人教A版高中数学计数原理与概率、随机变量及其分布 9.9 离散型随机变量的均值与方差、正态分布 【教师版】
- 格式:doc
- 大小:102.50 KB
- 文档页数:5
第九章概率统计必修二统计、概率选择性必修三第六章计数原理第七章随机变量及其分布第八章成对数据的统计分析一. 两个计数原理、排列与组合1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n 步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3. 排列组合定义(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的的个数,叫做从n个不同元素中取出m个元素的排列数,用表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的的个数,叫做从n个不同元素中取出m个元素的组合数,用表示.4. 排列数与组合数的公式与性质公式(1)A m n==n!(n-m)!(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=性质(1)0!=;A n n=(2)C m n=C n-mn;C m n+1=(3) (不定系数转为定系数)kC n k==(0≤k≤n,k∈N)题组1.1. 有5个编了号的抽屉,要放进3本不同的书,不同的方法有种2.5人分到三家医院,每个医院至少一人,有___________种分法.3. 3名女生和4名男生排成一排,在下列情形中各有多少种?列式并写出结果.(1)如果女生全排在一起_________________(2)如果女生都不相邻_________________(3)如果女生不站两端_________________ (4)其中甲必须排在乙前面(可不邻) _________________(5)其中甲不站左端,乙不站右端_________________4.证明结论:kC n k=nC n−1k−10≤k≤n,k∈N二. 二项式定理1.二项式定理2.(1)C0n=,C n n=C m n+1=+ .(2)C m n=.(3)当n为偶数时,二项式系数中_____最大;当n为奇数时,二项式系数中以______和________最大.(4)二项系数和:C0n+C1n+…+C n n=.C1n+C3n+C5n+…=C0n+C2n+C4n+…=________.题组2. 回归课本1.(1+x)2+(1+x)3+⋯+(1+x)9的展开式中2x的系数是()A. 60B. 80C. 84D. 1202.求(9x3√x )n展开式中第3项与第5项的二项式系数相等,则展开式的常数项为;有理项有_______项。
高三 一轮复习 第九章 计数原理与概率、随机变量及其分布9.2 排列与组合 学案【考纲传真】1.理解排列、组合的概念.2.理解排列数公式、组合数公式.3.能利用公式解决一些简单的实际问题. 【知识扫描】知识点1 排列与组合的概念1.A mn =n (n -1)(n -2)…(n -m +1)=n !n -m !. 2.A n n =n !. 知识点4 组合数公式C mn =A m n A m m=n n -n -n -m +m !=n !m !n -m !.知识点5 组合数的性质1.C m n =C n-mn. 2.C m n +C m -1n =C m n +1.1.必会结论;C m m +C m m +1+…+C m n -1+C m n =C m +1n +1.2.必知方法;解决排列组合问题“四项基本原则”:(1)特殊优先原则:如果问题中有特殊元素或特殊位置,优先考虑这些特殊元素或特殊位置.(2)先取后排原则:在既有取出又需要对取出的元素进行排列时,要先取后排,即完整地把需要排列的元素取出后,再进行排列.(3)正难则反原则:当直接求解困难时,采用间接法解决问题.(4)先分组后分配原则:在分配问题中如果被分配的元素多于位置,这时要先进行分组,再进行分配.【学情自测】1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)所有元素完全相同的两个排列为相同排列.()(2)两个组合相同的充要条件是其中的元素完全相同.()(3)若组合式C x n=C m n,则x=m成立.()(4)(n+1)!-n!=n·n!()2.用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为()A.8B.24C.48 D.1203.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种4.(2014·大纲全国卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种5.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.参考答案1.【解析】(1)错误.相同排列的元素相同且排列顺序相同.(2)正确.组合不要求顺序.(3)错误.x=m或x=n-m.(4)正确.(n+1)!-n!=(n+1)n!-n!=n·n!【答案】(1)×(2)√(3)×(4)√2.【解析】先安排个位数字有A12种方法,再安排其他位置的数字有A34种方法,则无重复数字的四位偶数共有A12A34=48(个),故选C.【答案】 C3.【解析】可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步乘法计数原理满足条件的排法共A35=60(种).【答案】 B4.【解析】由题意知,选2名男医生、1名女医生的方法有C26C15=75(种).【答案】 C5.【解析】当有1名女生时,有2C34种选派方案,当有2名女生时,有C24种选派方案,因此共有2C34+C24=14种不同的选派方案.【答案】14。
人教版高中数学A版必修必修1 第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2 第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系必修3 第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型必修4 第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5 第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式人教版高中数学A版选修选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图选修2-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线选修2-2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式。
第7讲 离散型随机变量及其分布列1.离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示.所有取值可以一一列出的随机变量,称为离散型随机变量.2.离散型随机变量的分布列及其性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n ),则表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)离散型随机变量的分布列的性质 ①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 3.常见离散型随机变量的分布列 (1)两点分布:若随机变量X其中p =P (X =1)称为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=C k M C n -k N -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *[做一做]1.袋中共放有6个仅颜色不同的小球,其中3个红球,3个白球,每次随机任取1个球,共取2次,则下列不可作为随机变量的是( )A .取到红球的次数B .取到白球的次数C .2次取到的红球总数D .取球的总次数 答案:D1.辨明两个易误点(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的.(2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.2.分布列的三种求法(1)由统计数据得到离散型随机变量的分布列; (2)由古典概型求出离散型随机变量的分布列;(3)由互斥事件的概率、相互独立事件同时发生的概率及n 次独立重复试验有k 次发生的概率求离散型随机变量的分布列.[做一做]2则k 的值为( ) A.12 B .1 C .2D .3解析:选B.由k n +k n +…+kn =1,∴k =1.3.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为________.解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:27220考点一__离散型随机变量的分布列的性质______求:(1)2X+1(2)|X-1|的分布列.[解]由分布列的性质知:0.2+0.1+0.1+0.3+m=1,解得m=0.3.首先列表为:从而由上表得两个分布列为:(1)2X+1的分布列:(2)|X-1|的分布列:[规律方法]离散型随机变量分布列性质的应用:(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负;(2)若ξ为随机变量,则2ξ+1,|ξ-1|等仍然为随机变量,求它们的分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.1.随机变量ξ其中a ,b ,c 成等差数列,则P (|ξ|=1)=________,公差d 的取值范围是________. 解析:∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|ξ|=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,∴-13≤d ≤13.答案:23 ⎣⎡⎦⎤-13,13 考点二__离散型随机变量的分布列(高频考点)____离散型随机变量的分布列是高考命题的热点,多以解答题的形式出现,试题难度不大,多为容易题或中档题.高考对离散型随机变量分布列的考查有以下三个命题角度: (1)与排列、组合有关的分布列的求法; (2)与互斥事件有关的分布列的求法;(3)与独立事件(或独立重复试验)有关的分布列的求法.(下一讲内容)(2014·高考江苏卷节选)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P .(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1,x 2,x 3,随机变量X 表示x 1,x 2,x 3中的最大数.求X 的概率分布.[解] (1)取到的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以P =C 24+C 23+C 22C 29=6+3+136=518. (2)随机变量X 所有可能的取值为2,3,4.{X =4}表示的随机事件是“取到的4个球是4个红球”, 故P (X =4)=C 44C 49=1126;{X =3}表示的随机事件是“取到的4个球是3个红球和1个其他颜色的球,或3个黄球和1个其他颜色的球”,故P (X =3)=C 34C 15+C 33C 16C 49=20+6126=1363;于是P (X =2)=1-P (X =3)-P (X =4)=1-1363-1126=1114.所以随机变量X 的概率分布如下表:[规律方法] 求离散型随机变量的分布列的三个步骤:(1)找:找出随机变量X 的所有可能取值x i (i =1,2,…,n ),并确定X =x i 的意义;(2)求:借助概率的有关知识求出随机变量X 取每一个值的概率P (X =x i )=p i (i =1,2,…,n );(3)列:列出表格并检验所求的概率是否满足分布列的两条性质.2.(2015·安徽省“江南十校”联考)某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列.解:(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n=12(n -6)n (n -1), 则12(n -6)n (n -1)≥12, 化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为考点三__超几何分布__________________________一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列.[解] (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3,P (X =k )=C k 5C 3-k 5C 310,k =0,1,2,3.于是可得其分布列为在本例条件下,若从袋中任意摸出4个球,记得到白球的个数为X ,求随机变量X 的分布列.解:X 服从超几何分布,其中N =10,M =5,n =4,P (X =k )=C k 5C 4-k 5C 410,k =0,1,2,3,4,于是可得其分布列为[规律方法] 超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出;(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.3.为振兴旅游业,四川省面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(1)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;(2)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量ξ,求ξ的分布列.解:(1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.设事件B 为“采访该团3人,恰有1人持金卡且持银卡者少于2人”,事件A 1为“采访该团3人,1人持金卡,0人持银卡”,事件A 2为“采访该团3人,1人持金卡,1人持银卡”,则P (B )=P (A 1)+P (A 2)=C 19C 221C 336+C 19C 16C 121C 336=934+27170=3685. 所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是3685.(2)ξ的可能取值为0,1,2,3,且ξ服从参数为N =9,M =6,n =3的超几何分布,故P (ξ=0)=C 06C 33C 39=184,P (ξ=1)=C 16C 23C 39=314,P (ξ=2)=C 26C 13C 39=1528,P (ξ=3)=C 36C 03C 39=521.所以ξ的分布列为交汇创新——离散型随机变量的概率与平面向量的交汇(2013·高考江西卷) 小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.[解] (1)从8个点中任取两点为向量终点的不同取法共有C 28=28(种),当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为E (X )=(-2)×114+(-1)×514+0×27+1×27=-314.[名师点评] 离散型随机变量的概率与向量、不等式、方程等知识交汇是近年来命题的热点,解决本类问题的关键就是将向量、不等式或方程问题进行转化,使之成为解决离散型随机变量的概率问题的条件.1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X ,则X 所有可能取值的个数是( )A .5B .9C .10D .25解析:选B.X 的所有可能取值为2,3,4,5,6,7,8,9,10,共9个.2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13D.23解析:选C.设X 的分布列为即“X =0”表示试验失败,“X =1”表示试验成功,设失败率为p ,则成功率为2p .由p +2p =1,得p =13,故应选C.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A.14B.12C.34D.23解析:选C.依题意知,14+m +14=1,则m =12.故P ⎝⎛⎭⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34. 4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则下列概率中等于C 47C 68C 1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:选C.X 服从超几何分布,P (X =k )=C k 7C 10-k 8C 1015,故k =4,故选C.5.若随机变量η的分布列为则当P (η<x )=0.8时,实数x 的取值范围是( )A .x ≤2B .1≤x ≤2C .1<x ≤2D .1<x <2解析:选C.由随机变量η的分布列知:P (η<-1)=0.1,P (η<0)=0.3,P (η<1)=0.5,P (η<2)=0.8,则当P (η<x )=0.8时,实数x 的取值范围是1<x ≤2.6.若P (ξ≤x 2)=1-β,P (ξ≥x 1)=1-α,其中x 1<x 2, 则P (x 1≤ξ≤x 2)等于________.解析:由分布列性质可有:P (x 1≤ξ≤x 2)=P (ξ≤x 2)+P (ξ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β).答案:1-(α+β)7.若离散型随机变量X则常数c =________,P (X =解析:依分布列的性质知,⎩⎪⎨⎪⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,解得c =13,故P (X =1)=3-8×13=13.答案:13 138.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数X 的分布列为________.解析:X 的所有可能值为0,1,2.P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.∴X 的分布列为答案:9.(2015·长沙调研)试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列.解:(1)P (当天商店不进货)=P (当天商品销售量为0件)+P (当天商品销售量为1件)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (当天商品销售量为1件)=520=14;P (X =3)=P (当天商品销售量为0件)+P (当天商品销售量为2件)+P (当天商品销售量为3件)=120+920+520=34.所以X 的分布列为10.(2014·高考重庆卷节选)4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列.(注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数字的中位数)解:(1)由古典概型的概率计算公式知所求概率为p =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742, P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112.故X 的分布列为1.在一次购物活动中,假设每10张券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获得价值10元的奖品;其余6张没有奖.某顾客从这10张券中任取2张.(1)求该顾客中奖的概率;(2)求该顾客获得的奖品总价值X (元)的概率分布.解:(1)该顾客中奖的概率p =1-C 04C 26C 210=1-1545=23.(2)X 的所有可能取值为0,10,20,50,60.P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X=20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故X 的概率分布如下表所示:2.2014年8月22日是邓小平同志110周年诞辰,为纪念邓小平同志110周年诞辰,促进广安乃至四川旅游业进一步发展,国家旅游局把2014年“5.19”中国旅游日主会场放在四川广安.为迎接今年旅游日的到来,某旅行社组织了14人参加“四川旅游常识”知识竞赛,每人回答3根据上表信息解答以下问题:(1)从14人中任选3人,求3人答对题目个数之和为6的概率;(2)从14人中任选2人,用X 表示这2人答对题目个数之和,求随机变量X 的分布列.解:(1)记“3人答对题目个数之和为6”为事件A ,则P (A )=C 35+C 12C 15C 14+C 13C 24C 314=10+40+1814×26=1791, 即3人答对题目个数之和为6的概率为1791.(2)依题意可知X 的所有可能取值为0,1,2,3,4,5,6. 则P (X =0)=C 23C 214=37×13=391,P (X =1)C 13C 12C 214=67×13=691,P (X =2)=C 22+C 13C 15C 214=167×13=1691, P (X =3)=C 13C 14+C 12C 15C 214=227×13=2291, P (X =4)=C 25+C 12C 14C 214=187×13=1891, P (X =5)=C 15C 14C 214=207×13=2091,P (X =6)=C 24C 214=67×13=691.从而X 的分布列为3.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球为止,每个球在每一次被取出的机会是相等的,用ξ表示终止时所需要的取球次数.(1)求袋中原有白球的个数; (2)求随机变量ξ的概率分布; (3)求甲取到白球的概率.解:(1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6,所以n (n -1)=6,解得n =3或n =-2(舍去). 即袋中原有3个白球.(2)由题意知ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以取球次数ξ的概率分布如下表所示:(3)因为甲先取,所以甲只可能在第1次、第3次和第5次取球. 设“甲取到白球”的事件为A ,则P (A )=P (ξ=1或ξ=3或ξ=5).因为事件“ξ=1”“ξ=3”“ξ=5”两两互斥, 所以P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=37+635+135=2235.。
离散型随机变量及其分布列易错点主标题:离散型随机变量及其分布列易错点副标题:从考点分析离散型随机变量及其分布列易错点,为学生备考提供简洁有效的备考策略。
关键词:离散型随机变量,分布列,超几何分布,易错点难度:3重要程度:4内容:【易错点】1.离散型随机变量(1)抛掷均匀硬币一次,出现正面的次数是随机变量.(√)(2)离散型随机变量的分布列中,随机变量取各个值的概率之和可以小于1.(×)(3)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√)2.分布列的性质及两个特殊的概率分布(4)如果随机变量X的分布列由下表给出:(5)从4名男演员和3名女演员中选出4人,其中女演员的人数X服从超几何分布.(√)(6)(教材习题改编)已知随机变量X的分布列为P(X=i)=i2a(i=1,2,3,4),则P(2<X≤4)=0.7.(√)[剖析]1.离散型随机变量的特点一是在试验之前不能断言随机变量取什么值,即具有随机性;二是在大量重复试验中能按一定统计规律取值的变量,即存在统计规律性,如(1)、(3).2.分布列的两条性质离散型随机变量的分布列指出了随机变量X的取值范围以及取各值的概率,如(6);要理解两种特殊的概率分布——两点分布与超几何分布,如(4)、(5);并善于灵活运用两性质:一是p i≥0(i=1,2,…);二是p1+p2+…+p n=1检验分布列的正误,如(2).[典例]盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个.第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取得球的标号之和为ξ.(1)求随机变量ξ的分布列;(2)求随机变量ξ的数学期望.[思路点拨](1)注意两次取球是相互独立的,编号之和的可能取值为2,3,4,6,7,10.(2)利用数学期望公式求解.[解析] (1)由题意可得,随机变量ξ的取值是2,3,4,6,7,10.且P(ξ=2)=0.3×0.3=0.09,P(ξ=3)=C12×0.3×0.4=0.24,P(ξ=4)=0.4×0.4=0.16,P(ξ=6)=C12×0.3×0.3=0.18,P(ξ=7)=C12×0.4×0.3=0.24,P(ξ=10)=0.3×0.3=0.09.故随机变量ξ的分布列为(2)Eξ=2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.[名师点评] 1.本题由于离散型随机变量ξ的取值情况较多,极易发生对随机变量取值考虑不全而导致解题错误.2.此类问题还极易发生如下错误:虽然弄清随机变量的所有取值,但对某个取值考虑不全.3.避免以上错误发生的有效方法是验证随机变量的概率和是否为1.。
必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高三一轮 第九章 计数原理与概率、随机变量及其分布 9.9 离散型随机变量的均值与方差、正态分布(检测教师版)时间:50分钟 总分:70分班级: 姓名:一、 选择题(共6小题,每题5分,共30分)1.已知某一随机变量X 的概率分布列如下,且E (X )=6.3,则a 的值为( )X 4 a 9 P0.50.1bA .5B .6C .7D .8【答案】C【解析】由分布列性质知:0.5+0.1+b =1,∴b =0.4,∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.2.若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( )A .3×2-2B .2-4C .3×2-10D .2-8【答案】C【解析】 由题意知{ np =6,np-p =3,解得⎩⎨⎧p =12,n =12,∴P (X =1)=C 112×12×⎝⎛⎭⎫1-1211=12212=3×2-10. 3.(2015·湖南高考)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )A .2 386B .2 718C .3 413D .4 772附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4.【答案】C【解析】由P (-1<X ≤1)=0.682 6,得P (0<X ≤1)=0.341 3,则阴影部分的面积为0.341 3,故估计落入阴影部分的点的个数为10 000×0.341 31×1=3 413,故选C.4.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400【答案】B【解析】记不发芽的种子数为ξ,则ξ~B (1 000,0.1),∴E (ξ)=1 000×0.1=100.又X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=200.5.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%, P (μ-2σ<ξ<μ+2σ)=95.44%.) A.4.56% B.13.59% C.27.18% D.31.74% 【答案】B【解析】由题意,知P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=95.44%-68.26%2=13.59%.6.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E (ξ)为( )A.24181 B.26681 C.27481D.670243 【答案】A【解析】由题意知ξ的所有可能取值为2,4,6.且P (ξ=2)=⎝⎛⎭⎫232+⎝⎛⎭⎫132=59,P (ξ=4)=C 12×13×23⎣⎡⎦⎤⎝⎛⎭⎫232+⎝⎛⎭⎫132=2081,P (ξ=6)=C 12C 12×13×23×13×23=1681,则E (ξ)=2×59+4×2081+6×1681=26681. 二、填空题(共4小题,每题5分,共20分)7.已知随机变量ξ服从正态分布N (0,1),若P (ξ>1)=a (a 为常数),则P (-1≤ξ≤0)=________. 【答案】12-a【解析】因为P (ξ<-1)=P (ξ>1)=a ,所以P (-1≤ξ≤0)=1-2a 2=12-a .8.一射击测试每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为23,则此人得分的数学期望与方差分别为________,________. 【答案】 20 2003【解析】记此人三次射击击中目标X 次,得分为Y 分,则X ~B ⎝⎛⎭⎫3,23,Y =10X ,∴E (Y )=10E (X )=10×3×23=20,D (Y )=100D (X )=100×3×23×13=2003.9.(2016·四川,12)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________. 【答案】32【解析】由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率为P =1-12×12=34,∵2次独立试验成功次数X 满足二项分布X ~B ⎝⎛⎭⎫2,34,则E (X )=2×34=32. 10.假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p 0,则p 0=________. 【答案】0.977 2【解析】由X ~N (800,502),知μ=800,δ=50,又P (700<X ≤900)=0.954 4,则P (800<X ≤900)=12×0.954 4=0.477 2,∴P (X ≤900)=P (X ≤800)+P (800<X ≤900)=0.5+0.477 2=0.977 2,故P 0=P (X ≤900)=0.977 2.三、解答题(共2小题,每题10分,共20分)11.某投资公司在2016年年初准备将1 000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率分别为79和29;项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,也可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为35、13和115.针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.【答案】见解析【解析】 (1)若按“项目一”投资,设获利为ξ1万元.则ξ1的分布列为ξ1 300 -150 P7929∴E (ξ1)=300×79+(-150)×29=200(万元).若按“项目二”投资,设获利ξ2万元,则ξ2的分布列为:ξ2 500 -300 0 P3513115∴E (ξ2)=500×35+(-300)×13+0×115=200(万元).D (ξ1)=(300-200)2×79+(-150-200)2×29=35 000,D (ξ2)=(500-200)2×35+(-300-200)2×13+(0-200)2×115=140 000,所以E (ξ1)=E (ξ2),D (ξ1)<D (ξ2),这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.12.(2013·湖北,20)假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502) 的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p 0. (1)求p 0的值;(参考数据:若X ~N (μ,σ2),有P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4.)(2)某客运公司用A ,B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次, A ,B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆,若每天要以不小于p 0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆? 【答案】见解析【解析】 (1)由于随机变量X 服从正态分布N (800,502),故有μ=800,σ=50,P (700<X ≤900)=0.954 4. 由正态分布的对称性,可得p 0=P (X ≤900)=P (X ≤800)+P (800<X ≤900) =12+12P (700<X ≤900)=0.977 2. (2)设A 型、B 型车辆的数量分别为x ,y 辆,则相应的营运成本为1 600x +2 400y . 依题意,x ,y 还需满足:x +y ≤21,y ≤x +7,P (X ≤36x +60y )≥p 0. 由(1)知,p 0=P (X ≤900),故P (X ≤36x +60y )≥p 0等价于36x +60y ≥900.于是问题等价于求满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N ,且使目标函数z =1 600x +2 400y 达到最小的x ,y .作可行域如图阴影部分所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上截距z2 400最小,即z 取得最小值.故应配备A 型车5辆,B 型车12辆.。