},P ={c |c =a +b ,a ∈M ,b ∈N },则集合P 中元素的个数为______.6.设全集U =R ,A ={x |x ≤-3或x ≥2},B ={x |-1<x <5},则(U A )∩B =______.三、解答题7.设全集U ={小于10的自然数},集合A ,B 满足A ∩B ={2},(U A )∩B ={4,6,8},(U A )∩(U B )={1,9},求集合A 和B .8.已知集合A ={x |-2≤x ≤4},B ={x |x >a },①A ∩B ≠∅,求实数a 的取值范围; ②A ∩B ≠A ,求实数a 的取值范围;③A ∩B ≠∅,且A ∩B ≠A ,求实数a 的取值范围.§1-2 常用逻辑用语【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0 (D)对任意的x∈R,x3-x2+1>0练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3 (B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0 (D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A不是B的子集”可用数学语言表达为( )(A)若∀x∈A但x∉B,则称A不是B的子集(B)若∃x∈A但x∉B,则称A不是B的子集(C)若∃x∉A但x∈B,则称A不是B的子集(D)若∀x∉A但x∈B,则称A不是B的子集二、填空题5.“⌝p是真命题”是“p∨q是假命题的”__________________条件.6.命题“若x<-1,则|x|>1”的逆否命题为_________.7.已知集合A,B是全集U的子集,则“A⊆B”是“U B⊆U A”的______条件.8.设A、B为两个集合,下列四个命题:①A B⇔对任意x∈A,有x∉B②A B⇔A∩B=∅③A B⇔A B④A B⇔存在x∈A,使得x∉B其中真命题的序号是______.(把符合要求的命题序号都填上)习题1一、选择题1.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件4.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0(C)cb 2<ab 2(D)ac (a -c )<0二、填空题5.若全集U ={0,1,2,3}且U A ={2},则集合A =______.6.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.7.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 8.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A B ,则实数a 的取值范围是____________.9.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)。
高考专题复习—集合与常用逻辑用语(解析版)➱第一讲集合◎基础巩固1.集合的基本概念(1)集合元素的性质:确定性、无序性、互异性.(2)元素与集合的关系①属于,记为∈;②不属于,记为∉.(3)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N +Z Q R(4)集合的表示方法:①列举法;②描述法;③韦恩图.2.集合间的基本关系关系自然语言符号语言Venn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B(或B⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A B 或B A集合相等集合A ,B 中的元素相同或集合A ,B 互为子集A =B3.集合的基本运算基本运算并集交集补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示数学语言{x |x ∈A ,或x ∈B }{x |x ∈A,且x ∈B }{x |x ∈U ,且x ∉A }运算性质A ∪∅=A ;A ∪A =A;A ∪B =B ∪A .A ∩∅=∅;A ∩A =A;A ∩B =B ∩A .A ∪(∁U A )=U ;A ∩(∁U A )=∅;∁U (∁U A )=A.1.A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.2.若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)∅={0}.()(2)空集是任何集合的子集,两元素集合是三元素集合的子集.()(3)a在集合A中,可用符号表示为a⊆A.()(4)N⊆N+⊆Z.()(5)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.()答案:(1)×(2)×(3)×(4)×(5)×[小题查验]1.若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A解析:D[由题意知A={0,1,2,3},由a=22,知a∉A.]2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4解析:B[由题意可得:A∩B={2,4},故选B.]3.已知全集U={1,2,3,4,5},A={1,2,4},B={2,5},则(∁U A)∪B=()A.{3,4,5}B.{2,3,5}C.{5}D.{3}解析:B[因为U={1,2,3,4,5},A={1,2,4},所以∁U A={3,5},又B={2,5},所以(∁U A)∪B={2,3,5}.] 4.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析:∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案:(-∞,1]5.(教材改编)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=___________________.答案:{2,4}◎考点探究考点一集合的基本概念(自主练透)[题组集训]1.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为()A .9B .8C .5D .4解析:A[∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1,当x =-1时,y =-1,0,1;当x =0时,y =-1,0,1;当x =1时,y =-1,0,1;所以共有9个,选A.]2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =()A.92B.98C .0D .0或98解析:D[若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.]3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去.当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-324.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2019=________.解析:由M =N =1,2n =m =m ,2n =1,=0,=12,=2.∴(m -n )2019=-1或0.答案:-1或01.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二集合间的基本关系(师生共研)[典例](1)已知集合A ={x |ax =1},B ={x |x 2-1=0},若A ⊆B ,则a 的取值构成的集合是()A .{-1}B .{1}C .{-1,1}D .{-1,0,1}(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.[解析](1)由题意,得B ={-1,1},因为A ⊆B ,所以当A =∅时,a =0;当A ={-1}时,a =-1;当A ={1}时,a =1.又A 中至多有一个元素,所以a 的取值构成的集合是{-1,0,1}.故选D.(2)当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.+1≥-2m -1≤7+1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.[答案](1)D (2){m |m ≤4}[互动探究]本例(1)中若A ={x |ax >1(a ≠0)},B ={x |x 2-1>0},其它条件不变,则a 的取值范围是________.解析:由题意,得B ={x |x >1,或x <-1},对于集合A ,①当a >0时,A |x >1a因为A ⊆B ,所以1a ≥1.又a >0,所以0<a ≤1.②当a <0时,A |x <1a因为A ⊆B ,所以1a ≤-1,又a <0,所以-1≤a <0,综上所述,0<a ≤1,或-1≤a <0.答案:[-1,0)∪(0,1]由集合的关系求参数的关键点由两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且常要对参数进行讨论,注意区间端点的取舍.提醒:解决两个集合的包含关系时,要注意空集的情况.[跟踪训练](1)若集合A ={x |ax 2+ax +1=0}的子集只有两个,则实数a =________.解析:∵集合A 的子集只有两个,∴A 中只有一个元素,即方程ax 2+ax +1=0只有一个根.当a =0时方程无解.当a ≠0时,Δ=a 2-4a =0,∴a =4.故a =4.答案:4(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ).由于A ⊆B ,如图所示,则a >4,即c =4.答案:4考点三集合的基本运算(多维探究)[命题角度1]求交集、并集1.(文科)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =()A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A[根据集合交集中元素的特征,可以求得A ∩B ={0,2},故选A.]2.(文科)已知集合A ={x |x <2},B ={x |3-2x >0},则()A .A ∩B |x B .A ∩B =∅C .A ∪B |xD .A ∪B =R解析:A[由3-2x >0得x <32,所以A ∩B ={x |x <2}|x |x ,故选A.][命题角度2]集合的交、并、补的综合运算3.(文科)设集合A ={1,2,3,4,5,6},B ={x |2<x <5},则A ∩(∁R B )等于()A .{2,3,4,5}B .{1,2,5,6}C .{3,4}D .{1,6}解析:B[因为∁R B ={x |x ≤2,或x ≥5},A ={1,2,3,4,5,6};所以A ∩(∁R B )={1,2,5,6}.][命题角度3]利用集合的基本运算求参数的取值(范围)4.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =()A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:C[由题意知x =1是方程x 2-4x +m =0的解,代入解得m =3,所以x 2-4x +3=0,解得x =1或x =3,从而B ={1,3}.]5.已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪∁R B =R ,则实数a 的取值范围是________.解析:∁R B ={x |x <1,或x >2},要使A ∪(∁R B )=R ,则a ≥2.答案:[2,+∞)解集合运算问题应注意以下三点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.提醒:Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.考点四集合的新定义问题(师生共研)数学抽象——集合新定义中的核心素养以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.[典例]设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个[解析]C[由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,故S={0,1,2,3,4,5}.由题意可知:集合M不能含有0,1,且不能同时含有2,4.故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}.]解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.[跟踪训练]定义一种新的集合运算△:A△B={x|x∈A,且x∉B}.若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A等于()A.{x|3<x≤4}B.{x|3≤x≤4}C.{x|3<x<4}D.{x|2≤x≤4}解析:B[A={x|1<x<3},B={x|2≤x≤4},由题意知,B△A={x|x∈B,且x∉A}={x|3≤x≤4}.]◎课时作业[基础训练组]1.已知集合A ={1,3,5,7},B ={2,3,4,5},则A ∩B =()A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7}解析:C[A ={1,3,5,7},B ={2,3,4,5},∴A ∩B ={3,5},故选C.]2.集合P ={x |0≤x <3},M ={x ||x |≤3},则P ∩M =()A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}解析:C[集合P ={x |0≤x <3},M ={x ||x |≤3}={x |-3≤x ≤3},则P ∩M ={x |0≤x <3}.]3.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是()A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩∁I SD .(M ∩P )∪∁I S解析:C [图中的阴影部分是M ∩P 的子集,不属于集合S ,属于集合S 的补集的子集,即是∁I S 的子集,则阴影部分所表示的集合是(M ∩P )∩∁I S .故选C.]4.满足{2018}⊆A {2018,2019,2020}的集合A 的个数为()A .1B .2C .3D .4解析:C[满足{2018}⊆A{2018,2019,2020}的集合A 可得:A ={2018},{2018,2019},{2018,2020}.因此满足的集合A 的个数为3.]5.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是()A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析:C[因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].]6.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=()A.0B .(-∞,0)∪12,+∞D .(-∞,0]∪12,+∞解析:D[A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}A ∩B所以∁R (A ∩B )=(-∞,0]∪12,+7.已知A =[1,+∞),B ∈R |12a ≤x ≤2a -A ∩B ≠∅,则实数a 的取值范围是()A .[1,+∞) B.12,1 C.23,+∞D .(1,+∞)解析:A[因为A ∩B ≠∅a -1≥1,a -1≥12a ,解得a ≥1,故选A.]8.函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =()A .(1,2]B .[1,2]C .(-∞,1]∪[2,+∞)D .(-∞,1)∪[2,+∞)解析:D[使x -2有意义的实数x 应满足x -2≥0,∴x ≥2,∴M =[2,+∞),y =ln(1-x )中x 应满足1-x>0,∴x <1,∴N =(-∞,1),所以M ∪N =(-∞,1)∪[2,+∞),故选D.]9.已知集合A ={(x ,y )|x ,y ∈R ,x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,y =4x 2-1},则A ∩B 的元素个数是________.解析:集合A 是以原点为圆心,半径等于1的圆周上的点的集合,集合B 是抛物线y =4x 2-1上的点的集合,观察图像可知,抛物线与圆有3个交点,因此A ∩B 中含有3个元素.答案:310.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]11.对于集合M 、N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =3x ,x ∈R },B ={y |y =-(x -1)2+2,x ∈R },则A ⊕B =________.解析:由题意得A ={y |y =3x ,x ∈R }={y |y >0},B ={y |y =-(x -1)2+2,x ∈R }={y |y ≤2},故A -B ={y |y >2},B -A ={y |y ≤0},所以A ⊕B ={y |y ≤0,或y >2}.答案:(-∞,0]∪(2,+∞)12.若A ={x |ax 2-ax +1≤0,x ∈R }=∅,则a 的取值范围是________.解析:∵A ={x |ax 2-ax +1≤0,x ∈R }=∅,∴a =0>0=(-a )2-4a <0,解得0≤a <4.∴a 的取值范围是[0,4).[能力提升组]13.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是()A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}解析:B [易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.]14.设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是()A .2B .3C .4D .5解析:B[当a =0时,无论b 取何值,z =a ÷b =0;当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q ,12,-3个元素.]15.若集合A={x|(a-1)x2+3x-2=0,x∈R}有且仅有两个子集,则实数a的值为________.解析:由题意知,方程(a-1)x2+3x-2=0,x∈R,有一个根,∴当a=1时满足题意,当a≠1时,Δ=0,即9+8(a-1)=0,解得a=-18.答案:1或-1816.某班共有学生40名,在乒乓球、篮球、排球三项运动中每人至少会其中的一项,有些人会其中的两项,没有人三项均会.若该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,则该班会其中两项运动的学生人数是________.解析:设同时会打乒乓球和篮球的学生有x人,同时会打乒乓球和排球的学生有y人,同时会打排球和篮球的学生有z人,∵该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,∴该班会打乒乓球或篮球的学生有24人,会打乒乓球或排球的学生有16人,会打篮球或打排球有22人,∴x+y+z=24+16+22-40=22.∴该班会其中两项运动的学生人数是22.答案:22➱第二讲命题、充分条件与必要条件◎基础巩固1.命题的概念可以判断真假、用文字或符号表述的语句叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.1.互为逆否的两个命题具有相同的真假性,互逆的或互否的两个命题真假性没有关系.2.若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(2)若p是q成立的充分条件,则q是p成立的必要条件.()(3)若p是q成立的充要条件,则可记为p⇔q.()(4)命题“若p,则q”的否命题是“若p,则q”.()答案:(1)√(2)√(3)√(4)×[小题查验]1.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:A[因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.] 2.给出命题:“若实数x,y满足x2+y2=0,则x=y=0”,在它的逆命题、否命题、逆否命题中,真命题的个数是()A.0个B.1个C.2个D.3个解析:D[原命题显然正确,其逆命题为:若x=y=0,则x2+y2=0,显然也是真命题,由四种命题之间的关系知,其否命题、逆否命题也都是真命题.故选D.]3.“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:B[直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=14.(教材改编)已知命题:若m>0,则方程x2+x-m=0有实数根.则其逆否命题为_________.答案:若方程x2+x-m=0无实根,则m≤05.下列命题:①若ac2>bc2,则a>b;②若sinα=sinβ,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是________.解析:对于①,∵ac2>bc2,∴c2>0,∴a>b正确;对于②,sin30°=sin150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④显然正确.答案:①③④◎考点探究考点一命题的四种形式及其关系(自主练透)[题组集训]1.命题p:若a>b,则a-1>b-1,则命题p的否命题为()A.若a>b,则a-1≤b-1B.若a≥b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1解析:C[根据否命题的定义:若原命题为:若p,则q,否命题为:若非p,则非q.∵原命题为:若a>b,则a-1>b-1,∴否命题为:若a≤b,则a-1≤b-1,故选C.]2.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:C[根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故选C.]3.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.1.由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.提醒:当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动.2.命题真假的判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题和其逆否命题的等价关系进行判断.考点二充分、必要条件的判断与应用(多维探究)[命题角度1]充分、必要条件的判定1.设p∶0<x<1,q∶2x≥1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:A[q∶2x≥1,解得x≥0.又p∶0<x<1,则p是q的充分不必要条件.]2.函数f(x)在x=x0处导数存在,若p∶f′(x0)=0,q∶x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:C[函数在x=x0处有导数且导数为0,x=x0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x0为函数的极值点,则函数在x=x0处的导数一定为0,所以p是q的必要不充分条件.]3.已知向量a=(-2,m),b m∈R,则“a⊥(a+2b)”是“m=2”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件解析:B[∵a=(-2,m),b m∈R,∴a+2b=(4,2m)若a⊥(2a+2b),则-8+2m2=0,解得m=±2,故“a⊥(a+2b)”是“m=2”的必要不充分条件.]命题的充分、必要条件的判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:利用A⇒B与非B⇒非A,B⇒A与非A⇒非B,A⇔B与非B⇔非A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[命题角度2]利用充要条件求参数的取值(范围)逻辑推理——充分、必要条件关系中的核心素养充分、必要条件问题中常涉及参数取值(范围)问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,充分体现“逻辑推理”的核心素养.4.已知p:-2≤x≤10,q:(x-a)(x-a-1)>0,若p是q成立的充分不必要条件,则实数a的取值范围是______.[破题关键点]若p是q成立的充分不必要条件,则{x|-2≤x≤10} {x|x>a+1,或x<a},即转化为相对应的集合间的基本关系来求实数a的取值范围.解析:由(x-a)(x-a-1)>0,得x>a+1或x<a,由题意,得{x|-2≤x≤10} {x|x>a+1,或x<a},所以a+1<-2或a>10,即a<-3或a>10.答案:(-∞,-3)∪(10,+∞)[互动探究]本例中,若p:-2<x<10,q:(x-a)(x-a-1)≥0,其他条件不变,则a的取值范围是______.解析:由(x-a)(x-a-1)≥0,得x≥a+1或x≤a,由题意得{x|-2<x<10} {x|x≥a+1,或x≤a}.所以a+1≤-2,或a≥10,即a≤-3,或a≥10.答案:(-∞,-3]∪[10,+∞)(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.(2)注意利用转化的方法理解充分必要条件:若非p是非q的充分不必要(必要不充分、充要)条件,则p是q的必要不充分(充分不必要、充要)条件.◎课时作业[基础训练组]1.命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是()A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0解析:D[写逆否命题只要交换命题的条件与结论,并分别否定条件与结论即可.]2.设a ∈R ,则“a >3”是“函数y =log a (x -1)在定义域上为增函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为函数y =log a (x -1)在定义域(1,+∞)上为增函数,所以a >1,因此“a >3”是“函数y =log a (x -1)在定义域上为增函数”的充分不必要条件.]3.“m =1”是“圆C 1:x 2+y 2+3x +4y +m =0与圆C 2“x 2+y 2=4的相交弦长为23”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[由题意知圆C 1与圆C 2的公共弦所在的直线是3x +4y +m +4=0,故(0,0)到3x +4y +m +4=0的距离d=|m +4|5=4-3=1,即|m +4|=5,解得m =1或m =-9.故m =1是m =1或m =-9的充分不必要条件,故选A.4.已知条件p :|x -4|≤6,条件q :x ≤1+m ,若p 是q 的充分不必要条件,则m 的取值范围是()A .(-∞,-1]B .(-∞,9]C .[1,9]D .[9,+∞)解析:D[由|x -4|≤6,解得-2≤x ≤10,即p :-2≤x ≤10;又q :x ≤1+m ,若p 是q 的充分不必要条件,则1+m ≥10,解得m ≥9.故选D.]5.若x >m 是x 2-3x +2<0的必要不充分条件,则实数m 的取值范围是()A .[1,+∞)B .(-∞,2]C .(-∞,1]D .[2,+∞)解析:C[由x 2-3x +2<0得1<x <2,若x >m 是x 2-3x +2<0的必要不充分条件,则m ≤1,即实数m 的取值范围是(-∞,1].]6.a 2+b 2=1是a sin θ+b cos θ≤1恒成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为a sin θ+b cos θ=a 2+b 2sin (θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故a 2+b 2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.]7.“m >1”是“函数f (x )=3x +m -33在区间[1,+∞)无零点”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为函数f (x )=3x +m -33在区间[1,+∞)上单调递增且无零点,所以f (1)=31+m -33>0,即m +1>32,解得m >12,故“m >1”是“函数f (x )=3x +m -33在区间[1,+∞)无零点的充分不必要条件,故选A.]8.设等比数列{a n }的公比为q ,前n 项和为S n .给出命题s :若|q |=2,则S 6=7S 2,则在命题s 的逆命题、否命题、逆否命题中,错误命题的个数是()A .3B .2C .1D .0解析:B[若|q |=2,则q 2=2,S 6=a 1(1-q 6)1-q =a 1(1-q 2)(1+q 2+q 4)1-q =7·a 1(1-q 2)1-q=7S 2,所以原命题为真,从而逆否命题为真;而当S 6=7S 2时,显然q ≠1,这时a 1(1-q 6)1-q =7·a 1(1-q 2)1-q ,解得q =-1或|q |=2,因此,逆命题为假,否命题为假,故错误命题的个数为2.]9.《左传·僖公十四年》有记载:“皮之不存,毛将焉附?”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的_______条件(将正确的序号填入空格处).①充分条件②必要条件③充要条件④既不充分也不必要条件解析:由题意知“无皮”⇒“无毛”,所以“有毛”⇒“有皮”即“有毛”是“有皮”的充分条件.答案:①10.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.解析:由正弦定理,得a sin A =bsin B,故a ≤b ⇔sin A ≤sin B.答案:充要11.若“x >a ”是“x 2-5x +6≥0”成立的充分不必要条件,则实数a 的取值范围是_________.解析:由x 2-5x +6≥0得x ≥3或x ≤2,若“x >a ”是“x 2-5x +6≥0”成立的充分不必要条件,则a ≥3,即实数a 的取值范围是[3,+∞).答案:[3,+∞)12.已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若非p 是非q 的必要不充分条件,则实数a 的取值范围是________.解析:由2x 2-3x +1≤0,得12≤x ≤1,∴命题p |12≤x ≤由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴命题q 为{x |a ≤x ≤a +1}.非p 对应的集合A |x >1或x q 对应的集合B ={x |x >a +1或x <a }.∵非p 是非q 的必要不充分条件,∴a +1≥1且a ≤12,∴0≤a ≤12,即实数a 的取值范围是0,12.答案:0,12[能力提升组]13祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题,即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.]14.已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且非q 的一个充分不必要条件是非p ,则a 的取值范围是()A.-2,-12B.12,2C .[-1,2],12∪[2,+∞)解析:C [由4x -1≤-1,移项得4x -1+1≤0,通分得x +3x -1≤0,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0.由非q 的一个充分不必要条件是非p ,可知非p 是非q 的充分不必要条件,即p 是q 的必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.设f (x )=x 2+x -a 2+a -3)=-a 2+a +6≥0,1)=-a 2+a +2≥0,2<a <31≤a ≤2∴-1≤a ≤2,故选C.]15.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.解析:对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.答案:①④16.设命题p :2x -1x -1<0,命题q ∶x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.解析:2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x <1,x 2-(2a +1)x +a (a +1)≤0⇒a ≤x ≤a +1.[a ,a +1].≤12,+1≥1,解得0≤a ≤12.答案:0,12。
高考专题一:集合与常用逻辑用语【章节结构图】【知识梳理】一、集合的概念及其运算1.集合的基本概念(1)某些指定的对象集在一起就成为一个集合.集合中每个对象叫做这个集合的元素.集合中的元素的三大要素:、,.(2)不含任何元素的集合叫做空集,记作.(3)集合可分为有限集与无限集.(4)集合常用表示方法:列举法、描述法、大写字母法、图示法及区间法.(5)元素与集合间的关系运算;属于符号记作“”;不属于,符号记作“”.2.集合与集合的关系对于两个集合A与B,如果集合A的都是集合B的元素,就说集合B包含集合A,记作: (读作A包含于B),这时也说集合A是集合B的子集.也可以记作B ⊇A(读作B包含A)①子集有传递性,若A ⊆B,B ⊆C,则有.②空集是任何集合的,即A③真子集:若A ⊆B,且至少有一个元素b∈B,而b ∉A,称A是B的真子集.记作A B(或B A).④若A ⊆B且B ⊆A,那么⑤含n(n∈N*)个元素的集合A的所有子集的个数是:012nn n n nC C C C++++=个.3.集合的运算(1)补集:如果A⊆S,那么A在S中的补集s A={x|,且}.(2)交集:A∩B={x|x∈A,x∈B} (3)并集:A∪B={x|x∈A,x ∈B}(4)交、并、补有如下运算法则全集通常用U表示.U(A∩B )=(U A) (U B);U (A∪B)=(U A) (U B);A∩(B∪C)=(A∩B) (A∩C);A∪(B∩C)=(A∪B) (A∪C)二、常用逻辑用语1.命题:定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n等. (2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题.(3)命题“”的真假判定方式:2. 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题. (2)复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(3)复合命题的真假判断(利用真值表):非真真真假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。
第一章集合与常用逻辑用语1.2 常用逻辑用语命题与量词考点1命题及命题的真假1.(2019·某某四中月考)已知下列语句:①一束美丽的花;②x>3;③2是一个偶数;④若x=2,则x2-5x+6=0。
其中是命题的个数是()。
A.1B.2C.3D.4答案:B解析:①陈述句,但未表示判断;②表示判断,但是缺少必要的陈述条件;③是陈述句且有判断,是命题;④是陈述句,也有判断,是命题。
故选B。
2.(2019·新泰二中期中)下列说法中正确的是()。
A.横坐标为0的点在x轴上B.点M(-3,-5)到x轴的距离为-5C.在平面直角坐标系内,点A(1,-4)和点B(-4,1)表示同一个点D.若a=0,则点P(2,a)在x轴上答案:D解析:A.横坐标为0的点在y轴上,故A错误;B.点M(-3,-5)到x轴的距离为|-5|=5,故B错误;C.在平面直角坐标系内,点A(1,-4)和点B(-4,1)表示不同的点,故C错误;D.若a=0,则点P(2,a)在x轴上,故D正确。
故选D。
3.(2019·某某三中月考)下列命题是真命题的是()。
A.4∈{2,3}B.1既是奇数又是素数C.2即是偶数又是素数D.周长或面积相等的两个三角形全等答案:C解析:A.4∉{2,3},故A错;B中1不是素数,故B错;C中2是偶数也是素数,故C正确;D中周长或面积相等的两个三角形不一定全等,所以D错。
故选C。
4.已知非空集合M∩P=⌀,有下列命题:①M的元素都不是P的元素;②M中有属于P的元素;③M 中没有P的元素;④M中元素不都是P的元素。
其中,真命题的个数为()。
A.1个B.2个C.3个D.4个答案:B解析:∵M,P均为非空集合,且M∩P=⌀,∴M中不存在P中元素,故①③为真命题,②④为假命题。
选B。
5.(2019·海淀区实验中学调考)有下列语句:①集合{a,b}有4个子集;②x2-4≤0;③今天天气真好啊!④若A∪B=A∩B,则A=B。
1.2 常用逻辑用语1.2.1 命题教材要点要点一 命题1.命题的概念:可以____________________的语句叫作命题.2.命题的分类(1)真命题:________的命题叫作真命题.(2)假命题:________的命题叫作假命题.(3)猜想:________________的命题可以叫作猜想.状元随笔 (1)命题是一个陈述句,疑问句或祈使句等均不是命题,如“你今天快乐吗?”“请坐下!”等都不是命题,它们分别是疑问句和祈使句;(2)命题不一定是正确的,但可以作出正确与否的判断,常说的定理、公理等都是正确的,所以是真命题.可以作出判断,只是暂时作不出的陈述句也是命题,如著名的哥德巴赫猜想就是一个命题.要点二 命题的条件和结论如果将命题写成“若p ,则q ”的形式,就将p 叫作命题的条件,q 叫作命题的结论. 命题“若p ,则q ”为真,则记作p ⇒q ,读作“p 推出q ”;命题“若p ,则q ”为假,则记作pq ,读作“p 推不出q ”.状元随笔 (1)命题的否定就是否定命题的结论,它仍然是一个命题;(2)如果将命题的条件和结论交换一个位置,所得到的命题称为原来命题的逆命题.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)并非任何语句都是命题,只有能判断真假的陈述句才是命题.( )(2)一个命题不是真命题就是假命题.( )(3)有的命题只有结论没有条件.2.(多选)下列语句中是命题的是( )A.空集是任何集合的真子集B.请起立!C.单位向量的模为1D.你是高二的学生吗?3.下列命题是真命题的是( )A.所有素数都是奇数B.若a>b,则a-6>b-6成立C.对任意的x∈N,都有x3>x2成立D.方程x2+x+1=0有实根4.命题“若a>1,则a>0”的逆命题是________________.题型1 命题及其真假的判断例1 判断下列语句是否为命题?若是,请判断其真假,并说明理由.(1)求证√3是无理数;(2)若x∈R,则x2+4x+4≥0;(3)你是高一的学生吗?(4)并非所有的人都喜欢吃苹果;(5)若xy是有理数,则x,y都是有理数;(6)60x+9>4.方法归纳判断一个语句是否是命题,关键是看它是否符合两个条件:“是陈述句”“可以判断真假”,祈使句、疑问句、感叹句等都不是命题.判断命题的真假,往往要综合运用日常生活和生产实践中的知识经验或数学的知识方法.跟踪训练1 判断下列命题的真假,并说明理由.(1)正方形既是矩形又是菱形;(2)当x=4时,2x+1<0;(3)若x=3或x=7,则(x-3)(x-7)=0;(4)一个等比数列的公比大于1时,该数列一定为递增数列.题型2 命题结构的分析与转化例2 把下列命题改写成“若p,则q”的形式,并判断真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac>bc时,a>b;(4)角的平分线上的点到角的两边的距离相等.方法归纳(1)将命题改写为“若p,则q”形式的方法及原则(2)命题改写中的注意点若命题不是以“若p,则q”这种形式给出时,首先要确定这个命题的条件p和结论q,进而再写成“若p,则q”的形式.跟踪训练2 把下列命题改写成“若p,则q”的形式:(1)各位数字之和能被9整除的整数,可以被9整除;(2)能被6整除的数既能被3整除也能被2整除;(3)钝角的余弦值是负数.题型3 写出一个命题的否定和逆命题例3 写出下列命题的否定和逆命题,并判断它们的真假.(1)正数的平方根都不等于0;(2)当x=-2时,x2-x-6=0;(3)实数的平方是非负数;(4)若x,y都是奇数,则x+y是偶数.方法归纳(1)如果一个命题不是“若p,则q”的形式,则改写成这个形式后更有利于对它进行分析;(2)将一个命题的条件和结论交换位置,就变为这个命题的逆命题;将一个命题的条件不变而否定结论,就变为这个命题的否定.跟踪训练3 写出下列命题的否定和逆命题,并判断它们的真假.(1)若a=b,则a2=b2;(2)若|2x+1|≥1,则x2+x>0.课堂十分钟1.下列语句为命题的是( )A.对角线相等的四边形B.同位角相等C.x≥2D.x2-2x-3<02.下列命题中的真命题是( )A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角3.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是( )A.4B.2C.0D.-34.命题“若x2<1,则-1<x<1”的逆命题是________.5.将下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当a>-1时,方程ax2+2x-1=0有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知x,y为非零自然数,当y-x=2时,y=4,x=2.1.2 常用逻辑用语1.2.1 命题要点一1.判断成立或不成立2.(1)成立(2)不成立(3)暂时不知道真假[基础自测]1.答案:(1)√(2)√(3)×2.解析:AC是命题.答案:AC3.答案:B4.答案:若a>0,则a>1题型探究·课堂解透例1 解析:(1)是祈使句,不是命题.(2)因为x2+4x+4=(x+2)2≥0,所以可以判断其真假,是命题,而且是真命题.(3)是疑问句,不是命题.(4)是命题,而且是真命题,有的人喜欢吃苹果,有的人不喜欢吃苹果.(5)是命题,而且是假命题,如√7×(-√7)=-7是有理数,但√7和-√7都是无理数.(6)不是命题.这种含有未知数的语句,无法确定未知数的取值能否使不等式成立.跟踪训练1 解析:(1)是真命题.由正方形的定义知,正方形既是矩形又是菱形.(2)是假命题.x=4时,不满足2x+1<0.(3)是真命题.x=3或x=7能得到(x-3)(x-7)=0.(4)是假命题.因为当首项a1<0,公比q>1时,该数列为递减数列.例2 解析:(1)若一个数是实数,则它的平方是非负数.真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形,假命题.(3)若ac>bc,则a>b.假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等.真命题.跟踪训练2 解析:(1)若一个整数的各位上数字之和能被9整除,则这个整数可以被9整除.(2)若一个数能被6整除,则这个数既能被3整除也能被2整除.(3)若一个角是钝角,则这个角的余弦值是负数.例3 解析:(1)命题p:“若a为正数,则a的平方根不等于0”,¬p:“若a为正数,则a的平方根不存在或等于0”,是真命题;逆命题:“若a的平方根不等于0,则a为正数”,是真命题.(2)命题p:“若x=-2,则x2-x-6=0”,¬p:“若x=-2,则x2-x-6≠0”,是假命题;逆命题:“若x2-x-6=0,则x=-2”,是假命题.(3)命题p:“若x∈R,则x2≥0”,¬p:“若x∈R,则x2<0”,是假命题;逆命题:“若x2≥0,则x∈R”,是真命题.(4)¬p:“若x,y都是奇数,则x+y不是偶数”,是假命题.逆命题:“若x+y是偶数,则x,y都是奇数”,是假命题.跟踪训练3 解析:(1)¬p:“若a=b,则a2≠b2”,是假命题.逆命题:若a2=b2,则a=b,该命题是假命题.(2)¬p:“若|2x+1|≥1,则x2+x≤0”,是假命题.逆命题:若x2+x>0,则|2x+1|≥1,该命题是真命题.[课堂十分钟]1.解析:A、C、D不能判断真假,所以不是命题,故选B.答案:B2.解析:由平面几何知识可知A、B、D三项都是错误的.答案:C3.解析:方程无实根时,应满足Δ=a2-4<0.故a=0时适合条件.答案:C4.答案:若-1<x<1,则x2<15.解析:(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若a>-1,则方程ax2+2x-1=0有两个不等实根,是假命题.(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知x,y为非零自然数,若y-x=2,则y=4,x=2,是假命题.。
专题一 集合与常用逻辑用语第二讲 常用逻辑用语一、选择题1.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(2018北京)设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 3.(2018天津)设x ∈R ,则“38x >”是“||2x >” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(2018上海)已知a R ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件5.(2017天津)设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.(2017山东)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a b <.下列命题为真命题的是A .p q ∧B .p q ⌝∧C .p q ⌝∧D .p q ⌝⌝∧7.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >” 是“465+2S S S >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件9.(2016年山东)已知直线,a b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面β相交”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(2016年浙江高考)已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 11.(2015重庆)“1x =”是“2210x x -+=”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.(2015浙江)设a ,b 是实数,则“0a b +>”是“0ab >”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2015安徽)设p :3x <,q :13x -<<,则p 是q 成立的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件14.(2015湖北)命题“000(0,),ln 1x x x ∃∈+∞=-”的否定是A .(0,),ln 1x x x ∀∈+∞≠-B .(0,),ln 1x x x ∀∉+∞=-C .000(0,),ln 1x x x ∃∈+∞≠-D .000(0,),ln 1x x x ∃∉+∞=-15.(2015四川)设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.(2015山东)设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是A .若方程20x x m +-=有实根,则0m >B .若方程20x x m +-=有实根,则0m ≤C .若方程20x x m +-=没有实根,则0m >D .若方程20x x m +-=没有实根,则0m ≤17.(2015陕西)“sin cos αα=”是“cos20α=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件18.(2015北京)设,a b 是非零向量,“||||⋅=a b a b ”是“a ∥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件19.(2015福建)“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件20.(2014新课标2)函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件21.(2014广东)在ABC ∆中,角A ,B ,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件22.(2014福建)命题“[)30,.0x x x ∀∈+∞+≥”的否定是A .()30,.0x x x ∀∈+∞+<B .()3,0.0x x x ∀∈-∞+≥C .[)30000,.0x x x ∃∈+∞+<D .[)30000,.0x x x ∃∈+∞+≥23.(2014浙江)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件24.(2014湖南)已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④25.(2014陕西)原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A .真,真,真B .假,假,真C .真,真,假D .假,假,假26.(2014江西)下列叙述中正确的是A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤B .若,,a b c R ∈,则22""ab cb >的充要条件是""a c >C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ27.(2013安徽)“0a ≤”是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件28.(2013北京)“ϕπ=”是“曲线()sin 2y x ϕ=+过坐标原点的”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 29.设z 是复数, 则下列命题中的假命题是A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <30.(2013浙江)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件31.(2013重庆)命题“对任意x R ∈,都有20x ≥”的否定为A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x < 32.(2013四川)设x Z ∈,集合A 是奇数集,集合B 是偶数集,若命题p :,2x A x B ∀∈∈,则A .p ⌝:,2x A xB ∀∈∉ B .p ⌝:2x A x B ∀∉∉,C .p ⌝:2x A x B ∀∉∈,D .p ⌝:2x A x B ∀∈∉,33.(2013湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()()p q ⌝∨⌝B . ()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨ 34.(2012湖北)命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q 35.(2012湖南)命题“若4πα=,则tan 1α=”的逆否命题是 A .若4πα≠,则tan 1α≠ B .若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D .若tan 1α≠,则4πα=36.(2012安徽)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分不必要条件37.(2012福建)下列命题中,真命题是A .00,0xx R e ∃∈… B .2,2x x R x ∀∈> C .0a b +=的充要条件是1a b=- D .1a >,1b >是1ab >的充分条件 38.(2012北京)设,a b ∈R ,“0a =”是‘复数i a b +是纯虚数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件39.(2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数40.(2012山东)设0>a 且1≠a ,则“函数()x a x f =在R 上是减函数”是“()()32x a x g -=在R 上是增函数”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件41.(2012山东)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真42.(2011山东)已知,,a b c R ∈,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是A .若3a b c ++≠,则222a b c ++<3B .若3a b c ++=,则222a b c ++<3C .若3a b c ++≠,则222a b c ++≥3D .若222a b c ++≥3,则3a b c ++=43.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈ 13:||1[0,)3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈ 其中真命题是A .14,p pB .13,p pC .23,p pD .24,p p44.(2011陕西)设,a b 是向量,命题“若=-a b ,则=a b ”的逆命题是A .若≠a b ,则≠a bB .若=-a b ,则≠a bC .若≠a b ,则≠a bD .若=a b ,则=-a b45.(2011湖南)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件46.(2011安徽)命题“所有能被2整聊的整数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的数都是偶数D .存在一个能被2整除的数都不是偶数47.(2010新课标)已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+ 在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是A .1q ,3qB .2q ,3qC .1q ,4qD .2q ,4q48.(2010辽宁)已知a >0,则0x 满足关于x 的方程ax b =的充要条件是A .220011,22x R ax bx ax bx ∃∈-≥- B .220011,22x R ax bx ax bx ∃∈-≤- C .220011,22x R ax bx ax bx ∀∈-≥- D .220011,22x R ax bx ax bx ∀∈-≤-二、填空题49.(2018北京)能说明“若a b >,则11a b<”为假命题的一组a ,b 的值依次为____. 50.(2013四川)设n P P P ,,,⋯⋯21为平面a 内的n 个点,在平面a 内的所有点中,若点P 到点n P P P ,,,⋯⋯21的距离之和最小,则称点P 为点12n P P P ⋅⋅⋅,,,的一个“中位点”,例如,线段AB 上的任意点都是端点A ,B 的中位点,现有下列命题:①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是________________(写出所有的真命题的序号).51.(2011陕西)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = .52.(2010安徽)命题“存在x R ∈,使得2250x x ++=”的否定是 .。