系统频率特性的测试
- 格式:doc
- 大小:937.00 KB
- 文档页数:8
系统频率特性的测试1简介在电子电路中,系统频率特性是非常重要的性能参数之一。
系统频率特性指的是系统对输入信号频率的响应能力,通俗地说,就是系统对于不同频率的信号的处理能力。
在设计一些高精度和高性能的电路的时候,对系统频率特性的测试就显得非常重要。
在本文中,我们将介绍常见的系统频率特性测试方法,并针对其中的一种方法进行详细的介绍。
常见系统频率特性测试方法Bode图法Bode图法是一种基于频率响应的方法,用于描述系统对输入信号频率的响应能力。
它通常通过Bode图来表示被测系统的频率特性。
Bode图是以频率为横轴、输入输出响应幅值比或相位差为纵轴的图形。
具体来说,Bode图法首先将被测系统激励输入电路,然后通过测量输出信号幅值和相位与输入信号的相对大小和差距来构建图形。
频率响应测试法频率响应测试法是一种基于一个频率输入信号测量系统的输出响应的方法。
具体操作过程是,选取一个频率范围作为输入信号,然后将各个频率的输入信号作为输入,测量对应的输出信号以得到系统的频率响应。
这种方法会输出一个基于不同频率的幅值和相位差的表格,以及对应的曲线图。
载频测试法又称为亚细分测试法,通过选取不同的载频对被测系统进行激励,测量电路的响应电流进行测试。
在实际的应用中,亚细分测试法可以用来评估系统处理高频信号和噪音的能力。
系统频率特性测试方法之一:Bode图法测试过程Bode图法将被测系统激励输入电路,随后测量输出电路随频率变化的幅值和相位,将结果用Bode图进行展示。
具体的测试步骤如下:1.激励输入电路。
在实际测试中,往往选取的是一个正弦波作为输入信号,将其施加到被测系统中。
2.测量输出信号的幅值和相位。
使用输入信号激励电路后,使用测量设备测量输出信号随时间变化的幅值和相位。
3.用Bode图展示幅值和相位的变化。
将得到的幅值和相位数据绘制成Bode图,用以表示对应信号频率下的系统响应能力。
Bode图的意义Bode图在系统性能测试中起着非常重要的作用。
自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。
频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。
本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。
2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。
具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。
3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。
4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。
2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。
4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。
2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。
3.记录输入信号和输出信号的幅度,并计算增益。
4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。
4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。
2.记录输入信号和输出信号的相位差,并计算相移。
3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。
4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。
2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。
10.1线性系统频率特性测量要求:重点掌握线性系统频率特性测量的基本任务、点频/扫频测量方法的特点、产生扫频信号的几种基本方法;了解扫频源的组成和特性、相频特性测量方法。
频率响应也称频率特性,网络的频率特性通常是复函数,它的绝对值称为幅频特性,相角或相位称为相频特性。
线性网络的频率特性测量包括幅频特性测量和相频特性测量。
10.1.1幅频特性测量线性系统频率特性的经典测量方法是正弦扫频测量。
1)点频测量法点频方式每次只能将频率调节到某一位置,输出某一所需的单一频率连续波信号。
点频测量所得的频率特性是静态的,无法反映信号的连续变化;测量频点选择的疏密程度不同对测量结果有很大的影响,特别是对某些特性曲线的锐变部分以及个别失常点,可能会因为频点选择不当或不足而漏掉这些点的测量结果。
2)扫频测量法扫频测量的扫描式频率源输出能够在测量所需的范围内连续扫描,便于连续测出各点频率上的频率特性结果并立即显示特性曲线。
扫频测量法能够快速、直观地测量网络的动态频率特性;所得被测网络的频率特性曲线是完整的,不会出现漏掉细节的问题。
3)两种测量方法的比较●扫频测量所得的动态特性曲线峰值低于点频测量所得的静态特性曲线。
扫频速度越快,下降越多。
●动态特性曲线峰值出现的水平位置(频率)相对于静态特性曲线有所偏离,并向频率变化的方向移动。
扫频速度越快,偏离越大。
●当静态特性曲线呈对称状时,随着扫频速度加快,动态特性曲线明显出现不对称性,并向频率变化的方向一侧倾斜。
●动态特性曲线较平缓,其3dB带宽大于静态特性曲线的3dB带宽。
测量系统的动态特性必须采用扫频法;而为了得到静态特性,必须选择极慢的扫频速度以得到近似的静态特性曲线,或采用点频法。
10.1.2扫频测量与扫频源能产生扫频输出信号的频率源称为扫频信号发生器或扫频信号源,简称扫频源。
1)基本工作原理典型的扫频源应具备三方面功能:●产生扫频信号,通常是等幅正弦波;●产生同步输出的扫描信号,可以是三角波、正弦波或锯齿波等波形;●产生同步输出的频率标志,可以是等频率间隔的通用频标、专用于某项测试的专用频标及活动频标。
实验三 典型环节(或系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据实验所得频率特性曲线求取传递函数的方法。
二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
三、实验原理及说明1.实验用一阶惯性环节传递函数参数、电路设计及其幅相频率特性曲线:对于1)(+=Ts Ks G 的一阶惯性环节,其幅相频率特性曲线是一个半圆,见图3.1。
取ωj s =代入,得)()(1)(ωϕωωωj e r T j Kj G =+=(3-2-1)在实验所得特性曲线上,从半园的直径(0)r ,可得到环节的放大倍数K ,K =(0)r 。
在特性曲线上取一点k ω,可以确定环节的时间常数T ,kk tg T ωωϕ)(-=。
(3-2-2)实验用一阶惯性环节传递函数为12.01)(+=s s G ,其中参数为R 0=200K Ω,R 1=200K Ω,C=1uF ,参数根据实验要求可以自行搭配,其模拟电路设计参阅下图3.2。
在进行实验连线之前,先将U13单元输入端的100K 可调电阻顺时针旋转到底(即调至最大),使输入电阻R 0的总阻值为200K;其中,R1、C1在U13单元模块上。
U8单元为反相器单元,将U8单元输入端的10K 可调电阻逆时针旋转到底(即调至最小),使输入电阻R 的总值为10K;注明:所有运放单元的+端所接的100K 、10K 电阻均已经内部接好,实验时不需外接。
图3.22.实验用典型二阶系统开环传递函数参数、电路设计及其幅相频率特性曲线:对于由两个惯性环节组成的二阶系统,其开环传递函数为12)1)(1()(2221++=++=Ts s T Ks T s T K s G ξ )1(≥ξ 令上式中 s j ω=,可以得到对应的频率特性 )(22)(12)(ωϕωωξωωj e r T j T Kj G =++-=二阶系统开环传递函数的幅相频率特性曲线,如图所示。
实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。
2、掌握系统及元件频率特性的测量方法。
二、实验设备1、D1CE-AT-∏型自动控制系统实验箱一台2、带串口计算机一台3、RS232串口线三、实验原理及电路1、被测系统的方块图及原理:系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率3为参数的幅值和相角:G(M=IG(%)I∕G(网本实验应用频率特性测试仪测量系统或环节的频率特牲。
图4-1所示系统的开环频率特性为:B(jω)B(ιω)B(jω)G3)GR3)H(j3)=叼舟I/追采用对数幅频特牲和相频特性表示,则式(4-2)表示为:(4—1) (4-2)图4-1被测系统方块图2。
IgGG3)G∕)Hg)H。
啕需I=2(Hg1BG3-2(Hg1EG3)I (4—3) C⅛Gω)G<jω)HGω)=/*线=∕BQω)-EGω)(4-4)E(j3)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输人端Et)],然后分别测量相应的反馈信号[b⑴]和误差信号[e(t)]的对数幅值和相位。
频率特性测试仪测试数据经相关运算器后在显示器中显示。
根据式(4—3)和式(4—4)分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线。
根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。
所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频(相对于转角频率)时不等于一900(q—p)[式中P和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。
频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。
在电子领域中,频率特性实验是非常常见的实验之一。
本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。
一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。
通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。
二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。
在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。
1. 函数发生器:用于产生不同频率的信号作为输入信号。
可以调节函数发生器的频率、幅度和波形等参数。
2. 示波器:用于观测电路或系统的输入和输出信号波形。
示波器可以显示信号的幅度、相位和频率等信息。
3. 频谱分析仪:用于分析信号的频谱成分。
频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。
实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。
2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。
3. 设置函数发生器的频率和幅度,选择适当的波形。
4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。
5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。
实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。
如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。
如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。
2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。
相位谱可以显示信号的相位延迟或提前。
实验三 典型环节频率特性的测试一、实验目的1. 掌握典型环节频率特性曲线的测试方法。
2. 根据实验求得的频率特性曲线求取传递函数。
二、实验设备:TKKL-1实验箱一台,超低频示波器一台。
三、实验内容1. 惯性环节的频率特性测试。
2. 由实验测得的频率特性曲线求传递函数。
四、实验原理1. 系统的频率特性一个稳定的线性系统,在正弦信号作用下,它的稳态输出是与输入信号同频率的正弦信号,振幅与相位一般与输入信号不同。
测取不同频率下系统的输出、输入信号的幅值比和相位差,即可求得这个系统的幅频特性和相频特性。
设输入信号t X t x m ωωsin )(=,那么输出信号为)sin()()sin()(ϕωωϕωω+=+=t j G Xm t Y t y m 。
幅频特性 XmYm j G =)(ω, 相频特性)()(ωϕω=∠j G2. 频率特性测试——李沙育图形法将)(t x ω、)(t y ω分别输入示波器的X 、Y 轴,可得如下李沙育图形如图5-1。
①幅频特性测试:由 mm m m X Y X Y j G 22)(==ω,有 m mX Y A L 22lg 20)(lg 20)(==ωω〔dB 〕改变输入信号的频率,即可测出相应的幅值比,测试原理示意图如图5-2。
. 图5-1 李沙育图形 图5-2 幅频特性测试图②相频特性测试:⎩⎨⎧+==)sin()(sin )(ϕωωωωt Y t y t X t x m m , 当0=t ω时,⎩⎨⎧==ϕsin )0(0)0(m Y y xf(Hz) 1234567891011121214152Ym 〔V 〕 2Xm 〔V 〕 2Ym/2Xm20lg(2Ym/2Xm)ω有mm Y y Y y 2)0(2sin )0(sin )(11--==ωϕ 其中,)0(2y 为椭圆与Y 轴相交点间的长度, 上式适用于椭圆的长轴在一、三象限;当椭圆的 长轴在二、四象限时相位ϕ的计算公式变为图5-3相频特性测试图(李沙育法)相频特性记录表3. 惯性环节:电路如图5-4,传递函数为102.011)()()(+=+==s Ts K s u s u s G i o 假设取C=0.1uF ,R 1=100K ,R 2=200K ,那么系统的转折频率为T f T π2/1==7.96Hz 。
一二阶系统频率特性测试与分析一、引言二阶系统是控制系统中常见的一种类型,它的频率特性对系统的稳定性和性能具有重要影响。
频率特性测试是分析系统动态响应的重要手段之一,通过对二阶系统进行频率特性测试和分析,可以获取系统的幅频特性和相频特性,进一步了解系统的稳定性和性能指标。
本文将介绍二阶系统频率特性测试的基本原理和方法,并通过实例进行分析。
二、二阶系统频率特性测试原理二阶系统是由两个一阶系统级联组成的复合系统,其传递函数可以表示为:G(s)=K/((s+a)(s+b))其中K为系统的增益,a和b为系统的两个极点。
二阶系统的频率特性可以通过系统的幅频特性和相频特性来描述。
1.幅频特性:幅频特性反映了系统对不同频率输入信号的增益响应。
在频率特性测试中,可以通过给系统输入正弦信号,并测量系统输出信号的幅值与输入信号的幅值之比来得到系统的幅频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
2.相频特性:相频特性反映了系统对不同频率输入信号的相位响应。
在频率特性测试中,可以通过测量系统输出信号与输入信号的相位差来得到系统的相频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
三、二阶系统频率特性测试方法二阶系统的频率特性测试方法主要有两种,一种是激励法,另一种是响应法。
1.激励法:激励法是通过给系统输入不同频率的正弦信号,并测量系统的输出响应来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值和频率范围;(2)给系统输入不同频率的正弦信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
2.响应法:响应法是通过给系统输入一个周期或多个周期的脉冲信号,并测量系统的输出响应的特性来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值、频率和脉冲宽度;(2)给系统输入一个周期或多个周期的脉冲信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
实验四二阶系统的频率响应与频率特性测量一、实验目的1掌握频率特性的实验测试方法,进一步理解频率特性的物理意义2•掌握根据频率响应实验结果绘制Bode图的方法3•根据二阶系统的Bode图,确定系统的数学模型4•掌握二阶系统的频域指标与时域指标的对应尖系二、实验仪器与设备1自动控制原理学习机2•计算机(安装自动控制原理实验系统)3.万用表及接线三、实验原理1.输入、输出波形直接测试法如图4-1所示,给定的被测对象是一个稳定的系统。
由实验系统提供正弦信号,每选择一个频率,即可利用实验系统获得输入、输出随时间变化的曲线,取输出稳定后同周期的输入、输出曲线如图4・2。
图测量被控系统的频率响应图4・2稳定后系统的输入输出曲线幅频特性G(j°)2X m(o) 相频特性ZG(jco) =- * x 360T2.李沙育图形法取被测对象某一选定频率下的输入信号x (t)和输出信号y (t)(去掉不稳定部分),利用实验系统做X-Y图'得到一个椭圆图形‘如图4-3所示。
x(t 2Ym2Y Q)J L2Xm图4-3李沙育图形幅频特性:相频特性:如图4-3,椭圆长轴在第一、三象限尸討若椭圆长轴在第二、四象限,:=180o-sin-1^a2Ym® )随着角频率的增加,大多数情况下椭圆逆时针运动,表明输出信Y( t)滞后于输入号信号X ( t),相位的计算结果要添加一个负号,如果椭圆顺时针运(t)超前于X动,计算结果为正。
(t)'幅值取两倍是为了便于测量。
3.测试频率的选取选取合适的实验测试频率范围是准确确定系统频率特性的尖控制系统多为低通滤波辖y在频率很低时,系统的输出能够复现输入信号,通常,取被测对象转折频率的1/10作为起始测试频率,若对象模型未知,则先确定最大测试频率,方法是先测出输入信号频率为0时输出的幅值Y (0),逐渐增大输入信号频率,直至输岀幅值Ym为丫( 0) / ( 50-100), 此时频率便可确定为最大测试频率,测试频率可以在0与「max之间选取若干点。
频率特性测试实验报告频率特性测试实验报告摘要:本实验旨在通过频率特性测试,研究和分析不同电路元件和电子设备在不同频率下的响应特性。
通过实验数据的收集和处理,我们可以了解电路的频率响应、频率特性以及其在不同频率下的性能表现。
实验结果显示,在不同频率下,电路元件和电子设备的频率响应存在差异,这对于电路设计和信号处理具有重要意义。
引言:频率特性是指电路或电子设备在不同频率下的响应能力。
了解电路在不同频率下的性能表现,对于电路设计、信号处理和通信系统的优化具有重要意义。
通过频率特性测试,我们可以分析电路的频率响应、幅频特性和相频特性,从而更好地了解电路的工作原理和性能。
实验方法:1. 实验仪器和设备:本实验使用了函数发生器、示波器、电阻、电容、电感等实验仪器和设备。
2. 实验步骤:(1)连接电路:根据实验要求,连接电路并确保电路连接正确。
(2)设置函数发生器:根据实验要求,设置函数发生器的频率和幅度。
(3)测量电压和相位:使用示波器测量电路中的电压和相位差。
(4)记录实验数据:根据实验要求,记录不同频率下的电压和相位差数据。
(5)数据处理:根据实验数据,绘制幅频特性曲线和相频特性曲线,分析电路的频率响应特性。
实验结果与分析:通过实验数据的收集和处理,我们得到了电路在不同频率下的电压和相位差数据,并绘制了幅频特性曲线和相频特性曲线。
实验结果显示,在低频率下,电路的幅频特性较为平缓,而在高频率下,幅频特性逐渐下降。
相位差随频率的变化呈现出一定的规律,这与电路元件的特性有关。
通过对实验结果的分析,我们可以进一步了解电路的频率响应特性。
实验应用:频率特性测试在电路设计、信号处理和通信系统中具有广泛的应用。
通过了解电路在不同频率下的响应特性,我们可以优化电路设计,提高信号处理的效果,以及改进通信系统的性能。
例如,在音频放大器设计中,对于不同频率的音频信号,需要了解放大器的频率响应特性,以保证音频信号的传输质量。
另外,在无线通信系统中,了解天线的频率特性,可以优化天线设计,提高信号的传输距离和稳定性。
实验四 控制系统频率特性的测试一. 实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。
二.实验装置(1)微型计算机。
(2)自动控制实验教学系统软件。
三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性相频特性(2)实验方法 设有两个正弦信号:若以)(t x ω为横轴,以)(y t ω为纵轴,而以t ω作为参变量,则随t ω的变化,)(t x ω和)(y t ω所确定的点的轨迹,将在 x--y 平面上描绘出一条封闭的曲线(通常是一个椭圆)。
这就是所谓“李沙育图形”。
由李沙育图形可求出Xm ,Ym ,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。
(2)首先确定被测对象模型的传递函数, 预先设置好参数 T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode 图,绘制Bode 图。
(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。
在拐点处有一定的差距,在某些点处也存在较大的误差。
分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。
(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。
(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。
在实验过程中一个频率可同时记录2Xm,2Ym,2y0。
(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。
03实验三 频率特性曲线测试3.2.3 二阶闭环系统的频率特性曲线一.实验目的1. 了解和把握二阶闭环系统中的对数幅频特性)(ωL 和相频特性)(ωϕ,实频特性)Re(ω和虚频特性)Im(ω的计算。
2. 了解和把握欠阻尼二阶闭环系统中的自然频率ωn 、阻尼比ξ对谐振频率ωr 和谐振峰值L(ωr )的阻碍及ωr 和L(ωr ) 的计算。
3. 观看和分析欠阻尼二阶开环系统的谐振频率ωr 、谐振峰值L(ωr ),并与理论计算值作比对。
4. 改变被测系统的电路参数,画出闭环频率特性曲线,观测谐振频率和谐振峰值,填入实验报告。
二.实验内容及步骤1.被测系统模拟电路图的组成如图3-2-3所示,观测二阶闭环系统的频率特性曲线,测试其谐振频率r ω、谐振峰值)(r L ω。
2.改变被测系统的各项电路参数,画出其系统模拟电路图,及闭环频率特性曲线,並计算和测量系统的谐振频率r ω及谐振峰值)(r L ω,填入实验报告。
图3-2-3 二阶闭环系统频率特性测试电路实验步骤:(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。
(2)构造模拟电路:按图3-2-3安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线 模块号 跨接座号 1 A1 S4,S8 2 A2 S2,S11,S12 3 A3 S8,S9 5A6S2,S61 信号输入 B2(OUT2) →A1(H1)2 运放级联 A1(OUT )→A2(H1)3 运放级联 A3(OUT )→A6(H1)4 负反馈 A3(OUT )→A1(H2) 6 相位测量A6(OUT )→ A8(CIN1) 7A8(COUT1)→ B8(IRQ6)(3)运行、观看、记录:①将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT程序,在界面的自动操纵菜单下的线性操纵系统的频率响应分析实验项目,选择二阶系统,就会弹出‘频率特性扫描点设置’表。
在该表顶用户可依照自己的需要填入各个扫描点频率(本实验机选取的频率值f,以为分辨率),如需在特性曲线上标注显示某个扫描点的角频率ω、幅频特性L(ω)或相频特性φ(ω),那么可在该表的扫描点上方小框内点击一下(打√)。
实验四 典型环节和系统频率特性的测量一、实验目的1.了解典型环节和系统的频率特性曲线的测试方法;2.根据实验求得的频率特性曲线求取相应的传递函数。
二、实验设备同实验一三、实验内容1.惯性环节的频率特性测试;2.二阶系统频率特性测试;3.无源滞后—超前校正网络的频率特性测试;4.由实验测得的频率特性曲线,求取相应的传递函数;5.用软件仿真的方法,求取惯性环节和二阶系统的频率特性。
四、实验原理设G(S)为一最小相位系统(环节)的传递函数。
如在它的输入端施加一幅值为Xm 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m ①由式①得出系统输出,输入信号的幅值比 )()(ωωj G Xmj G Xm Xm Ym == ② 显然,)(ωj G 是输入X(t)频率的函数,故称其为幅频特性。
如用db (分贝)表示幅频值的大小,则式②可改写为XmYm j G Lg L lg 20)(20)(==ωω ③ 在实验时,只需改变输入信号频率ω的大小(幅值不变),就能测得相应输出信号的幅值Ym ,代入上式,就可计算出该频率下的对数幅频值。
根据实验作出被测系统(环节)的对数幅频曲线,就能对该系统(环节)的数学模型作出估计。
关于被测环节和系统的模拟电路图,请参见附录。
五、实验步骤1.熟悉实验箱上的“低频信号发生器”,掌握改变正弦波信号幅值和频率的方法。
利用实验箱上的模拟电路单元,设计一个惯性环节(可参考本实验附录的图4-4)的模拟电路。
电路接线无误检查后,接通实验装置的总电源,将直流稳压电源接入实验箱。
2.惯性环节频率特性曲线的测试把“低频函数信号发生器”的输出端与惯性环节的输入端相连,当“低频函数信号发生器”输出一个幅值恒定的正弦信号时,用示波器观测该环节的输入与输出波形的幅值,随着正弦信号频率的不断改变,可测得不同频率时惯性环节输出的增益和相位(可用“李沙育”图形),从而画出环节的频率特性。
东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:系统频率特性的测试院〔系〕:自动化学院专业:自动化**:**:实验室:实验组别:同组人员:实验时间:2021/11/24评定成绩:审阅教师:目录一.实验目的和要求2二.实验原理2三.实验方案与实验步骤3四.实验设备与器材配置4五.实验记录4六.实验分析4七.预习与答复5八.实验结论5一.实验目的和要求实验目的:〔1〕明确测量幅频和相频特性曲线的意义〔2〕掌握幅频曲线和相频特性曲线的测量方法〔3〕利用幅频曲线求出系统的传递函数报告要求:〔1〕画出系统的实际幅度频率特性曲线、相位频率特性曲线,并将实际幅度频率特性曲线转换成折线式Bode图,并利用拐点在Bode图上求出系统的传递函数。
〔2〕用文字简洁表达利用频率特性曲线求取系统传递函数的步骤方法。
〔3〕利用上表作出Nyquist图。
〔4〕实验求出的系统模型和电路理论值有误差,为什么.如何减小误差.〔5〕实验数据借助Matlab作图,求系统参数。
二.实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。
建模一般有机理建模和辨识建模两种方法。
机理建模就是根据系统的物理关系式,推导出系统的数学模型。
辨识建模主要是人工或计算机通过实验来建立系统数学模型。
两种方法在实际的控制系统设计中,常常是互补运用的。
辨识建模又有多种方法。
本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。
还有时域法等。
准确的系统建模是很困难的,要用反复屡次,模型还不一定建准。
模型只取主要局部,而不是全部参数。
另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。
幅频特性就是输出幅度随频率的变化与输入幅度之比,即,测幅频特性时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值测相频有两种方法:〔1〕双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T和相位差Δt,则相位差。
控制系统频率特性实验控制系统频率特性实验是一种较为常见的控制工程实验,其主要目的是探究不同频率下控制系统的性能表现,同时应用所学知识进行系统频率特性分析和设计。
下面将分为实验目的、实验内容、实验步骤及实验结果几个方面进行详细介绍。
实验目的:1. 探究不同频率下控制系统性能表现2. 进行频率特性分析,并了解控制系统中的稳态误差与阻尼比之间的关系3. 进行频率特性设计,并掌握控制器在频率特性中的应用实验内容:1. 频率响应性能测试2. 获取系统的幅频和相频特性曲线3. 根据幅频曲线分析系统稳态误差,根据相频曲线分析系统阻尼比4. 根据工程实际需要,设计相应的控制器并给出稳态误差和阻尼比的实验结果实验步骤:1. 建立试验系统,包括控制对象和控制器2. 调整测试样本的初始参数,保证系统的稳态3. 绘制系统幅频特性曲线,观察幅频曲线的变化情况并进行分析7. 对实验结果进行统计分析实验结果:通过实验,我们得到了不同频率下控制系统的性能表现,以及系统的幅频和相频特性曲线。
在此基础上,我们可以进行系统频率特性分析,掌握控制器在频率特性中的应用。
通过对幅频曲线的分析,我们可以了解系统的稳态误差情况。
同时可发现,随着频率增大,系统稳态误差逐渐增大,这是由于系统的惯性效应在高频率下更为明显导致的。
在此基础上,我们可以通过设计相应的控制器来减小系统稳态误差。
通过对相频曲线的分析,我们可以了解系统的阻尼比情况。
随着频率增大,我们可以观察到系统阻尼比逐渐降低,这是由于系统越接近临界系统,其阻尼比越小,因此在系统设计中需要注意避免系统过度激励的情况。
总的来说,控制系统频率特性实验是一种重要的控制工程实验,通过实验,我们可以深入了解系统在不同频率下的性能表现,为实际工程中的控制系统设计提供有力的支持和指导。
东南大学仪器科学与工程学院
实验报告课程名称:自动控制原理实验
实验名称:系统频率特性的测试
目录
一、实验目的 (3)
二、实验原理 (3)
三、预习与回答 (3)
四、实验设备 (4)
五、实验线路图 (4)
六、实验步骤 (4)
七、实验数据 (4)
八、实验分析及思考题 (5)
九、实验总结 (7)
一、实验目的:
(1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数;
二、实验原理:
在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。
如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。
如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。
比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。
此次实验采用开环频率特性测试方法,确定系统传递函数。
准确的系统建模是很困难的,要用反复多次,模型还不一定建准。
另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。
幅频特性就是输出幅度随频率的变化与输入幅度之比,即)
()(ωωi
o U U A =。
测幅频特性时,
改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。
测相频有两种方法:
(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0
360
⨯∆=Φ
T t 。
这种方法直观,容易理解。
就模拟示波
器而言,这种方法用于高频信号测量比较合适。
(2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。
通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。
就模拟示波器而言,这种方法用于低频信号测量比较合适。
若用数字示波器或虚拟示波器,建议用双踪信号比较法。
利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。
三、预习与回答:
(1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什
么问题?
答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。
如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。
虚拟示波
(2)当系统参数未知时,如何确定正弦信号源的频率?
答:从理论推导的角度看,应该采取逐点法进行描述,即ω 从0变化到∞,得到变化时幅度和相位的值。
从实际操作来看,ω 值过小所取得的值无意义,因此我们选取[1.0,100.0]的范围进行测量。
四、实验设备:
THBDC-1实验平台 THBDC-1虚拟示波器
五、实验线路图(模拟实物图)
六、实验步骤:
(1)按照试验线路图接线,用U7、U9、U11、U13单元,信号源的输入接“数据采集接口” AD1(蓝色波形),系统输出接“数据采集接口”AD2(红色波形)。
(2)信号源选“正弦波”,幅度、频率根据实际线路图自定,一般赋值过小会出现非线性, 过大则会失真。
(3)点击屏上THBDC-1示波器图标,直接点击“确定”,进入虚拟示波器界面,点“示波 器(E )”菜单,选中“幅值自动”和“时基自动”。
在“通道选择”下拉菜单中选“通 道(1-2)”,“采样频率”调至“1”。
点“开始采集”后,虚拟示波器可看到正弦波,再 点“停止采集”,波形将被锁住,利用示波器“双十跟踪”可准确读出波形的幅度。
改
变信号源的频率,分别读出系统输入和输出的峰峰值,填入幅频数据表中。
(4)测出双踪不同频率下的Δt 和T 填相频数据表,利用公式0
360⨯∆=ΦT
t 算出相位差。
七、实验数据:
(1)数据表格:
(2)当ω=15.0时,输入输出波形如下图,其中蓝色为输入信号,红色为输出信号。
Δt= 0.1272(上图)
八.实验分析及思考题:
(1)画出系统的实际幅度频率特性曲线、相位频率特性曲线,并将实际幅度频率特性曲线转换成折线式Bode图,并利用拐点在Bode图上求出系统的传递函数。
(1)由实际测量得到的幅度频率特性曲线、相位频率特性曲线、折线式Bode 图见坐标纸。
由折线式Bode 图得到折线频率为w1=5.780,w2=18.181,w3=40,求得T1=0.173,T2=0.055,T3=0.025,即实际开环传递函数为: G (s )=1/(0.173s+1)(0.055s+1)(0.025s+1)
(2)用文字简洁叙述利用频率特性曲线求取系统传递函数的步骤方法。
答:系统传递函数表示形式为:)
1)(1)(1()
1()(4321++++=
s T s T s T s T K s G 。
在对数频率特性曲线上
分别画出斜率为40dB/dec 、20dB/dec 、0dB/dec 、-20dB/dec 、-40dB/dec 、-60dB/dec 等的渐近线,平移这些渐近线直至与对数频率特性曲线有切点,找出斜率临近的两条渐近线的交点,即为一个转折频率点。
求出相应的时间常数ω1
=
T ,且通过斜率可以判断为惯性环节
(在分母上)还是一阶微分环节(在分子上),在确定好各个环节的时间常数后可以确定出常数K 。
(3)利用上表作出Nyquist 图。
实际奈奎斯特图
(4)实验求出的系统模型和电路理论值有误差,为什么?如何减小误差?
答:有误差的原因:①实验测量数据的误差,包括读数误差等;②系统本身电子元器件的误差,例如电容的标称值与实际值不同,有微小误差;③实际作图的误差;④每一个频率转折点会受到其他转折点的影响,使误差增大。
减小误差的的方法:①输出衰减较小时,将图形放大再进行测量;②实际作图可以利用计算机软件,减小人为作图误差;③将每个频率转折点进行修正,减小误差。
九.实验总结:
本次实验是系统频率特性的测试,这章在自控原理的第二节前段时间学过,但对于实验对应环节我们缺乏一个系统的概念。
这次实验让我们深入了解频率特性的性质,幅值的如何选定,如何判断相位差是否在理论范围内。
在后期报告完成中,我们了解了运用MATLAB软件进行操作,根据理论数据,画出频率特性波特图,求出系统传递函数,进而画出奈奎斯特图图。