2019届高三数学备考冲刺140分问题21复杂数列的求和问题含解析
- 格式:doc
- 大小:678.78 KB
- 文档页数:9
问题20 由复杂递推关系式求解数列的通项公式问题一、考情分析递推公式是给出数列的一种重要方法,常出现在客观题压轴题或解答题中,难度中等或中等以上.利用递推关系式求数列的通项时,通常将所给递推关系式进行适当的变形整理,如累加、累乘、待定系数等,构造或转化为等差数列或等比数列,然后求通项. 二、经验分享(1) 已知S n ,求a n 的步骤当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1;(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式. 整理得:,(叠乘法)因为,所以3221a a =, 4332a a =,…, 112n n a n a n --=-, 相乘得21na n a =-,且当n =1、2时,满足此式, 所以.(三) 用构造法求数列的通项【例3】【江苏省泰州中学2018届高三12月月考2】已知数列{}n a 满足: 11a =,,( *n N ∈),则数列{}n a 的通项公式为__________.【分析】变形为,构造新数列求解.【答案】121n na =- 【解析】由得:,变形得:,所以1{1}na +是以2为公比的等比数列,所以,所以121n n a =-. 【点评】数列是一种特殊的函数,通过递推公式写出数列的前几项再猜想数列的通项时,要验证通项的正确性. 易出现的错误是只考虑了前3项,就猜想出n a .用构造法求数列的通项,要仔细观察递推等式,选准要构造的新数列的形式,再确定系数.【小试牛刀】已知数列}{}{n n b a ,满足211=a ,1=+n n b a , ,*∈N n ,则=2015b .【答案】20152016.(四) 利用n S 与n a 的关系求数列的通项 【例4】已知数列{}n a 的前n 项和为n S ,.(1)求{}n a 的通项公式;(2)设,数列{}n b 的前n 项和为n T ,证明:.【分析】(1)已知和n S 与项n a 的关系,要求通项公式,可在已知(2n ≥)基础上,用1n -代n (3n ≥),得,两式相减得n a (2n ≥)的递推式,求得n a ,注意1a 的值与n a 的表达式的关系;(2)由(1)n b 是分段函数形式,2n ≥时,,考虑到证明和n T 710<,因此可放缩以求和,从而得,可证得不等式.又由,于是 故.【小试牛刀】已知数列{a n }前n 项和为S n ,满足S n =2a n -2n(n ∈N*). (I )证明:{a n +2}是等比数列,并求{a n }的通项公式;(Ⅱ)数列{b n }满足b n =log 2(a n +2),T n 为数列{11n n b b +}的前n 项和,若n T a <对正整数a 都成立,求a 的取值范围. 【答案】(Ⅰ);(Ⅱ)21≥a .(Ⅱ)因为,所以,依题意得:21a 五、迁移运用1.【安徽省2019届高三上学期第二次联考】设是数列的前项和,若,则( )A .B .C .D .【答案】A2.【福建省福州市2018届高三上学期期末质检】1.【2017学年辽宁东北育才学校段考】设各项均为正数的数列{}n a 的前n 项和为n S ,且满足.则数列{}n a 的通项公式是( )A .32n a n=﹣ B .43n a n =﹣ C .21n a n =﹣ D .21n a n =+ 【答案】A【解析】由满足.因式分解可得: ,∵数列{}n a 的各项均为正数,∴,当1n = 时,1231a =- ,解得11a = .当2n ≥ 时,,当1n = 时,上式成立.∴32n a n =- .故选A .3.【福建省漳州市2019届高三第一次教学质量检查】已知数列和首项均为1,且,,数列的前项和为,且满足,则( )A .2019B .C .D .【答案】D 【解析】由,可得:,即数列是常数列,又数列首项为1,所以,所以可化为,因为数列的前项和,所以,6.【湖北省鄂州市2019届高三上学期期中】已知数列的前项和为,首项,且,则( )A .B .C .D .【答案】A7.已知数列{},{}n n a b 满足,则2017b =______.【答案】20172018【解析】∵1n n a b +=,112a =,∴112b =,∵,∴112n nb b +=-,∴,又∵112b =,∴1121b =--.∴数列11n b ⎧⎫⎨⎬-⎩⎭是以﹣2为首项,﹣1为公差的等差数列, ∴,∴1n nb n =+.则.故答案为:20172018. 8.若数列{}n a 满足,则n a =( )A.21n +B.22n +C.23n⎛⎫ ⎪⎝⎭D.123n -⎛⎫ ⎪⎝⎭【答案】A 【解析】}1{na ∴为等差数列, ,, ,.9.【福建省莆田市2018届高三下学期教学质量检测】已知数列满足,,则__________. 【答案】10.【上海市长宁、嘉定区2018届高三第一次质量调研】已知数列{}n a 的前n 项和为n S ,且11a =,12n n n S a a +=(*n N ∈),若,则数列{}n b 的前n 项和n T =_______________.【答案】()111nn --++或11.【吉林省长春市普通高中2018届高三质量监测】在数列中,,且对任意,成等差数列,其公差为,则 ________. 【解析】因为,且对任意,成等差数列,其公差为,所以当时,可得,当时,,所以,故答案为.由不等式恒成立,得2732nn k -≥恒成立, 设272n n n d -=,由1n n d d +-,∴当4n ≤时,1n n d d +>,当4n ≥时,1n n d d +<,而4116d =,5332d =,∴45d d <, ∴3332k ≥,∴132k ≥.15.已知数列{}n a 的前n 项和n n a S -=1,其中*∈N n .(I )求{}n a 的通项公式;(II )若n n na b =,求{}n b 的前n 项和n S . 【答案】(I )nn a )21(=(II )(II )由(I )可得,16.已知数列{}n a 的各项都不为零,其前n 项为n S ,且满足:.(1)若0n a >,求数列{}n a 的通项公式; (2)是否存在满足题意的无穷数列{}n a ,使得?若存在,求出这样的无穷数列的一个通项公式;若不存在,请说明理由.【答案】(1)n a n =;(2)详见解析.17.【山东省淄博市2018届高三3月模拟】已知是公差为3的等差数列,数列满足.(1)求数列的通项公式;(2)求数列的前项和.【解析】(1)由已知且,得,∴是首项为4,公差为3的等差数列,∴通项公式为;(2)由(1)知,得:,,因此是首项为、公比为的等比数列,则.18.【河南省南阳市2018届高三上学期期末】已知数列的前项和为,且满足().你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云(1)求数列的通项公式;(2)若,求数列的前项和.(2)由(1)得,当为偶数时,,;当为奇数时,为偶数,.所以数列的前项和.你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云你是我心中最美的一朵云。
数列求和【考点梳理】.公式法()等差数列的前项和公式:==+;()等比数列的前项和公式:=(\\(,=,,(--)=(--),≠.)).分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解..裂项相消法()把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.()裂项时常用的三种变形:①=-;②=;③=-..错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前项和可用错位相减法求解..倒序相加法如果一个数列{}的前项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前项和即可用倒序相加法求解..并项求和法一个数列的前项和中,可两两结合求解,则称之为并项求和.形如=(-)()类型,可采用两项合并求解.例如,=-+-+…+-=(+)+(+)+…+(+)= .【考点突破】考点一、公式法求和【例】已知等差数列{}和等比数列{}满足==,+=,=.()求{}的通项公式;()求和:+++…+-.[解析] ()设{}的公差为,由=,+=得+++=,所以=,所以=+(-)=-.()由()知=.设{}的公比为,由=,·=得=,所以=,所以{-}是以=为首项,′==为公比的等比数列,所以+++…+-==.【类题通法】.数列求和应从通项入手,若无通项,则先求通项..通过对通项变形,转化为等差或等比或可求数列前项和的数列来求之. 【对点训练】已知等差数列{}的前项和为,等比数列{}的前项和为,=-,=,+=. ()若+=,求{}的通项公式;()若=,求.[解析] ()设{}公差为,{}公比为,由题意得解得或(舍去),故{}的通项公式为=-.()由已知得解得或∴当=,=-时,=-;当=-,=时,=.考点二、分组转化求和【例】已知数列{}的前项和=,∈*.()求数列{}的通项公式;()设=+(-),求数列{}的前项和.[解析] ()当=时,==;当≥时,=--=-=.。
高中数学数列的求和公式及相关题目解析在高中数学中,数列是一个非常重要的概念,它是数学中的一种序列,由一系列按照一定规律排列的数所组成。
数列的求和是数学中常见的问题之一,本文将介绍数列的求和公式及相关题目解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、等差数列的求和公式及相关题目解析1. 等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以使用求和公式来快速计算其前n项的和。
设等差数列的首项为a1,公差为d,前n项和为Sn,则等差数列的求和公式为:Sn = (n/2)[2a1 + (n-1)d]其中,n为项数,a1为首项,d为公差。
2. 题目解析例题1:已知等差数列的首项为3,公差为4,求前10项的和。
解析:根据等差数列的求和公式,代入a1=3,d=4,n=10,可以得到:S10 = (10/2)[2*3 + (10-1)*4] = 5[6 + 9*4] = 5[6 + 36] = 5*42 = 210因此,前10项的和为210。
例题2:已知等差数列的首项为-2,公差为5,前n项和为100,求n的值。
解析:根据等差数列的求和公式,代入a1=-2,d=5,Sn=100,可以得到:100 = (n/2)[2*(-2) + (n-1)*5] = (n/2)[-4 + 5n - 5] = (n/2)(5n - 9)化简得到5n^2 - 9n - 200 = 0,解这个二次方程可以得到n≈13.2或n≈-3.8。
由于n必须是正整数,所以n≈13.2不符合题意。
因此,n≈-3.8也不符合题意。
综上所述,n的值为13。
二、等比数列的求和公式及相关题目解析1. 等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以使用求和公式来快速计算其前n项的和。
设等比数列的首项为a1,公比为r,前n项和为Sn,则等比数列的求和公式为:Sn = a1(1 - r^n)/(1 - r)其中,n为项数,a1为首项,r为公比。
(高考冲刺押题)2019高考数学三轮基础技能闯关夺分必备数列的求和(含解析)【考点导读】对于一般数列求和是很困难的,在推导等差、等比数列的和时出现了一些方法可以迁移到一般数列的求和上,掌握数列求和的常见方法有:〔1〕公式法:⑴等差数列的求和公式,⑵等比数列的求和公式〔2〕分组求和法:在直接运用公式求和有困难时常,将“和式”中的“同类项”先合并在一起,再运用公式法求和〔如:通项中含n(-1)因式,周期数列等等〕〔3〕倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,那么可用把正着写和与倒着写和的两个和式相加,就得到了一个常数列的和,这一求和方法称为倒序相加法。
特征:a n +a 1=a n-1+a 2〔4〕错项相减法:如果一个数列的各项是由一个等差数列与一个等比数列的对应项相乘所组成,此时求和可采用错位相减法。
〔5〕裂项相消法:把一个数列的各项拆成两项之差,在求和时一些正负项相互抵消,于是前n项之和变成首尾假设干少数项之和。
【基础练习】1、公差不为0的正项等差数列{a n }中,S n 为前n 项之和,lga 1、lga2、lga 4成等差数列,假设a 5=10, 那么S 5=30。
2、设4710310()22222()n f n n N +=+++++∈,那么()f n 等于42(81)7n +-。
3、数列{a n }是等差数列,首项a 1<0,a 2005+a 2006<0,a 2005·a 2006<0,那么使前n 项之和 S n <0成立的最大自然数n 是4010。
4、数列{a n }是等差数列,且a 2=8,a 8=26,从{a n }中依次取出第3项,第9项,第27项…,第3n项,按原来的顺序构成一个新的数列{b n },那么bn=__3n+1+2___ 5、假设数列{}n a 满足:1,2,111===+n a a a n n ,2,3….那么=+++n a a a 2121n -.【范例导析】例 1.等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比〔Ⅰ〕求n a ;〔Ⅱ〕设n n a b 2log =,求数列.|}{|n n T n b 项和的前解:〔I 〕依题意032),(32244342=+--+=a a a a a a a 即03213131=+-∴q a q a q a 21101322==⇒=+-∴q q q q 或211=∴≠q q 1)21(64-⨯=n n a 故〔II 〕n b n n n -==⨯=--72log ])21(64[log 7212⎩⎨⎧>-≤-=∴7777||n n n nb n2)13(2)76(,6||,71n n n n T b n n -=-+==≤∴时当 2)7)(6(212)7)(71(,1||,778--+=--++==>n n n n T T b n n 时当 ⎪⎪⎩⎪⎪⎨⎧>+--≤-=∴)7(212)7)(6()7(2)13(n n n n n n T n 点评:此题考查了等比数列的基本性质和等差数列的求和,此题还考查了转化的思想。
专题40 数列 数列的求和1(等差等比数列求和)【考点讲解】一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法.考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述:求数列前n 项和的基本方法(1)直接用等差、等比数列的求和公式求和;等差:;等比:公比是字母时需要讨论.(理)无穷递缩等比数列时,qa S -=11(2)掌握一些常见的数列的前n 项和公式:; ;;;(3)倒序相加法求和:如果一个数列{}na ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.(4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求.如{}n a 为等差数列,{}n b 为等比数列,求的和.(5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.形如:nn b a +其中,(6)合并求和:如求的和.(7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项:;.【真题分析】1.【2016年北京】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______. 【解析】本题考点是等差数列的性质与求和.因为{}n a 是等差数列,所以,即40a =,又,所以2d =-,所以.故答案为6. A.80 B.30 C.26 D.16【解析】由2n S =与314n S =可得:当1n =时,112S a ==,314S =..由,得到,因为是正数的等比数列,所以有2q =,所以,答案选B.【答案】B11.【2016全国文Ⅱ,17】等差数列{n a }中,.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(Ⅱ)由(Ⅰ)知.当n =1,2,3时,;当n =4,5时,;当n =6,7,8时,;当n =9,10时,.所以数列{}n b 的前10项和为.【答案】(Ⅰ)235n n a +=;(Ⅱ)24.12.【2018全国Ⅲ理17题】等比数列{}n a 中,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则.由63m S =得,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.。
高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.已知函数且an =f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0 B.100 C.-100 D.10200【答案】B【解析】由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,选B.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,, 当时,.是等差数列, ,得. 又,,,、、成等比数列, ,即,解得.解法2:设等差数列的公差为,则., ,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,② ①②得..解法2:由(1)得.,.,① 由,两边对取导数得,.令,得..【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690 B .3 660 C .1 845 D .1 830【答案】D【解析】∵a n +1+(-1)n a n =2n -1, 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,于是S60=a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==1 830.5.如图,是一问题的程序框图,则输出的结果是 .【答案】【解析】根据流程图可知它的作用是求的值,由等差数列的前项和公式可知,.【考点】1.程序框图及其应用;2.等差数列的前项和6.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图7.数列中,已知且,则前项和为,则的值为__________.【答案】【解析】因为,所以公差,由得,所以.【考点】1、等差数列的定义;2、等差数列的前项和公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知数列的通项公式为,那么满足的整数()A.有3个B.有2个C.有1个D.不存在【答案】B【解析】时,,所以,此时从到共项,从到共项,或,有2个值【考点】数列求和点评:本题中数列求和要依据通项公式特点分两种情况,分别讨论所求各项所属的范围及应代入的公式,第二种情况找到各项中正负项分界的位置是难点10.已知数列满足,则的前n项和_____【答案】【解析】根据题意,由于故可知的前n项和,故答案为【考点】数列的递推关系点评:主要是考查了数列的递推关系的运用,来求解数列的通项公式以及数列的和的运用,属于中档题。
问题数列与不等式的相结合问题一、考情分析数列与不等式的交汇题,是高考数学的常见题型. 对数列不等式综合题的解答,往往要求能够熟练应用相关的基础知识和基本技能,同时还应具备比较娴熟的代数变换技能和技巧.近年数列与不等式交汇题考查点:.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇..以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题新颖别致,难度相对较大..将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想.数列求和是历年高考命题的热点,可以以客观题形式考查,也可以以解答题形式考查数列,公式求和、裂项求和、错位相减法求和是常考问题.二、经验分享常见的数列不等式大多与数列求和或求积有关,其基本结构形式有如下种:①形如(为常数);②形如;③形如;④形如(为常数).依据不等式的性质:()不等式的传递性:若,则(此性质为放缩法的基础,即若要证明,但无法直接证明,则可寻找一个中间量,使得,从而将问题转化为只需证明即可)()等量加不等量为不等量:若,则,此性质可推广到多项求和:若,则:()若需要用到乘法,则对应性质为:若,则,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数常用的放缩手段:增加(或减少)某些项;增大分子(或减小分母);增大(或减小)被开方数;利用二项式定理;利用基本不等式;利用函数的单调性.常用的放缩技巧:()常见的数列求和方法和通项公式特点:①等差数列求和公式:,(关于的一次函数或常值函数)②等比数列求和公式:,(关于的指数类函数)③错位相减:通项公式为“等差等比”的形式④裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项()与求和相关的不等式的放缩技巧:①在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手②在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢.④若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩.从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试.()放缩构造裂项相消数列与等比数列的技巧:①裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)②等比数列:所面对的问题通常为“常数”的形式,所构造的等比数列的公比也要满足,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可.例如常数,即可猜想该等比数列的首项为,公比为,即通项公式为.注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响()与数列中的项相关的不等式问题:①此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形②在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即或(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为,另一侧为求和的结果,进而完成证明三、知识拓展常见的放缩变形:(),其中:可称为“进可攻,退可守”,可依照所证不等式不等号的方向进行选择.注:对于,可联想到平方差公式,从而在分母添加一个常数,即可放缩为符合裂项相消特征的数列,例如:,这种放缩的尺度要小于()中的式子.此外还可以构造放缩程度更小的,如:(),从而有:注:对于还可放缩为:()分子分母同加常数:此结论容易记混,通常在解题时,这种方法作为一种思考的方向,到了具体问题时不妨先构造出形式再验证不等关系.()可推广为:同类放缩常见的有:()或();()或;()或(平方型、立方型、根式型都可放缩为裂项相消模型)()或、(指数型可放缩为等比模型)();();()(奇偶型放缩为可求积).补充:一般地,形如或(这里)的数列,在证明(为常数)时都可以提取出利用指数函数的单调性将其放缩为等比模型.四、题型分析(一) 最值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:()建立目标函数,通过不等式确定变量范围,进而求得最值;()首先利用不等式判断数列的单调性,然后确定最值;()利用条件中的不等式关系确定最值.【例】设等差数列的前项和为,若,, 则的最大值为.【分析】根据条件将前项与前项和的不等关系转化为关于首项与公差的不等式,然后利用此不等关系确定公差的范围,由此可确定的最大值.()由题意可知,设在数列中的项为,则由题意可知,,所以当时,,设,易解得,当时,,,因为,且,所以当时,.【点评】解决数列恒成立问题一般会涉及到基本不等式及数列单调性.【小试牛刀】【广东省华南师范大学附属中学届高三综合测试】等比数列的前项和(为常数),若恒成立,则实数的最大值是(). . . .【答案】(三) 证明问题此类不等式的证明常用的方法:()比较法,特别是差值比较法是最根本的方法;()分析法与综合法,一般是利用分析法分析,再利用综合法分析;()放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例】设数列满足, ,其中为实数.(Ⅰ)证明:对任意成立的充分必要条件是;(Ⅱ)设,证明:;(Ⅲ)设,证明:.【分析】第(Ⅰ)小题可考虑用数学归纳法证明;第(Ⅱ)小题可利用综合法结合不等关系的迭代;第(Ⅲ)小题利用不等式的传递性转化等比数列,然后利用前项和求和,再进行适当放缩.(Ⅱ)当时,. 显然,此时不存在正整数,使得成立.当时,.令,即,解得或(舍去),此时存在正整数,使得成立,的最小值为.综上,当时,不存在满足题意的;当时,存在满足题意的,其最小值为.【点评】本题的表示式有两种,需要对着两种情况讨论,再确定是否存在满足题意的. 解决数列与函数、不等式的综合问题的关键是从题设中提炼出数列的基本条件,综合函数与不等式的知识求解;数列是特殊的函数,以数列为背景的不等式证明问题及以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点..【江西省名校学术联盟届高三年级教学质量检测】若不等式对任意恒成立,则实数的取值范围为....【答案】【解析】当为偶数时,由恒成立,得恒成立,由,所以,当为奇数时,由恒成立,得恒成立,由,所以,即,综上可得实数的取值范围为.故选..【山东省泰安市届高三上学期期中】设等比数列的公比为,其前项积为,并且满足条件,,给出下列结论:,,的最大值为,其中正确结论的个数为....【答案】.【安徽省宿州市届高三上学期第一次教学质量检测】在等差数列中, ,若它的前项和有最大值,则当时, 的最大值为(). . . .【答案】【解析】数列为等差数列,若,则,可得, ,,,则当时, 的最大值为,故选.已知数列的通项公式,若对任意恒成立,则的取值范围是.【答案】.【山西省太原市届高三月模拟】数列中, ,若数列满足,则数列的最大项为第项.【答案】【解析】因为,所以根据叠加法得,所以当时, ,当时,,因此数列的最大项为第项..【甘肃省届高三第一次诊断性考试】已知数列满足, ,则的最小值为.【答案】.【广西陆川县中学届高三开学考试】已知函数,点为坐标原点, 点,向量(),是向量与的夹角,则使得恒成立的实数的取值范围为.【答案】【解析】根据题意得,﹣θ是直线的倾斜角,∴(﹣θ)∴要使恒成立,则实数的取值范围是≥.故答案为:≥..【天一大联考—学年高中毕业班阶段性测试(四)】已知等差数列的通项公式为,前项和为,若不等式恒成立,则的最小值为.【答案】.【江苏省南师大附中届高三年级第一学期期中】己知实数,,[,],如果,,是公差为的等差数列,则的最小值为.【答案】-【解析】由于数列是递增的等差数列,故,且,故,,而函数在上为增函数,故当时取得最大值为,所以. 令,则,即,因为,,依据指数增长性质,整数的最小值是..【浙江省台州市届高三上学期期末】在数列中,,,且对任意的*,都有.(Ⅰ)证明数列是等比数列,并求数列的通项公式;(Ⅱ)设,记数列的前项和为,若对任意的*都有,求实数的取值范围.。
一.方法综述数列的求和问题是数列高考中的热点问题,数列的求和问题会渗透多种数学思想,会跟其他知识进行结合进行考查.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列求和中的新定义问题、子数列中的求和问题、奇偶性在数列求和中的应用、周期性在数列求和中的应用、数列求和的综合问题中都有所涉及,本讲就这类问题进行分析.二.解题策略类型一数列求和中的新定义问题【例1】【湖南师范大学附属中学2019届高三上学期月考(四)】对于数列,定义为的“优值”,现已知某数列的“优值”,记数列的前项和为,则()A.2022 B.1011 C.2020 D.1010【答案】B【解析】由,得,①,②①-②得,即,,所以.故选B.【指点迷津】1.“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2.解决此类问题的一些技巧:(1)抓住“新信息”的特点,找到突破口;(2)尽管此类题目与传统的数列“求通项,求和”的风格不同,但其根基也是我们所学的一些基础知识与方法.所以在考虑问题时也要向一些基本知识点靠拢,弄清本问所考察的与哪个知识点有关,以便找到一些线索.(3)在分类讨论时要遵循“先易后难”的原则,以相对简单的情况入手,可能在解决的过程中会发现复杂情况与该情况的联系,或者发现一些通用的做法与思路,使得复杂情况也有章可循.【举一反三】已知数列{}n a 的前n 项和为n S ,定义11ni i S n =∑为数列{}n a 前n 项的叠加和,若2016项数列1232016,,,a a a a 的叠加和为2017,则2017项数列1220161,,,a a a 的叠加和为( )A. 2017B. 2018C. 22017D. 22018 【答案】A故选A .类型二 子数列中的求和问题【例2】已知有穷数列{}n a 中, 1,2,3,,729n =,且()()1211n n a n +=--,从数列{}n a 中依次取出2514,,,a a a 构成新数列{}nb ,容易发现数列{}n b 是以-3为首项,-3为公比的等比数列,记数列{}n a 的所有项的和为S ,数列{}n b 的所有项的和为T ,则( )A. S T >B. S T =C. S T <D. S 与T 的大小关系不确定 【答案】A【解析】因为()728135727*********s =-+-++⨯-=+⨯=, ()()()133372921n nn b -=--=-≤⨯-,所以6n ≤,当6n =时, 6729b =是n a 中第365项,符合题意,所以()()()()631354613T ---==--,所以S T >,选A.【指点迷津】一个数列中某些项的求和问题,关键在于弄清楚新的数列的形式,了解其求和方法.【举一反三】已知*n N ∈,集合13521,,,,2482n nn M -⎧⎫=⎨⎬⎩⎭,集合n M 的所有非空子集的最小元素之和为。
问题21 复杂数列的求和问题一、考情分析数列求和是历年高考命题的热点,可以以客观题形式考查,也可以以解答题形式考查数列,公式求和、裂项求和、错位相减法求和是常考问题. 二、经验分享1.分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.【小试牛刀】【福建省南平市2018届高三上学期第一次综合质量检查】已知数列{}n b 满足,则该数列的前23 项的和为( )A. 4194B. 4195C. 2046D. 2047 【答案】A(三) 裂项相消法此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.注意:○1余下的项前后的位置前后是对称的.○2余下的项前后的正负性是相反的.常用的裂项方法: 【 例3】在等差数列{}n a 中,公差0d ≠,17a =,且2a ,5a ,10a 成等比数列. ⑴求数列{}n a 的通项公式及其前n 项和n S ; ⑵若15n n n b a a +=⋅,求数列{}n b 的前n 项和n T .【分析】⑴由2510 a a a ,,成等比数列⇒()7d +⇒2d =⇒25n a n =+⇒;⑵由⑴可得⇒.【点评】(1)裂项相消法求和的原理及注意问题①原理:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. ②注意:在相加抵消过程中,有的是依次抵消,有的是间隔抵消,特别是间隔抵消时要注意规律性.③一般地,若{a n }为等差数列,则求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和可尝试此方法,事实上,1a n a n +1=dda n a n +1=a n +1-a n da n a n +1=1d ·⎝ ⎛⎭⎪⎫1a n -1a n +1. 则;故选:C .2.【江西省南昌市第二中学2019届高三第六次考试】已知数列满足:,则的前40项的和为( )A .860B .1240C .1830D .2420 【答案】B3.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期末】设数列满足,,且,若表示不超过的最大整数,则( )A.2018 B.2019 C.2020 D.2021【答案】C【解析】∵a n+2﹣2a n+1+a n=2,∴a n+2﹣a n+1﹣(a n+1﹣a n)=2,a2﹣a1=4.∴{a n+1﹣a n}是等差数列,首项为4,公差为2.∴a n+1﹣a n=4+2(n﹣1)=2n+2.∴n≥2时,a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+……+(a2﹣a1)+a1=2n+2(n﹣1)+……+2×2+2n(n+1).∴.∴1.∴2+2018=2020.故选:C.4.【江西省名校学术联盟2019届高三年级教学质量检测】已知函数(其中)的图像经过点,令,则A.2019 B. C.6057 D.【答案】B5.【广东省华南师范大学附属中学2019届高三上学期月考】已知函数,且,则( )A. B. C. D.【答案】B 【解析】, 由,可得:9.【广西南宁市第二中学2018届高三1月月考】已知函数,且,记n S 表示{}n a 的前n 项和,则100S =__________.【答案】10010.数列{}n a 的通项为,前n 项和为n S ,则100S = .【答案】200 【解析】由已知可得;;;;;;;分析可知偶数项均为1,所以前100项中偶数项的和为15050⨯=. 分析可知相邻两项奇数项的和为6,所以前100项中奇数项的和为..11.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 012= . 【答案】3231006-⋅【解析】a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n =2n +12n =2.∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S2 012=a1+a2+a3+a4+a5+a6+…+a2 011+a2 012=(a1+a3+a5+…+a2 011)+(a2+a4+a6+…+a2 012)=1-21 0061-2+-21 0061-2=3·21 006-3.12.【安徽省合肥市2019届高三第一次教学质量检测】在平面直角坐标系中,点()(),记的面积为,则____________.【答案】【解析】结合题意,得到,所以该三个点组成的三角形面积为,对面积求和设得到,,两式子相减,得到,解得.13.【湖北省宜昌市2019届高三年级元月调考】已知数列是各项均为正数的等比数列,其前项和为,点、均在函数的图象上,的横坐标为,的横坐标为,直线的斜率为.若,,则数列的前项和__________.【答案】14.【贵州省贵阳第一中学、云南师大附中、广西南宁三中2019届高三“333”高考备考诊断联考】已知数列的首项,函数为奇函数,记为数列的前项和,则的值为_____________. 【答案】【解析】是奇函数,,,,,,如此继续,得,.15.【2018届广东省深中、华附、省实、广雅四校联考】已知等差数列{}n a 的前n 项和为n S ,,.(1)求λ的值; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .(2) 由(1)可得21n a n =-,所以所以,所以19.【福建省漳州市2018届高三上学期期末】设数列{}n a 的前n 项和为n S ,且31n n S a =+ ()*n N ∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足,求数列{}n b 的前n 项和n T .【解析】 (Ⅰ)当n≥2时,a n =S n -S n -1=3a n +1-3a n -1-1,即2a n =3a n -1,所以132n n a a -=, 当n =1时,a 1=3a 1+1,解得112a =-. 所以数列{a n }是以12-为首项, 32为公比的等比数列, 即.20.已知等比数列{}n a 的前n 项和为n S ,且12,,n n S a +成等比数列()n N *∈.(1)求a 的值及数列{}n a 的通项公式;(2)若,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)12n n a -=;(2).【解析】(1)12,,n n S a +成等差数列,∴,当1n =时,, 当2n ≥时,,{}n a 是等比数列,∴11a =,则42a +=,得2a =-,∴数列{}n a 的通项公式为.(2)由(1)得,∴.。
问题23 利用方程思想求解数列问题一、考情分析数列与以前所学过的数、式、方程、函数、不等式、简易逻辑等许多知识都有广泛的联系,方程(组)思想在数列学习过程中得以较为充分的体现,数列中的绝大部分计算题都可看作方程应用题,特别是求数列中的基本量都可转化为关于基本量的方程或方程组. 二、经验分享(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(3)等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(4) 为使问题有确定的解应使变量个数与方程组的个数相等 三、知识拓展在列方程时除了利用等差等比数列的通项公式及前n 项和公式,有时还要用到以下结论: (1)在等差数列中a n =a m +(n -m )d (n ,m ∈N *).若+l =m +n (,l ,m ,n ∈N *),则a +a l =a m +a n .若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .若{a n }是等差数列,公差为d ,则a ,a +m ,a +2m ,…(,m ∈N *)是公差为md 的等差数列.数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.(2)在等比数列中a n =a m ·q n -m (n ,m ∈N *).若{a n }为等比数列,且+l =m +n (,l ,m ,n ∈N *),则a ·a l =a m ·a n .公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .四、题型分析(一) 方程思想在等差数列中的应用【例1.】已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.【分析】列出关于a 1与d 的方程组,求出a 1与d ,再求a 9. 【解析】设等差数列{a n }的公差为d ,由题意可得,解得⎩⎨⎧a 1=-4,d =3,则a 9=a 1+8d =-4+8×3=20.【点评】数列的通项公式与前n 项和的公式紧密地联系着五个基本量,“知三求二”是一类最基本的运算.因此方程的观点是解决此类问题的基本数学思想与方法.∴⎩⎨⎧ ab =4,2b =a -2或⎩⎨⎧ ab =4,2a =b -2,解得⎩⎨⎧ a =4,b =1或⎩⎨⎧a =1,b =4.∴p =5,q =4,∴p +q =9,故选D.【小试牛刀】【山东济南外国语学校2019届1月模拟】已知等差数列的公差为成等比数列,则的前n 项和( )A .B .C .D .【答案】A【解析】∵等差数列{a n }的公差为2,a 2,a 3,a 6成等比数列, ∴(a 1+4)2=(a 1+2)(a 1+10),解得a 1=﹣1, ∴{a n }的前n 项和S n n +n 2﹣n =n 2﹣2n =n (n ﹣2).故选A .(四) 构造一元二次方程求解数列问题 【例5】已知等差数列{}n a 满足,则3a 的取值范围是【分析】构造关于3a 的一元二次方程【点评】含有双变量的等式可看作关于其中一个变量的方程,利用方程思想求解【小试牛刀】已知数列为正项的递增等比数列,,记数列的前n 项和为,则使不等式2018成立的最大正整数n 的值为( )A .5B .6C .7D .8 【答案】B【解析】设正项的递增等比数列{a n}的公比为q>1,∵a1+a5=82,a2•a4=81=a1a5,所以,a a是方程,15解方程得a1=1,a5=81.∴q4=81,解得q=3.∴a n=3n﹣1.∴数列的前n项和为T n=2=223(1).则不等式化为:20181,即3n<2018.∵36=729,37=2187.∴使不等式成立的最大正整数的值为6.故选B.五、迁移运用1.【山东济南2019届期末】已知等差数列的前项和为,若,,则该数列的公差为( )A.-2 B.2 C.-3 D.3【答案】B【解析】由题意可得:5d=25,解得d=2.故选B.2.【甘肃、青海、宁夏2019届期末联考】设等比数列的前项和为,若,,则A.-60 B.-40 C.20 D.40【答案】B3.【广东揭阳2019届模拟】记等比数列的前项和为,已知,且公比,则=( )A.-2 B.2 C.-8 D.-2或-8【答案】C【解析】依题意,解得,故,故选C.4.【湖北宜昌2019届元1月调研】等比数列的前项和为,若,则公比()A.1 B.-1 C.D.-2【答案】Cq 时,由,得,【解析】当q=1时满足,当1整理的,所以q=-1,综上得q=,故选C。
问题8由复杂递推关系式求解数列的通项公式问题一、考情分析递推公式是给出数列的一种重要方法,常出现在客观题压轴题或解答题中,难度中等或中等以上.利用递推关系式求数列的通项时,通常将所给递推关系式进行适当的变形整理,如累加、累乘、待定系数等,构造或转化为等差数列或等比数列,然后求通项.二、经验分享(1) 已知S n,求a n的步骤当n=1时,a1=S1;当n≥2时,a n=S n-S n-1;(3)对n=1时的情况进行检验,若适合n≥2的通项则可以合并;若不适合则写成分段函数形式.(2)已知数列的前几项,写出数列的通项公式,主要从以下几个方面来考虑:如果符号正负相间,则符号可用(-1)n或 (-1)n+1来调节.分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系来解决.对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.此类问题虽无固定模式,但也有规律可循,主要靠观察(观察规律)、比较(比较已知的数列)、归纳、转化(转化为等差、等比或其他特殊数列)等方法来解决.(3)已知数列的递推关系求通项公式的典型方法当出现a n=a n-1+m时,构造等差数列;当出现a n=xa n-1+y时,构造等比数列;当出现a n=a n-1+f(n)时,用累加法求解;当出现a na n-1=f(n)时,用累乘法求解.三、知识拓展若数列{}n a满足,则数列都是公差为a的等差数列,若数列{}n a 满足,则数列都是公比为b的等比数列. 四、题型分析(一) 用累加法求数列的通项【例1.】在数列{}n a中,11 2a= , ,则该数列的通项公式na= .【分析】题目已知条件是,且n*∈N)形式,用叠加原理求解.【解析】因为,所以运用累加法即可得到:,所以,故应填4342n n --.【点评】当,且n *∈N )满足一定条件时,可用…来求通项n a ,这种方法通常叫累加法. 本题用到裂项相消求和,相消时应注意消去的项规律,及消去哪些项,保留哪些项,于是前n 项的和变成首尾若干少数项之和.还有不少同学会出现的错误,认为21d n n =-或21d n n=+是常数,实际上21d n n =-或21d n n=+是个变量,n 变化d 随之改变. 【小试牛刀】数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.【解析】 (1)证明:由a n +2=2a n +1-a n +2得,a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2. 又b 1=a 2-a 1=1.所以{b n }是首项为1,公差为2的等差数列. (2)由(1)得b n =1+2(n -1), 即a n +1-a n =2n -1.于是∑nk =1 (a k +1-a k )=∑nk =1 (2k -1), 所以a n +1-a 1=n 2, 即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.【点评】本例是典型的由数列的递推公式求通项公式的问题.第(1)问中要注意对数列{a n +1-a n }的整体把握.第(2)问中用的是累加法.注意切忌忽略对a 1的验证. (二) 利用累乘法求数列的通项【例2】设{}n a 是首项为1的正项数列,且,则n a = .【分析】观察已知的递推式,用十字交叉法分解因式,可求得n a 与1+n a 的关系式,再用累乘法求解. 【解析】∵,∴,由于{}n a 得各项为正,∴,∴,即11n n a na n +=+, ∴2112a a =,3223a a =,4334a a =,…,11n n a n a n --=,将以上各式相乘得11n a a n=,又11a =, ∴.【点评】形如1()nn a f n a -=型的递推公式常用累乘法.当()f n q =为常数且不等于0时,数列为等比数列,11n n a a q-=⋅;当()f n 为n 函数时,. 本题可思考{}n na 为常数数列.【小试牛刀】数列{}n a 中,前n 项和为n S , 2nn na S = (1)求数列{}n a 的通项公式;(2)令,证明:.【解析】(1) 2nn na S =,,两式相减得:,整理得:,(叠乘法)因为,所以3221a a =, 4332a a =,…, 112n n a n a n --=-, 相乘得21na n a =-,且当n =1、2时,满足此式, 所以.(2) ,因为n b 2>,所以;.(三) 用构造法求数列的通项【例3】【江苏省泰州中学2018届高三12月月考2】已知数列{}n a 满足: 11a =,,( *n N ∈),则数列{}n a 的通项公式为__________.【分析】变形为,构造新数列求解.【答案】121n n a =-【解析】由得:,变形得:,所以1{1}na +是以2为公比的等比数列,所以,所以121n na =-. 【点评】数列是一种特殊的函数,通过递推公式写出数列的前几项再猜想数列的通项时,要验证通项的正确性. 易出现的错误是只考虑了前3项,就猜想出n a .用构造法求数列的通项,要仔细观察递推等式,选准要构造的新数列的形式,再确定系数.【小试牛刀】已知数列}{}{n n b a ,满足211=a ,1=+n n b a , ,*∈N n ,则=2015b .【答案】20152016. 【解析】1n n a b +=∵且121nn nb b a +=-, ,又112b =,1121b =--∴,11n b ⎧⎫⎨⎬-⎩⎭∴是首项为2-,公差为1-的等差数列, ,1n nb n =+∴,.故应填20152016. (四) 利用n S 与n a 的关系求数列的通项【例4】【江苏省南通市基地学校2019届高三3月联考】已知数列的各项均不为0,其前n 项和为.若,,,.(1)求的值; (2)求数列的通项公式; (3)若数列满足,,求证:数列是等差数列.【分析】(1)将代入,可求得;(2)由可求得,进而,两式作差可得,进而推得,可得数列及数列均为等差数列,进而求得通项;(3)由与关系可得:,即,两式作差可得:,进而推得,即,则证明结束.【解析】(1)时,由得解得 (2)时,由,得则 因为,所以……①所以……②②①得所以,两式相减得即数列及数列都成公差为的等差数列由,得,可求得 所以数列的通项公式为(3)由,,得所以因为,所以所以两式相减得,即所以两式相减得所以因为,可得所以所以数列是等差数列【点评】由S n 和a n 的关系求通项的注意问题:(1)应重视分类讨论的思想,分n =1和n ≥2两种情况讨论.当n =1时,a 1不适合a n 的情况要分开写,即a n =⎩⎪⎨⎪⎧S n , n =1,S n -S n -1, n ≥2. (2)要注意a n 和S n 互化具有双向性,既可由a n 化为S n ,也可由S n 求a n . 【小试牛刀】已知数列为单调递增数列,为其前项和,.(1)求的通项公式;(2)若,为数列的前项和,证明:.【解析】(Ⅰ)当n =1时,2S 1=2a 1=a +1,所以(a 1-1)2=0,即a 1=1, 又{a n }为单调递增数列,所以a n ≥1. 由2S n =a +n 得2S n +1=a +n +1,所以2S n +1-2S n =a-a +1,整理得2a n +1=a-a +1,所以a =(a n +1-1)2.所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n .(Ⅱ)b n ===-所以T n =(-)+(-)+…+[-]=-<.(五) 递推公式为(其中p ,q 均为常数).解法一(待定系数——迭加法): 【例5.】数列{}n a :,,求数列{}n a 的通项公式.【分析一】解法一(待定系数法):先把原递推公式转化为其中s,t 满足⎩⎨⎧-==+q st pt s . 【分析二】(特征根法):对于由递推公式,给出的数列{}n a ,方程,叫做数列{}n a 的特征方程. 若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为,其中A,B 由决定(即把2121,,,x x a a 和2,1=n ,代入,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为,其中A,B 由决定(即把2121,,,x x a a 和2,1=n ,代入,得到关于A 、B 的方程组).【解法一】(待定系数——迭加法): 由,得 ,且.则数列{}n n a a -+1是以a b -为首项,32为公比的等比数列, 于是.把代入,得,,,⋅⋅⋅,.把以上各式相加,得..【解法二】(特征根法):数列{}n a :,的特征方程是:.,∴.又由,于是 故.【小试牛刀】【江苏省常州市2019届高三上学期期末】已知数列中,,且.(1)求证:是等比数列,并求数列的通项公式;(2)数列中是否存在不同的三项按照一定顺序重新排列后,构成等差数列?若存在,求满足条件的项;若不存在,说明理由. 【解析】(1)因为,所以,因为,所以数列是以2为首项,以-3为公比的等比数列,所以,即;(2)假设存在三项按一定顺序重新排列后成等差.①若,则,整理得,两边同除以,可得,等式右边是-3的整数倍,左边不是-3的整数倍,故等式不成立. ②若,则,整理得,两边同除以,可得,等式右边是-3的整数倍,左边不是-3的整数倍,故等式不成立. ③若,则,整理得,两边同除以,可得,等式左边是-3的整数倍,右边不是-3的整数倍,故等式不成立; 综上,不存在不同的三项符合题意. 五、迁移运用1.【江苏省泰州中学2018届高三12月月考】已知数列{}n a 满足: 11a =,,( *n N ∈),则数列{}n a 的通项公式为__________. 【答案】121n n a =-【解析】由得:,变形得:,所以1{1}na +是以2为公比的等比数列,所以,所以121n n a =-. 2.【江苏省前黄高级中学、如东高级中学、姜堰中学等五校2018届高三上学期第一次学情监测】设数列{}n a 的首项11a =,且满足与,则数列{}n a 的前20项和为__________. 【答案】2056【解析】考查数列的奇数项,结合递推关系有:,且112a +=,则数列{}21n a -构成首项为2公比为2的等比数列, 令:,则:,即:,而,据此可得:数列{}n a 的前20项和为.3.【江苏省淮安市盱眙中学2018届高三第一次学情调研】设函数()f x 满足且()12f =,则()10f =________.【答案】492【解析】()f x 满足,,,,各式相加可得,,,故答案为492. 4.【2019年3月2019届高三第一次全国大联考(江苏卷)】已知数列对任意满足.(1)求数列的通项公式; (2)设数列的前项和为,求使得成立的正整数的最小值.【解析】(1)因为①,所以②,①②两式相减,得,所以③.又当时,得,不满足上式.所以数列的通项公式为. (2)由(1)知,,所以不成立,当时,,由,得.令,则为增函数,又.因此要使成立,只需,故使成立的正整数的最小值为7.5.【江苏省南京市、盐城市2019届高三第二次模拟】已知数列各项为正数,且对任意,都有.(1)若,,成等差数列,求的值;(2)①求证:数列为等比数列;②若对任意,都有,求数列的公比的取值范围.【解析】(1)因为,所以,因此,,成等比数列.设公比为,因为,,成等差数列,所以,即,于是,解得或,所以或.(2)①因为,所以,两式相除得,即,由,得,两式相除得,即,所以,即,,,由(1)知,所以,,因此数列为等比数列.②当时,由时,可得,所以,因此,所以满足条件.当时,由,得,整理得.因为,,所以,因此,即,由于,因此,与任意恒成立相矛盾,所以不满足条件.综上,公比的取值范围为.6.【江苏省如皋市2018-2019学年高三年级第一学期期末】已知等差数列的前n项和为S n,若为等差数列,且.(1)求数列的通项公式;(2)是否存在正整数,使成等比数列?若存在,请求出这个等比数列;若不存在,请说明理由;(3)若数列满足,,且对任意的,都有,求正整数k的最小值.【解析】(1)设等差数列的公差d,则,.又是等差数列,所以,即,解得d=2.此时,,符合数列是等差数列,所以.(2)假设存在,使得,,成等比数列.则,由(1)可知,,代入上式,得,整理得.(*)法一:令,x≥1.则,所以在上单调增,所以在上至少有一个根.又,故是方程(*)的唯一解.所以存在,使得,,成等比数列,且该等比数列为3,9,27.法二:,即,所以方程(*)可整理为.因为,所以无解,故.所以存在,使得,,成等比数列,且该等比数列为3,9,27.(3)由可知,.又,,故,所以.依题意,对任意恒成立,所以,即,故.若,据,可得当,时,.由及可得.所以,当,时,,即.故当,时,,故不合题意.若,据,可得,即.所以,当,时,,当时,,得,所以.当,时,,所以,故.故当时,对任意都成立.所以正整数k的最小值为3.7.【江苏省南通市三县(通州区、海门市、启东市)2019届高三第一学期期末】已知数列的首项,其前n项和为,对于任意正整数,都有.(1)求数列的通项公式;(2)设数列满足.①若,求证:数列是等差数列;②若数列都是等比数列,求证:数列中至多存在三项.【解析】(1)令,则由,得因为,所以,当时,,且当n=1时,此式也成立.所以数列的通项公式为(2)①【证法一】因为,,所以.由得,所以,所以,所以,所以,所以数列是等差数列.【证法二】因为所以所以.所以,所以,记,两式相减得,所以,所以,当时,,由得,所以,当时,,当n=1时,上式也成立,所以,(iii)所以数列是等差数列.【证法三】因为所以,(i)所以,(ii)(i)-(ii)得,(iii)所以,(iv)(iii)-(iv)得,所以.由知.所以,所以数列是等差数列②不妨设数列超过三项,令,由题意,则有,即,代入,整理得(*),若p=q=1,则,与条件矛盾;若,当n=1时,,①当n=2时,,②②÷①得,p=q,代入(*)得b=c,所以,与条件矛盾.故这样的数列至多存在三项.8.【江苏省泰州市2019届高三上学期期末】已知数列{}的前n项和为Sn,,且对任意的n∈N*,n≥2都有。
问题38复杂的排列组合问题一、考情分析高考对这部分的要求还是比较高的.考查两个计数原理、排列、组合在解决实际问题上的应用.值得提醒地是:计数模型不一定是排列或组合.画一画,数一数,算一算,是基本的计数方法,不可废弃.二、经验分享1.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.2.组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.排列与组合综合问题的常见类型及解题策略(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素考虑,待整个问题排好之后,再考虑它们“内部”的排列.(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.(4)多元问题分类法.将符合条件的排列分为几类,而每一类的排列数较易求出,然后根据分类加法计数原理求出排列总数.三、知识拓展1.分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.2.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.3.解排列、组合问题的基本原则:特殊优先,先分组再分解,先取后排;较复杂问题可采用间接法,转化为求它的对立事件.4.解决排列组合综合性问题的一般过程如下 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类.3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略解排列(或)组合问题,应按元素的性质进行分类,分类标准明确,不重不漏;按事情的发生的连续过程分步,做到分步层次清楚. 四、题型分析(一)“相邻”与“不相邻”问题【例1】甲、乙、丙、丁四名同学排成一排,分别计算满足下列条件的排法种数: (1)甲不在排头、乙不在排尾;(2)甲不在第一位、乙不在第二位、丙不在第三位、丁不在第四位; (3)甲一定在乙的右端(可以不相邻).【解析】(1)①直接排,要分甲排在排尾和甲既不排在排头也不排在排尾两种情况.若甲排在排尾共有A 11A 33=6种排法.若甲既不在排头也不在排尾共有A 12A 12A 22=8种排法,由分类计数原理知满足条件的排法共有A 11A 33+A 12A 12A 22=14(种).②也可间接计算:A 44-2A 33+A 22=14(种).(2)可考虑直接排法:甲有3种排法;若甲排在第二位,则乙有3种排法;甲、乙排好后,丙、丁只有一种排法,由分步计数原理知满足条件的所有排法共有3×3×1=9(种).(3)可先排丙、丁有A 24种排法,则甲、乙只有一种排法,由分步计数原理满足条件的排列共有A 24·1=12(种),或看作定序问题A 44A 22=12(种). 【点评】对于相邻问题,可以先将要求相邻的元素作为一个元素与其他元素进行排列,同时要考虑相邻元素的内部是否需要排列,这种方法称为“捆绑法”;对于不相邻的元素,可先排其他元素,然后将这些要求不相邻的元素插入空当,这种方法称为“插空法”;对于“在”或者“不在”的排列问题的计算方法主要有:位置优先法、元素优先法、间接计算法.【小试牛刀】【广东省汕头市2019届高三上学期期末】把分别写有1,2,3,4,5的五张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么不同的分法种数为______用数字作答.【答案】36【解析】先将卡分为符合条件的3份,由题意,3人分5张卡,且每人至少一张,至多三张,若分得的卡片超过一张,则必须是连号,相当于将1、2、3、4、5这4个数用2个板子隔开,在4个空位插2个板子,共有种情况,再对应到3个人,有种情况,则共有种情况.故答案为:36(二)涂色问题【例2】如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.【分析】由于区域1,2,3与区域4相邻,由条件宜采用分步处理,又相邻区域不同色,因此应按区域1和区域3是否同色分类求解.【解析】按区域1与3是否同色分类;(1)区域1与3同色;先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法,故由分类加法计数原理,不同的涂色种数为24+72=96.【点评】(1)解决涂色问题,一定要分清所给的颜色是否用完,并选择恰当的涂色顺序.(2)切实选择好分类标准,分清哪些可以同色,哪些不同色.【小试牛刀】【安徽省淮南市2019届高三第一次模拟】如图为我国数学家赵爽约3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为A.B.C.D.【答案】B【解析】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,根据题意,如图,设5个区域依次为,分4步进行分析:,对于区域,有5种颜色可选;,对于区域与区域相邻,有4种颜色可选;,对于区域,与区域相邻,有3种颜色可选;,对于区域,若与颜色相同,区域有3种颜色可选,若与颜色不相同,区域有2种颜色可选,区域有2种颜色可选,则区域有种选择,则不同的涂色方案有种,其中,区域涂色不相同的情况有:,对于区域,有5种颜色可选;,对于区域与区域相邻,有4种颜色可选;,对于区域与区域相邻,有2种颜色可选;,对于区域,若与颜色相同,区域有2种颜色可选,若与颜色不相同,区域有1种颜色可选,区域有1种颜色可选,则区域有种选择,不同的涂色方案有种,区域涂色不相同的概率为,故选B.(三)分配问题【例3】有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成每组都是2本的三组;(2)分给甲、乙、丙三人,每人2本.【分析】(1)组合知识及分步计数原理求解;(2)均匀分组问题.【解析】(1)先分三步,则应是C 26C 24C 22种选法,但是这里面出现了重复,不妨记6本书为分别A 、B 、C 、D 、E 、F ,若第一步取了(AB 、CD 、EF ),则C 26C 24C 22种分法中还有(AB 、EF 、CD ),(CD 、AB 、EF )、(CD 、EF 、AB )、(EF 、CD 、AB )、(EF 、AB 、CD )共有A 33种情况,而且这A 33种情况仅是AB 、CD 、EF 的顺序不同,因此,只算作一种情况,故分配方式有C 26C 24C 22A 33=15(种). (2)在问题(1)的基础上再分配,故分配方式有C 26C 24C 22A 33·A 33=C 26C 24C 22=90(种). 【点评】不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.【小试牛刀】把,,,A B C D 四件玩具分给三个小朋友,每位小朋友至少分到一件玩具,且,A B 两件玩具不能分给同一个人,则不同的分法有( )A .36种B .30种C .24种D .18种 【答案】BD C B A ,,,四件玩具分给三个小朋友,每位小朋友至少分到一件玩具的分法数目首先将4件玩具分成3组,其中1组有2件,剩余2组各1件,有624=C 种分组方法,再将这3组对应三个小朋友,有633=A 种方法,则有3666=⨯B A ,两件玩具分给同一个人的分法数目,若B A ,两件玩具分给同一个人,则剩余的2件玩具分给其他2人,有62213=⨯A C 种情况.综上可得,B A ,两件玩具不能分给同一个人的不同分法有30636=-种,故选B. (四)排数问题【例4】在某种信息传输过程中,用四个数字的一个排列(数字允许重复)表示以一个信息,不提排列表示不同信息. 若所有数字只有0,1,则与信息0110之多由四个相对应位置上数字相同的信息个数为( ) A. 9 B.10 C.11 D. 12【分析】信息0110是四个数字,此类“至多”、“至少”类型的问题,可以直接利用分类讨论求解,也可以转化为反面的问题,利用间接法求解.【解析一】(直接法)若0相同,只有1个;若1相同,共有144C =个;若2相同,共有246C =个,故共有14611++=个.【解析二】(间接法)若3个数字相同,共有246C =个,若4个数字相同共4个,二不同排列个数为4216=个,所以共有16(14)11-+=个.【点评】该题中要求的是“至多”有两个位置上数字相同,易出现的问题是分类混淆,漏掉各位数字信息均不同的情况,解决此类问题的关键是准确确定分类标准,分类计数时要做到不重不漏.【小试牛刀】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) A .144个 B .120个 C .96个 D .72个 【答案】B【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B . (五)摸球问题【例5】【浙江温州市十校联合体2014届高三上学期期初联考】将四个相同的红球和四个相同的黑球排成一排,然后从左至右依次给它们赋以编号l,2,…,8.则红球的编号之和小于黑球编号之和的排法有 种.【分析】注意到4个相同的红球没有区别,4个相同的黑球也没有区别,先求出任意排放的排法7048=C ,编号相等的结果必有四组,其中每组一黑球一白球的编号和为9,则有)8,1(,)7,2(,)6,3(,)5,4(四种,红黑互换编号就有8种,因为红球的编号之和小于黑球编号之和的排法和大于的排法一样,则红球的编号之和小于黑球编号之和的排法有3122670=--种. 【解析】依题意,任意排放的排法7048=C ,红球编号与黑球编号相等的情况有)8,1(,)7,2(,)6,3(,)5,4(四种,红黑互换编号就是8种,所以红球的编号之和小于黑球编号之和的排法有3122670=--种. 【点评】要搞清组合与排列的区别与联系:组合与顺序无关,排列与顺序有关;排列可以分成先选取(组合)后排列两个步骤进行.【小试牛刀】四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有 种(用数字作答). 【答案】42【解析】根据题意,分2步进行分析,①、先在编号为1,2,3的三个盒子中,取出2个盒子,有233C =种取法, ②、将4个小球放进取出的2个盒子中,每个小球有2种放法,则4个小球一共有2×2×2×2=24种, 其中有1个空盒,即4个小球都放进其中1个盒子的情况有2种;则将4个小球放进取出的2个盒子中,且不能有空盒,其放法数目为(24﹣2)=14种, 故四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法为3×14=42种; 故答案为:42.(六)“至多”、“至少”问题【例6】某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)甲、乙两人至少有一人参加,有多少种选法?(2)队中至少有一名内科医生和一名外科医生,有几种选法? 【分析】“无序问题”用组合,注意分类处理.【解析】(1)分两类:甲、乙中有一人参加,甲、乙都参加,共有C 12C 418+C 318=6 936(种);(2)方法一(直接法):至少有一名内科医生和一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C 112C 48+C 212C 38+C 312C 28+C 412C 18=14 656(种).方法二(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C 520-(C 512+C 58)=14656(种).【点评】 对于有条件的组合问题,可能遇到含某个(些)元素与不含某个(些)元素问题;也可能遇到“至多”或“至少”等组合问题的计算,此类问题要注意分类处理或间接计算,切记不要因为“先取再后取”产生顺序造成计算错误.选择恰当分类标准,避免重复遗漏,出现“至少、至多”型问题,注意间接法的运用. 【小试牛刀】西部某县委将7位大学生志愿者(4男3女) 分成两组, 分配到两所小学支教, 若要求女生不能单独成组, 且每组最多5人, 则不同的分配方案共有( )A .36种B .68种C .104种D .110种 【答案】C【解析】分组的方案有3、4和2、5两类,第一类有3272(1)68C A -⋅=种;第二类有222732()36C C A -⋅=种,所以共有N=68+36=104种不同的方案. (七)信息迁移题【例7】回文数是指从左到右与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.(*)则:(1)4位回文数有________个;(2)2n +1(n ∈N *)位回文数有________个.(**) 【分析】由(*)式,理解“特殊”背景——回文数的含义,借助计数原理计算.结合(**),可从2位回文数,3位回文数,4位回文数探索求解方法,从特殊到一般发现规律.【解析】(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法;中间两位一样,有10种填法.共计9×10=90(种)填法,即4位回文数有90个.(2)根据回文数的定义,此问题也可以转化成填方格.由计数原理,共有9×10n 种填空.【点评】 (1)一题两问,以“回文数”为新背景,考查计数原理,体现了化归思想,将确定回文数的问题转化为“填方格”问题,进而利用分步乘法计数原理解决,将新信息转化为所学的数学知识解决.(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确.【小试牛刀】回文数是指从左到右读与从右到左读都一样的正整数,如2,11,242,6776,83238等,设n 位回文数个数为n a (n 为正整数),如11是2位回文数,则下列说法正确的是( )A.4100a =B.()21210n n a a n N ++=∈C.()22110n n a a n N -+=∈D.以上说法都不正确 【答案】B.【解析】A :491090a =⋅=,故A 错误;根据对称性可知,21210n n a a +=,故B 正确,C,错误,故选 B.四、迁移运用1.【江西省临川第一中学等九校2019届高三3月联考】已知三棱锥的6条棱代表6种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,没有公共顶点的两条棱代表的化工产品放在同一仓库是危险的。
第2讲 数列求和及综合应用高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透.真 题 感 悟1.(2017·全国Ⅲ卷)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1,又n =1时,a 1=2适合上式,从而{a n }的通项公式为a n =22n -1.(2)记⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n2n +1.2.(2017·山东卷)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解 (1)设{a n }的公比为q , 由题意知⎩⎨⎧a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得⎩⎨⎧a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1,两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n .考 点 整 合1.(1)数列通项a n 与前n 项和S n 的关系,a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 2.数列求和(1)分组转化求和:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 3.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题、不等关系或恒成立问题.热点一 a n 与S n 的关系问题【例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值. 解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14, 所以数列{a n }是公比、首项均为-14的等比数列. 所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n.(2)b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2, c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.【训练1】 (2018·安徽江南名校联考)已知数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足2(S n +1)=(n +3)a n . (1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1a n a n +1,记数列{b n }的前n 项和为T n ,求证:T n <3.(1)解 2(S n +1)=(n +3)a n ,① 当n ≥2时,2(S n -1+1)=(n +2)a n -1,② ①-②得,(n +1)a n =(n +2)a n -1, 所以a n n +2=a n -1n +1(n ≥2),又∵a 11+2=13,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +2是首项为13的常数列. 所以a n =13(n +2). (2)证明 由(1)知,b n =1a n a n +1=9(n +2)(n +3)=9⎝ ⎛⎭⎪⎫1n +2-1n +3.∴T n =b 1+b 2+b 3+…+b n=9⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫1n +2-1n +3=9⎝ ⎛⎭⎪⎫13-1n +3=3-9n +3<3.热点二 数列的求和 考法1 分组转化求和【例2-1】 (2018·合肥质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63.(1)求数列{a n }的通项公式;(2)若b n =2a n +(-1)n ·a n ,求数列{b n }的前n 项和T n .解 (1)∵{a n }为等差数列,∴⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎨⎧a 1=3,d =2.因此{a n }的通项公式a n =2n +1.(2)∵b n =2a n +(-1)n ·a n =22n +1+(-1)n ·(2n +1) =2×4n +(-1)n ·(2n +1),∴T n =2×(41+42+…+4n )+[-3+5-7+9-…+(-1)n (2n +1)]=8(4n-1)3+G n .当n 为偶数时,G n =2×n2=n , ∴T n =8(4n -1)3+n ;当n 为奇数时,G n =2×n -12-(2n +1)=-n -2, ∴T n =8(4n -1)3-n -2,∴T n =⎩⎪⎨⎪⎧8(4n -1)3+n (n 为偶数),8(4n -1)3-n -2 (n 为奇数).探究提高 1.在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 的奇偶进行讨论.最后再验证是否可以合并为一个表达式. 2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组. 考法2 裂项相消法求和【例2-2】 (2018·郑州调研)设S n 为数列{a n }的前n 项和,S n =2n 2+5n . (1)求证:数列{3a n }为等比数列; (2)设b n =2S n -3n ,求数列⎩⎨⎧⎭⎬⎫n a n b n 的前n 项和T n .(1)证明 ∵S n =2n 2+5n ,∴当n ≥2时,a n =S n -S n -1=4n +3. 又当n =1时,a 1=S 1=7也满足a n =4n +3.故a n =4n +3(n ∈N *).由a n +1-a n =4,得3a n +13a n =3a n +1-a n =34=81. ∴数列{3a n }是公比为81的等比数列. (2)解 ∵b n =4n 2+7n ,∴n a n b n =1(4n +3)(4n +7)=14⎝⎛⎭⎪⎫14n +3-14n +7, ∴T n =14⎝ ⎛⎭⎪⎫17-111+111-115+…+14n +3-14n +7 =14⎝ ⎛⎭⎪⎫17-14n +7=n7(4n +7). 探究提高 1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【训练2】 (2018·成都二诊)设正项等比数列{a n },a 4=81,且a 2,a 3的等差中项为32(a 1+a 2).(1)求数列{a n }的通项公式;(2)若b n =log 3a 2n -1,数列{b n }的前n 项和为S n ,数列{c n }满足c n =14S n -1,T n 为数列{c n }的前n 项和,若T n <λn 恒成立,求λ的取值范围. 解 (1)设等比数列{a n }的公比为q (q >0),由题意,得⎩⎨⎧a 4=a 1q 3=81,a 1q +a 1q 2=3(a 1+a 1q ),解得⎩⎨⎧a 1=3,q =3.所以a n =a 1q n -1=3n .(2)由(1)得b n =log 332n -1=2n -1, S n =n (b 1+b n )2=n [1+(2n -1)]2=n 2∴c n =14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=n 2n +1. 若T n =n 2n +1<λn 恒成立,则λ>12n +1(n ∈N *)恒成立,则λ>⎝ ⎛⎭⎪⎫12n +1max ,所以λ>13.考法3 错位相减求和【例2-3】 (2018·潍坊一模)公差不为0的等差数列{a n }的前n 项和为S n ,已知S 4=10,且a 1,a 3,a 9成等比数列. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和T n .解 (1)设{a n }的公差为d ,由题设得⎩⎨⎧4a 1+6d =10,a 23=a 1·a 9,∴⎩⎨⎧4a 1+6d =10,(a 1+2d )2=a 1(a 1+8d ). 解之得a 1=1,且d =1. 因此a n =n .(2)令c n =n3n ,则T n =c 1+c 2+…+c n =13+232+333+…+n -13n -1+n 3n ,①13T n =132+233+…+n -13n +n3n +1,② ①-②得:23T n =⎝ ⎛⎭⎪⎫13+132+…+13n -n 3n +1=13⎝ ⎛⎭⎪⎫1-13n 1-13-n 3n +1=12-12×3n -n 3n +1, ∴T n =34-2n +34×3n .探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎨⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎨⎧11=2b 1+d ,17=2b 1+3d , 可解得⎩⎨⎧b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1., 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2]. 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2.所以T n =3n ·2n +2.热点三 与数列相关的综合问题【例3】 设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2. ∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,∴q =3. ∴b n =3n -1.∴数列{b n }的前n 项和T n =1-3n 1-3=3n -13-1=3n -12.T n ≤S n 可化为3n -12≤n 2. 又n ∈N *,∴n =1,或n =2故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【训练4】 (2018·长沙雅礼中学质检)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列, 故a n =2n .(2)由(1)可得1a n=12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n . 由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000,即2n >1 000,又∵n ∈N *,因为29=512<1 000<1 024=210,所以n ≥10, 于是,使|T n -1|<11 000成立的n 的最小值为10.1.错位相减法的关注点(1)适用题型:等差数列{a n }乘以等比数列{b n }对应项得到的数列{a n ·b n }求和. (2)步骤:①求和时先乘以数列{b n }的公比.②把两个和的形式错位相减.③整理结果形式.2.裂项求和的常见技巧 (1)1n (n +1)=1n -1n +1.(2)1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k .(3)1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.(4)14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1. 3.数列与不等式综合问题(1)如果是证明不等式,常转化为数列和的最值问题,同时要注意比较法、放缩法、基本不等式的应用;(2)如果是解不等式,注意因式分解的应用.一、选择题1.已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3=a 5.令b n =(-1)n -1a n ,则数列{b n }的前2n 项和T 2n 为( )A.-nB.-2nC.nD.2n解析 设等差数列{a n }的公差为d ,由S 3=a 5得3a 2=a 5,∴3(1+d )=1+4d ,解得d =2,∴a n =2n -1,∴b n =(-1)n -1(2n -1),∴T 2n =1-3+5-7+…+(4n -3)-(4n -1)=-2n .答案 B2.(2018·衡水中学月考)数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A.-10B.-9C.10D.9解析 由于a n =1n (n +1)=1n -1n +1. ∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1.因此1-1n +1=910,所以n =9. 所以直线方程为10x +y +9=0.令x =0,得y =-9,所以在y 轴上的截距为-9.答案 B3.已知T n 为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A.1 026B.1 025C.1 024D.1 023解析 因为2n +12n =1+12n ,所以T n =n +1-12n ,则T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,所以整数m 的最小值为1 024.答案 C4.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.30解析 ∵a n +1-a n =2,a 1=-5,∴数列{a n }是公差为2,首项为-5的等差数列. ∴a n =-5+2(n -1)=2n -7.数列{a n }的前n 项和S n =n (-5+2n -7)2=n 2-6n . 令a n =2n -7≥0,解得n ≥72.∴n ≤3时,|a n |=-a n ;n ≥4时,|a n |=a n .则|a 1|+|a 2|+…+|a 6|=-a 1-a 2-a 3+a 4+a 5+a 6=S 6-2S 3=62-6×6-2(32-6×3)=18.答案 C5.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =( )A.2B.2nC.2n +1-2D.2n -1-2 解析 因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案 C二、填空题6.(2018·昆明诊断)数列{a n }满足a n =n (n +1)2,则1a 1+1a 2+…+1a 2 018等于________.解析 a n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1 ∴1a 1+1a 2+…+1a 2 018=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 018-12 019 =2⎝ ⎛⎭⎪⎫1-12 019=4 0362 019. 答案 4 0362 0197.记S n为正项数列{a n}的前n项和,且a n+1=2S n,则S2 018=________. 解析由题意得4S n=(a n+1)2,①当n=1时,4a1=(a1+1)2,a1=1,当n≥2时,4S n-1=(a n-1+1)2,②①-②得a2n-a2n-1-2(a n+a n-1)=0,所以(a n-a n-1-2)(a n+a n-1)=0,又a n>0,所以a n-a n-1=2,则{a n}是以1为首项,2为公差的等差数列.所以a n=2n-1,S2 018=2 018(1+2×2 018-1)2=2 0182.答案 2 01828.(2018·贵阳质检)已知[x]表示不超过x的最大整数,例如:[2.3]=2,[-1.5]=-2.在数列{a n}中,a n=[lg n],n∈N+,记S n为数列{a n}的前n项和,则S2 018=________.解析当1≤n≤9时,a n=[lg n]=0.当10≤n≤99时,a n=[lg n]=1.当100≤n≤999时,a n=[lg n]=2.当1 000≤n≤2 018时,a n=[lg n]=3.故S2 018=9×0+90×1+900×2+1 019×3=4 947.答案 4 947三、解答题9.(2018·济南模拟)记S n为数列{a n}的前n项和,已知S n=2n2+n,n∈N*. (1)求数列{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.解(1)由S n=2n2+n,得当n=1时,a1=S1=3;当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1. 又a1=3满足上式.所以a n=4n-1(n∈N*).(2)b n=1a n a n+1=1(4n-1)(4n+3)=14⎝⎛⎭⎪⎫14n-1-14n+3.所以T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-17+⎝ ⎛⎭⎪⎫17-110+…+⎝ ⎛⎭⎪⎫14n -1-14n +3 =14⎝ ⎛⎭⎪⎫13-14n +3=n 12n +9. 10.(2018·南昌调研)已知数列{a n -n }是等比数列,且a 1=9,a 2=36.(1)求数列{a n }的通项公式;(2)求数列{a n -n 2}的前n 项和S n .解 (1)设等比数列{a n -n }的公比为q ,则q =a 2-2a 1-1=6-23-1=2. 从而a n -n =(3-1)×2n -1,故a n =(n +2n )2.(2)由(1)知a n -n 2=n ·2n +1+4n .记T n =22+2·23+…+n ·2n +1,则2T n =23+2·24+…+(n -1)·2n +1+n ·2n +2,两式作差,得-T n =22+23+…+2n +1-n ·2n +2=2n +2-4-n ·2n +2=(1-n )·2n +2-4,∴T n =(n -1)·2n +2+4,故S n =T n +4-4n +11-4=(n -1)·2n +2+4n +1+83. 11.若数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n +1.(1)求数列{a n },{b n }的通项公式;(2)设数列{c n }满足c n =a n +1b n +1,数列{c n }的前n 项和为T n ,若不等式(-1)n λ<T n +n 2n -1对一切n ∈N *恒成立,求实数λ的取值范围.解 (1)∵数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n +1. ∴n =1时,a 1+1=2,解得a 1=1.又数列{a n }是公差为2的等差数列,∴a n =1+2(n -1)=2n -1.∴2nb n =nb n +1,化为2b n =b n +1,∴数列{b n }是首项为1,公比为2的等比数列. ∴b n =2n -1.(2)由数列{c n }满足c n =a n +1b n +1=2n 2n =n 2n -1, 数列{c n }的前n 项和为T n =1+22+322+…+n 2n -1, ∴12T n =12+222+…+n -12n -1+n 2n , 两式作差,得∴12T n =1+12+122+…+12n -1-n 2n =1-12n 1-12-n 2n =2-n +22n ,∴T n =4-n +22n -1. 不等式(-1)n λ<T n +n2n -1,化为(-1)n λ<4-22n -1, n =2k (k ∈N *)时,λ<4-22n -1,取n =2,∴λ<3. n =2k -1(k ∈N *)时,-λ<4-22n -1,取n =1,∴λ>-2. 综上可得:实数λ的取值范围是(-2,3).。
专题19 数列通项与求和问题【自主热身,归纳提炼】1、 等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知374S =,6634S =,则8a = . 【答案】32 【解析】由于,故2q =,而,故114a =,则781a a q = 32=. 2、对于数列{a n },定义数列{b n }满足b n =a n +1-a n (n ∈N *),且b n +1-b n =1(n ∈N *),a 3=1,a 4=-1,则a 1=________. 【答案】 8【解析】:因为b 3=a 4-a 3=-1-1=-2,所以b 2=a 3-a 2=b 3-1=-3,所以b 1=a 2-a 1=b 2-1=-4,三式相加可得a 4-a 1=-9,所以a 1=a 4+9=8.3、设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.【答案】: 58解后反思 本题主要考查等差中项和等比中项的性质及应用,体现了等差数列和等比数列的基本量的计算问题中的方程思想,等比数列的求和要注意公比是否为1.:4、已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________. 【答案】:. 2当q =1时,显然不满足题意;当q ≠1时, ⎩⎪⎨⎪⎧a 1-q21-q =2a 1q +3,a1-q 31-q=2a 1q 2+3,整理得⎩⎪⎨⎪⎧a 1-q =3,a 1+q -q2=3,解得q =2.5、 记公比为正数的等比数列{a n }的前n 项和为S n .若a 1=1,S 4-5S 2=0,则S 5的值为________. 【答案】: 31【解析】:设公比为q ,且q >0,又a 1=1,则a n =q n -1.由S 4-5S 2=0,得(1+q 2)S 2=5S 2,所以q =2,所以S 5=1-251-2=31.解后反思 利用S 4=(1+q 2)S 2,可加快计算速度,甚至可以心算. 6、设数列{}n a 的前n 项和为n S ,若,则数列{}n a 的通项公式为n a =.【答案】:12n -7、 已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n(n ∈N *),若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________. 【答案】-n-13【解析】:因为|a n +1-a n |=2n,所以当n =1时,|a 2-a 1|=2.由a 2>a 1,a 1=-1得a 2=1.当n =2时,|a 3-a 2|=4,得a 3=-3或a 3=5.因为{a 2n -1}单调递减,所以a 3=-3.当n =3时,|a 4-a 3|=8,得a 4=5或a 4=-11.因为{a 2n }单调递增,所以a 4=5.同理得a 5=-11,a 6=21.因为{a 2n -1}单调递减,a 1=-1<0,所以a 2n -1<0.同理a 2n >0.所以当n 为奇数时(n ≥3),有a n -a n -1=-2n -1,a n -1-a n -2=2n -2.两式相加得a n -a n -2=-2n -2.那么a 3-a 1=-2;a 5-a 3=-23;…;a n -a n -2=-2n -2.以上各式相加得a n -a 1=-(2+23+25+…+2n -2).所以a n =a 1-2[1-2n -32+1]1-22=-2n+13.同理,当n 为偶数时,a n =2n-13.所以a n=⎩⎪⎨⎪⎧-2n+13,n 为奇数,2n-13, n 为偶数.也可以写成a n =-n-13.【问题探究,变式训练】例1、已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=21,S 4+b 4=30.(1) 求数列{a n }和{b n }的通项公式;(2) 记c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.【解析】: (1) 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .(3分)由条件a 4+b 4=21,S 4+b 4=30,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=21,8+6d +2q 3=30,解得⎩⎪⎨⎪⎧d =1,q =2.所以a n =n +1,b n =2n ,n ∈N *.(7分) (2) 由题意知c n =(n +1)×2n. 记T n =c 1+c 2+c 3+…+c n .则T n =2×2+3×22+4×23+…+n ×2n -1+(n +1)×2n,2T n =2×22+3×23+…+(n -1)×2n -1+n ×2n +(n +1)2n +1,所以-T n =2×2+(22+23+ (2))-(n +1)×2n +1,(11分)即T n =n ·2n +1,n ∈N *.(14分)【变式1】、在数列{}n a 中,已知113a =,,*n ∈N ,设n S 为{}n a 的前n 项和.(1)求证:数列{3}n n a 是等差数列;(2)求n S .证明 (1)因为,所以,又因为113a =,所以113=1a ⋅, 所以{3}n n a 是首项为1,公差为2-的等差数列.(2)由(1)知,所以,所以,所以,两式相减得.112()3n n +=⋅,所以3n nn S =. 【变式2】、已知数列{}n a 的前n 项和为n S ,且(*∈N n ).(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足,求数列{}n b 的通项公式.解 (1)由22n n S a =-,得.两式相减,得,所以12n n a a +=,由又1122S a =-,得1122a a =-,12a =, 所以数列{}n a 为等比数列,且首项为2,公比2q =,所以2n n a =.(2)由(1)知.由(*n ∈N ),得(2n ≥).故,即.当1n =时,.所以【关联1】、数列{a n }的前n 项和为S n ,a 1=2,S n =a n ⎝ ⎛⎭⎪⎫n3+r (r ∈R ,n ∈N *).(1) 求r 的值及数列{a n }的通项公式; (2) 设b n =na n(n ∈N *),记{b n }的前n 项和为T n .①当n ∈N *时,λ<T 2n -T n 恒成立,求实数λ的取值范围;②求证:存在关于n 的整式g (n ),使得(T i +1)=T n ·g (n )-1对一切n ≥2,n∈N *都成立.思路分析 (1) 利用关系式a n=⎩⎪⎨⎪⎧S 1,n =1,S n-S n -1,n ≥2,n ∈N *,)将a n 与S n 的关系转化为a n 与a n -1的关系,再利用累乘法求{a n }的通项公式;(2) ①利用数列{T 2n -T n }的单调性求T 2n -T n 的最小值即可;②利用条件得到T n 与T n -1的关系,通过变形,化简和式(T i +1),即可证得命题.规范解答 (1) 当n =1时,S 1=a 1⎝ ⎛⎭⎪⎫13+r ,所以r =23,(2分) 所以S n =a n ⎝ ⎛⎭⎪⎫n 3+23.当n ≥2时,S n -1=a n -1⎝ ⎛⎭⎪⎫n 3+13, 两式相减,得a n =n +23a n -n +13a n -1,所以a n a n -1=n +1n -1(n ≥2).(4分) 所以a 2a 1·a 3a 2·…·a n a n -1=31×42×53×…×n n -2×n +1n -1,即a n a 1=n n +11×2. 所以a n =n (n +1)(n ≥2),又a 1=2适合上式. 所以a n =n (n +1)(n ∈N *).(6分) (2) ①因为a n =n (n +1),所以b n =1n +1,T n =12+13+…+1n +1. 所以T 2n =12+13+…+12n +1,所以T 2n -T n =1n +2+1n +3+…+12n +1.(8分) 令B n =T 2n -T n =1n +2+1n +3+…+12n +1. 则B n +1=1n +3+1n +4+…+12n +3. 所以B n +1-B n =12n +2+12n +3-1n +2=3n +42n +22n +3n +2>0,所以B n +1>B n ,所以B n 单调递增,(10分) (B n )min =B 1=13,所以λ<13.(12分)②因为T n =12+13+…+1n +1.所以当n ≥2时,T n -1=12+13+…+1n ,所以T n -T n -1=1n +1,即(n +1)T n -nT n -1=T n -1+1.(14分) 所以当n ≥2时,(T i +1)=(3T 2-2T 1)+(4T 3-3T 2)+(5T 4-4T 3)+…+[(n +1)T n -nT n -1]=(n +1)T n -2T 1=(n +1)T n -1,所以存在关于n 的整式g (n )=n +1,使得(T i +1)=T n ·g (n )-1对一切n ≥2,n ∈N *都成立.(16分) 解后反思 本题以a n 与S n 的关系为背景,考查了数列的通项、求和、数列的单调性,考查学生利用数列知识解决数列与不等式的综合问题的能力,以及代数变形与推理论证能力. 【关联2】、已知各项是正数的数列{a n }的前n 项和为S n . (1) 若S n +S n -1=a 2n +23(n∈N *,n ≥2),且a 1=2.①求数列{a n }的通项公式; ②若S n ≤λ·2n +1对任意n ∈N *恒成立,求实数λ的取值范围.(2) 已知数列{a n }是公比为q (q >0,q ≠1)的等比数列,且数列{a n }的前n 项积为10T n .若存在正整数k ,对任意n ∈N *,使得T (k +1)nT kn为定值,求首项a 1的值. . 思路分析 (1) ①利用a n =S n -S n -1(n ≥2),得到a n +1与a n 的关系,并特别注意式中的n ≥2.对于n =1的情况必须单独处理.由3(S 2+S 1)=a 22+2及a 1=2,得3(4+a 2)=a 22+2,即a 22-3a 2-10=0. 结合a 2>0,解得a 2=5,满足a 2-a 1=3.(3分)所以对n ∈N *,均有a n +1-a n =3,即数列{a n }是首项为a 1=2,公差为3的等差数列, 数列{a n }的通项公式为a n =3n -1.(5分) ②由①知,S n =n (a 1+a n )2=n (3n +1)2,所以λ≥n (3n +1)2n +2对n ∈N *恒成立.(6分)记f (n )=n (3n +1)2n +2,n ∈N *.考虑f (n +1)-f (n )=(n +1)(3n +4)2n +3-n (3n +1)2n +2=-(3n 2-5n -4)2n +3.(8分) 当n ≥3时,f (n +1)<f (n ),且f (1)=12,f (2)=78,f (3)=1516.所以f (n )max =f (3)=1516,从而λ≥1516.所以实数λ的取值范围是⎣⎢⎡⎭⎪⎫1516,+∞.(11分)T n =nb 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫b 1-d 2n ,记A =d 2≠0,B =b 1-d2,则T n =An 2+Bn .所以T (k +1)n T kn =A (k +1)2n 2+B (k +1)n Ak 2n 2+Bkn =k +1k ·A (k +1)n +B Akn +B.因为对任意n ∈N *,T (k +1)n T kn 为定值,所以A (k +1)n +BAkn +B也为定值. 设A (k +1)n +BAkn +B=μ,则[A (k +1)-μAk ]n +B -B μ=0对n ∈N *恒成立. 所以⎩⎪⎨⎪⎧A (k +1)-μAk =0,①B -B μ=0,②由①得μ=k +1k,代入②得B =0.(15分) 即b 1=12d ,即lg a 1=12lg q ,得a 1=q .(16分)【关联3】、已知数列{}n a 满足,数列{}n a 的前n 项和为n S .(1)求13a a +的值; (2)若.① 求证:数列{}2n a 为等差数列;② 求满足的所有数对()p m ,.【思路分析】(1)直接令1,2n =得到关系式,两式相减,求出13a a +的值 (2)分别赋值21,2n n -,得到关系式,两式相减,得到,结合1532a a a +=,计算出114a =,从而求2114n a -=,代入关系式,得出294n a n =+,利用定义法证明{}2n a 为等差数列(3)求和得到2n S ,代入关系式整理得,需要转化两个因数相乘的形式,变形处理,利用平方差公式得到,因为且均为正整数,则两个因数只能为27和1,从而求出p m ,的值.规范解答 (1)由条件,得1312a a +=.……………………… 3分(2)①证明:因为,所以,, ……………………………………………… 6分于是,所以314a =,从而114a =. ……………………………………………… 8分所以,所以2114n a -=,将其代入③式,得294n a n =+, 所以(常数),所以数列{}2n a 为等差数列.……………………………………………… 10分 ②注意到121n a a +=, 所以,…………………………………………… 12分由224p m S S =知.所以,即,又*p m ∈N ,,所以且均为正整数,所以,解得,所以所求数对为(104),. 16分 例2、 正项数列{}n a 的前n 项和n S 满足: .(1)求数列{}n a 的通项公式n a ;(2)令,数列{}n b 的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <. 解 (1)由,得.由于{}n a 是正项数列,所以.于是时,.综上,数列{}n a 的通项2n a n =.(2)证明 由于,则.所以.【变式1】、数列{}n a 的前n 项和为n S ,.(1)求r 的值及数列{}n a 的通项公式;(2)设,记{}n b 的前n 项和为n T .①当n N *∈时,2n n T T λ<-恒成立,求实数λ的取值范围;②求证:存在关于n 的整式()g n ,使得对一切2,n n N *∈≥都成立.(2)①因为(1)n a n n =+,所以11n b n =+,所以.所以,所以.令,则.所以.所以1n n B B +>,所以n B 单调递增. 所以n B 的最小值为113B =,所以13λ<. ②因为,所以当2n ≥时,.所以即.当2n ≥时.所以存在关于的整式()1g n n =+.使得对一切都成立.【变式2】、已知数列{a n }满足a 1=10,a n -10≤a n +1≤a n +10(n ∈N *).(1) 若{a n }是等差数列,S n =a 1+a 2+…+a n ,且S n -10≤S n +1≤S n +10(n ∈N *),求公差d 的取值集合; (2) 若b 1,b 2,…,b k 成等比数列,公比q 是大于1的整数,b 1=10,b 2≤20,且b 1+b 2+…+b k >2017,求正整数k 的最小值;(3) 若a 1,a 2,…,a k 成等差数列,且a 1+a 2+…+a k =100,求正整数k 的最小值以及k 取最小值时公差d 的值.(3) a 1+a 2+…+a k =10k +k k -2d =100,所以d =200-20kk k -.(11分)由题意|d |=|a n +1-a n |≤10,所以⎪⎪⎪⎪⎪⎪200-20k k k -≤10.(13分)所以-k 2+k ≤20-2k ≤k 2-k ,所以k ≥4, 所以k min =4.(15分) 此时d =10.(16分)解后反思 本题第(2)问在原题上有所改动,原题如下:(2) 若a 1,a 2, …,a k 成等比数列,公比q 是大于1的整数,且a 1+a 2+…+a k >2017,求正整数k 的最小值. 原题的漏洞在于a n =10×2n -1以指数级上升,条件中的a n +1≤a n【变式3】、已知S n 是数列{a n }的前n 项和,a 1=3,且2S n =a n +1-3(n∈N *). (1) 求数列{a n }的通项公式;(2) 对于正整数i ,j ,k (i <j <k ),已知λa j ,6a i ,μa k 成等差数列,求正整数λ,μ的值;(3) 设数列{b n }前n 项和是T n ,且满足:对任意的正整数n ,都有等式a 1b n +a 2b n -1+a 3b n -2+…+a n b 1=3n +1-3n -3成立. 求满足等式T n a n =13的所有正整数n .思路分析 (1) 当n≥2时,S n -S n -1=a n ,得到a n +1与a n 的关系式; (2) 在等式λ·3j+μ·3k=12·3i两边同除以3i或3j;(3) 先求出b n =2n -1,T n =n 2.再试算T n a n的前几项,猜出【答案】,并证明结论.规范解答 (1) 2S n =a n +1-3,2S n -1=a n -3(n≥2),两式相减,得2a n =a n +1-a n .即当n≥2时,a n +1=3a n .(2分)由a 1=S 1=3,得6=a 2-3,即a 2=9,满足a 2=3a 1. 所以对n∈N *,都有a n +1=3a n ,即a n +1a n=3. 所以数列{a n }是首项为3,公比为3的等比数列,通项公式a n =3n.(4分) (2) 由(1),得λ·3j +μ·3k =12·3i ,即λ+μ·3k -j=43j -i -1. 因为正整数i ,j ,k 满足i <j <k ,且λ,μ∈N *,所以λ+μ·3k -j=43j -i -1∈N *.(6分) 所以只有⎩⎪⎨⎪⎧3j -i -1=1,3k -j =3,即λ+3μ=4,得λ=μ=1.(8分)(3) 由(1)知,31b n +32b n -1+33b n -2+…+3n b 1=3n +1-3n -3, ①及31b n +1+32b n +33b n -1+…+3n +1b 1=3n +2-3(n +1)-3, ②②/3-①,得b n +1=2n +1.(10分)又3b 1=9-3-3=3,得b 1=1,所以b n =2n -1,从而T n =n 2.设f (n )=T n a n =n 23n ,n ∈N *.当n =1时T 1a 1=13;当n =2时T 2a 2=49;当n =3时T 3a 3=13;(12分)下面证明:对任意正整数n >3都有T n a n <13,T n +1a n +1-T n a n =(n +1)2⎝ ⎛⎭⎪⎫13n +1-n 2⎝ ⎛⎭⎪⎫13n =⎝ ⎛⎭⎪⎫13n +1[(n +1)2-3n 2]=⎝ ⎛⎭⎪⎫13n +1(-2n 2+2n +1), 当n ≥3时,-2n 2+2n +1=(1-n 2)+n (2-n )<0,即T n +1a n +1-T na n<0, 所以当n ≥3时,T n a n 递减,所以对任意正整数n >3都有T n a n <T 3a 3=13.综上可得,满足等式T n a n =13的正整数n 的值为1和3.(16分)解后反思 第(1)题中,要注意验证a 2=3a 1; 第(2)题中,也可化为λ·3j -i -1+μ·3k -i -1=4,说明只能λ=1;第(3)题这种类型的题,一般是先猜再证.若条件出现数列的“和”的等式,则可以利用“差商”法求数列的通项公式,另外利用数列的单调性确定数列项的范围,进而解决相关的问题也是数列问题中的常用的数学思想方法.【变式4】、已知数列{a n }的前n 项和为S n ,对任意正整数n ,总存在正数p ,q ,r ,使得a n =p n -1,S n =qn-r 恒成立;数列{b n }的前n 项和为T n ,且对任意正整数n ,2T n =nb n 恒成立. (1) 求常数p ,q ,r 的值; (2) 证明数列{b n }为等差数列;(3) 若b 2=2,记P n =2n +b 1a n +2n +b 22a n +2n +b 34a n +…+2n +b n -12n -2a n +2n +b n 2n -1a n ,是否存在正整数k ,使得对任意正整数n ,P n ≤k 恒成立,若存在,求正整数k 的最小值;若不存在,请说明理由.思路分析 第(1)问,由于所给出的是关于通项与和的一般性的式子,因此,利用特殊与一般的关系,将一般进行特殊化来处理,可分别取n =2,3,求出p ,q 的值(必要性),再验证是否符合题意(充分性).第(2)问,根据数列的通项与其前n 项和的关系a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2来得到数列的递推关系,有了递推关系后来判断数列是等差数列就有两种方法:一是利用递推关系求出数列的通项公式,进而通过定义来加以证明;二是利用等差中项来进行证明.第(3)问,根据所要研究的对象“P n ≤k 恒成立”可以看出,本题的本质就是求P n 的最大值,而研究一个数列的最值的基本方法是研究数列的单调性,因此,利用邻项作差的方法来判断{P n }的单调性,进而求出数列的最大值.另外,注意到本题的P n 是一个差比数列的和,因此,本题又可以通过先求和,然后再判断单调性,进而求最值的方法来加以求解,但这种方法并不简便,故采用直接判断单调性的方法来加以求解. 规范解答 (1) 因为S n =q n-r ①, 所以S n -1=qn -1-r ②(n ≥2),①-②得S n -S n -1=q n-q n -1,即a n =q n-qn -1(n ≥2),(1分)又a n =pn -1,所以pn -1=q n-qn -1(n ≥2),n =2时,p =q 2-q ;n =3时,p 2=q 3-q 2. 因为p ,q 为正数,解得p =q =2.(3分)又因为a 1=1,S 1=q -r ,且a 1=S 1,所以r =1.(4分) (2) 因为2T n =nb n ③,当n ≥2时,2T n -1=(n -1)b n -1 ④,③-④得2b n =nb n -(n -1)b n -1,即(n -2)b n =(n -1)b n -1 ⑤,(6分)证法1 又(n -1)b n +1=nb n ⑥,⑤+⑥得(2n -2)b n =(n -1)b n -1+(n -1)b n +1,(7分) 即2b n =b n -1+b n +1,所以{b n }为等差数列.(8分) 证法2 由(n -2)b n =(n -1)b n -1,得b n n -1=b n -1n -2, 当n ≥3时,b n n -1=b n -1n -2=…=b 21,所以b n =b 2(n -1),所以b n -b n -1=b 2,(6分)因为n =1时,由2T n =nb n 得2T 1=b 1,所以b 1=0,则b 2-b 1=b 2,(7分) 所以b n -b n -1=b 2,对n ≥2恒成立,所以{b n }为等差数列.(8分)(3) 因为b 1=0,又b 2=2,由(2)知{b n }为等差数列,所以b n =2n -2,(9分) 又由(1)知a n =2n -1,(10分)所以P n =2n 2n -1+2n +22n +…+4n -422n -3+4n -222n -2,又P n +1=2n +22n +…+4n -422n -3+4n -222n -2+4n 22n -1+4n +222n ,所以P n +1-P n =4n 22n -1+4n +222n -2n 2n -1=12n +2-4n ·2n4n,(12分) 令P n +1-P n >0得12n +2-4n ·2n>0, 所以2n <6n +12n =3+12n <4,解得n =1,所以n =1时,P n +1-P n >0,即P 2>P 1,(13分)n ≥2时,因为2n ≥4,3+12n <4,所以2n >3+12n =6n +12n ,即12n +2-4n ·2n<0.此时P n +1<P n ,即P 2>P 3>P 4>…,(14分)所以P n 的最大值为P 2=2×22+2×2+222=72,(15分) 若存在正整数k ,使得对任意正整数n ,P n ≤k 恒成立,则k ≥P max =72,所以正整数k 的最小值为4.(16分)高中数学公式及常用结论大全1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->-⇔11()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是()()()()card A B card B C card C A card A B C ---+充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a bx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n>⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.真值表13.常见结论的否定形式14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=. 24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==. (5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na=(0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r srsa a a r s Q =>∈. (3)()(0,0,)r r rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥. 45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 48.二倍角公式sin 2sin cos ααα=.212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤.s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤. tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈. tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈. sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.61.a 与b 的数量积(或内积) a ·b =|a ||b |cos θ.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式 ,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大;当||y x -最小时,||y x +最小. (2)若和||y x +是定值,则当||y x -最大时, ||xy 最小;当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直直线系方程0Bx Ay λ-+=,λ是参变量. 83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;。
问题21 复杂数列的求和问题
一、考情分析
数列求和是历年高考命题的热点,可以以客观题形式考查,也可以以解答题形式考查数列,公式求和、裂项求和、错位相减法求和是常考问题. 二、经验分享
1.分组转化法求和的常见类型
(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.
(2)通项公式为a n =⎩⎨⎧
b n ,n 为奇数,
c n
,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求
和法求和.
【小试牛刀】【福建省南平市2018届高三上学期第一次综合质量检查】已知数列{}n b 满足
,则该数列的前23 项的和为( )
A. 4194
B. 4195
C. 2046
D. 2047 【答案】A
(三) 裂项相消法
此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了.只剩下有限的几项.注意:○1余下的项前后的位置前后是对称的.○2余下的项前后的正负性是相反的.常用的裂项方法: 【 例3】在等差数列{}n a 中,公差0d ≠,17a =,且2a ,5a ,10a 成等比数列. ⑴求数列{}n a 的通项公式及其前n 项和n S ; ⑵若1
5
n n n b a a +=
⋅,求数列{}n b 的前n 项和n T .
【分析】⑴由2510 a a a ,,成等比数列⇒()7d +⇒2d =⇒25n a n =+
⇒;⑵由⑴可得
⇒
.
【点评】(1)裂项相消法求和的原理及注意问题
①原理:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. ②注意:在相加抵消过程中,有的是依次抵消,有的是间隔抵消,特别是间隔抵消时要注意规律性.
③一般地,若{a n }为等差数列,则求数列⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫1a n a n +1的前n 项和可尝试此方法,事实上,1a n a n +1=d da n a n +1=a n +1-a n da n a n +1=1d ·⎝ ⎛⎭⎪⎫
1a n -1a n +1.
则;
故选:C .
2.【江西省南昌市第二中学2019届高三第六次考试】已知数列
满足:
,则
的前40项的和为( )
A .860
B .1240
C .1830
D .2420 【答案】B
3.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期末】设数列
满足,,且
,若
表示不超过的最大整数,则
( )
【答案】C
【解析】
∵a n+2﹣2a n+1+a n=2,∴a n+2﹣a n+1﹣(a n+1﹣a n)=2,
a2﹣a1=4.
∴{a n+1﹣a n}是等差数列,首项为4,公差为2.
∴a n+1﹣a n=4+2(n﹣1)=2n+2.
∴n≥2时,a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+……+(a2﹣a1)+a1
=2n+2(n﹣1)+……+2×2+2n(n+1).
∴.
∴1.
∴2+2018=2020.
故选:C.
4.【江西省名校学术联盟2019届高三年级教学质量检测】已知函数(其中)的图像经过点,令,则
A.2019 B.C.6057 D.
【答案】B
5.【广东省华南师范大学附属中学2019届高三上学期月考】已知函数,且
,则( )
【答案】B
【解析】,
由
,
可得:
9.【广西南宁市第二中学2018届高三1月月考】已知函数,且
,记
n
S表示{}n a的前n项和,则100S=__________.
【答案】100
10.数列{}n a的通项为,前n项和为n S,则100S= .
【答案】200
【解析】由已知可得;;;
;;;;分析可知偶数项均为1,所以前100项中偶数项的和为15050
⨯=.
分析可知相邻两项奇数项的和为6,所以前100项中奇数项的和为.
.
11.已知数列{a n}满足a1=1,a n+1·a n=2n(n∈N*),则S2 012=.
【答案】3
2
31006-
⋅
【解析】a1=1,a2=2
a1=2,又a n+2·a n+1
a n+1·a n=
2n+1
2n=2.
∴a n+2
a n=2.∴a1,a3,a5,…成等比数列;a2,a4,a6,…成等比数列,
∴S2 012=a1+a2+a3+a4+a5+a6+…+a2 011+a2 012=(a1+a3+a5+…+a2 011)+(a2+a4+a6+…+a2 012)
=1-21 006
1-2+
21-21 006
1-2=3·21 006-3.
12.【安徽省合肥市2019届高三第一次教学质量检测】在平面直角坐标系中,点
()(),记的面积为,则____________.
【答案】
【解析】结合题意,得到,所以该三个点组成的三角形面积为
,对面积求和设得到
,
,
两式子相减,得到,解得
.
13.【湖北省宜昌市2019届高三年级元月调考】已知数列是各项均为正数的等比数列,其前项和为,点、均在函数的图象上,的横坐标为,的横坐标为,直线的斜率为.
若,,则数列的前项和__________.
【答案】
14.【贵州省贵阳第一中学、云南师大附中、广西南宁三中2019届高三“333”高考备考诊断联考】已知数列
的首项
,函数
为奇函数,记为数列
的前项和,则
的值为_____________. 【答案】
【解析】
是奇函数
,
,,
,
,
,如此继续,
得,
.
15.【2018届广东省深中、华附、省实、广雅四校联考】已知等差数列{}n a 的前n 项和为n S ,
,
.
(1)求λ的值; (2)求数列11n n a a +⎧⎫
⎨
⎬⎩⎭
的前n 项和n T .
(2) 由(1)可得21n a n =-,所以
所以,
所以
19.【福建省漳州市2018届高三上学期期末】设数列{}n a 的前n 项和为n S ,且31n n S a =+ ()
*
n N ∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足
,求数列{}n b 的前n 项和n T .
【解析】 (Ⅰ)当n ≥2时,a n =S n -S n -1=3a n +1-3a n -1-1, 即2a n =3a n -1,所以
13
2
n n a a -=,
当n =1时,a 1=3a 1+1,解得112
a =-. 所以数列{a n }是以12-
为首项, 3
2
为公比的等比数列, 即
.
20.已知等比数列{}n a 的前n 项和为n S ,且1
2,,n n S a +成等比数列()
n N *∈.
(1)求a 的值及数列{}n a 的通项公式; (2)若
,求数列1n b ⎧⎫
⎨
⎬⎩⎭
的前n 项和n T . 【答案】(1)1
2n n a -=;(2)
.
【解析】(1)12,,n n S a +成等差数列,∴
,
当1n =时,, 当2n ≥时,
,
{}n a 是等比数列,∴11a =,则42a +=,得2a =-,
∴数列{}n a 的通项公式为.
(2)由(1)得, ∴
21
n
n =
+.。