计量经济学习题解析演示教学
- 格式:doc
- 大小:1.42 MB
- 文档页数:30
目 录第1章 绪 论第2章 经典单方程计量经济学模型:一元线性回归模型第3章 经典单方程计量经济学模型:多元线性回归模型第4章 经典单方程计量经济学模型:放宽基本假定的模型第5章 经典单方程计量经济学模型:专门问题第6章 联立方程计量经济学模型:理论与方法第7章 扩展的单方程计量经济学模型第8章 时间序列计量经济学模型第9章 计量经济学应用模型第1章 绪 论1什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:(1)计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为主要内容,是由经济理论、统计学和数学三者结合而成的交叉学科。
(2)计量经济学方法通过建立随机的数学方程来描述经济活动,并通过对模型中参数的估计来揭示经济活动中各个因素之间的定量关系,是对经济理论赋予经验内容;而一般经济数学方法是以确定性的数学方程来描述经济活动,揭示的是经济活动中各个因素之间的理论关系。
2计量经济学的研究对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:(1)计量经济学的研究对象是经济现象,主要研究的是经济现象中的具体数量规律,即是利用数学方法,依据统计方法所收集和整理到的经济数据,对反映经济现象本质的经济数量关系进行研究。
(2)计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用计量经济学。
任何一项计量经济学研究和任何一个计量经济学模型赖以成功的三要素是理论、方法和数据。
(3)计量经济学模型研究的经济关系的两个基本特征是随机关系和因果关系。
3为什么说计量经济学在当代经济学科中占据重要地位?当代计量经济学发展的基本特征与动向是什么?答:(1)计量经济学自20世纪20年代末30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过20世纪50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中最具有权威的一部分;②从1969~2003年诺贝尔经济学奖的53位获奖者中有10位是与研究和应用计量经济学有关;③计量经济学方法与其他经济数学方法结合应用得到了长足的发展。
、单项选择题21?已知含有截距项的三元线性回归模型估计的残差平方和为 ' e t=800,估计用样本容量为n =24,则随机误差项u t 的方差估计量为() A. 33.33 B.40C.38.092、如果模型中出现随机解释变量并且与随机误差项相关时, 最常用的估计方法 是() A. 普通最小二乘法 B.加权最小二乘法C.差分法D.工具变量法3?最小二乘准则是指使()达到最小值的原则确定样本回归方程。
4、下图中“ { ”所指的距离是()A.随机误差项B.残差C.Y 的离差D.£的离差5?已知模型的形式为y =打「YX • u,在用实际数据对模型的参数进行估计的 时候,测得DW 统计量为0.6453,则广义差分变量是()Ay t -0.6453y t4, X t -0.6453(2B y t -0.6774y», x t -0.6774x t 一C. y t —y t 斗,X t-X t.D.y t -0.05y t4,X t -0.05XzD.36.36c max Y t -Y?nB •送 Y t _Y t 壬n 2D.' Y -Yt = 1—叮?梯6、对模型Yi= B 0+ B 1X1i+ B 2X2i+卩i 进行总体显著性检验,如果检验结果总 体线性关系显著,则不可能( )A. B 仁0, B 2=0B. B 1工 0, B 2=0C. B 1=0B 2工0D. B 1工0, B 2工07?在多元线性回归中,判定系数 R A 2随着解释变量数目的增加而( )A.增加B •减少 C.不变 D.变化不定 8.反映由模型中解释变量所解释的那部分离差大小的是 ()o A.总体平方和B.回归平方和C. 残差平方和29. 设k 为回归模型中的参数个数(包括截距项),n 为样本容量,ESS 为残差平 方和,RSS 为回归平方和。
则对总体回归模型进行显著性检验时构造的 F 统计 量为()。
1、根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立了如下回归模型x y6843.1521.2187ˆ+-= se=(340.0103)(0.0622)6066.733,2934.0,425.1065..,9748.02====F DW E S R试求解以下问题:(1)取时间段1978——1985和1991——1998,分别建立两个模型。
模型1:x y3971.04415.145ˆ+-= 模型2:x y 9525.1365.4602ˆ+-= t=(-8.7302)(25.4269) t=(-5.0660)(18.4094) ∑==202.1372,9908.0212eR ∑==5811189,9826.0222e R计算F 统计量,即∑∑===9370.4334202.137258111892122eeF ,对给定的05.0=α,查F 分布表,得临界值28.4)6,6(05.0=F 。
请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么?(2)根据表1所给资料,对给定的显著性水平05.0=α,查2χ分布表,得临界值81.7)3(05.0=χ,其中p=3为自由度。
请你继续完成上述工作,并回答所做的是一项什么工作,其结论是什么? 表1F-statistic 6.033649 Probability 0.007410 Obs*R-squared10.14976 Probability0.017335Test Equation:Dependent Variable: RESID^2 Method: Least SquaresDate: 06/04/06 Time: 17:02 Sample(adjusted): 1981 1998Included observations: 18 after adjusting endpoints Variable Coefficie ntStd. Error t-Statistic Prob. C244797.2 373821.3 0.654851 0.5232 RESID^2(-1)1.226048 0.3304793.7099080.0023RESID^2(-2) -1.405351 0.379187 -3.706222 0.0023 R-squared 0.563876 Mean dependent var 971801.3 Adjusted R-squared 0.470421 S.D. dependent var 1129283. S.E. of regression 821804.5 Akaike info criterion 30.26952 Sum squared resid 9.46E+12 Schwarz criterion 30.46738 Log likelihood -268.4257 F-statistic6.033649 Durbin-Watson stat 2.124575 Prob(F-statistic) 0.0074101、(1)解:该检验为Goldfeld-Quandt 检验。
伍德里奇计量经济学第6章计算机习题详解 STATA引言本文档旨在对伍德里奇计量经济学第6章的计算机习题进行详解和解答,使用计量经济学软件STATA进行操作和分析。
本文档将逐步解答各个习题,并给出相应的STATA代码和结果展示。
习题1假设我们有一个数据集data.dta,其中包含了变量y和x。
现在我们想要估计下列回归模型的系数:$$y = \\beta_0 + \\beta_1 x + \\beta_2 x^2 + u$$使用STATA进行分析,首先加载数据集:use data.dta然后我们可以采用如下代码进行回归分析:reg y x c.x#c.x这里的c.x#c.x表示将变量x进行平方。
执行上述代码后,STATA将输出回归结果。
习题2在第6章的习题2中,我们需要进行假设检验。
假设我们想要检验系数$\\beta_1=0$和$\\beta_2=0$的原假设。
我们可以使用STATA进行对应的假设检验。
首先,我们需要执行回归分析,并保存回归结果:reg y x c.x#c.xestimates store reg1然后,我们可以使用如下代码进行假设检验:test x#c.x=0执行上述代码后,STATA将输出相应的假设检验结果。
习题3在第6章的习题3中,我们需要计算残差的平方和(Sum of Squared Residuals)。
我们可以使用STATA来计算残差的平方和。
首先,我们需要执行回归分析,并保存回归结果:reg y x c.x#c.xestimates store reg1然后,我们可以使用以下代码计算残差的平方和:predict u, residegen ssr = sum(u^2)scalar ssr_sum = r(ssr)执行上述代码后,STATA将输出残差的平方和。
习题4在第6章的习题4中,我们需要计算拟合度(Goodness of Fit)度量指标,如R2,调整后R2等。
我们可以使用STATA计算拟合度指标。
3解:(1)样本回归方程为998792.00170.1226.793261-176283.0454750.12^t r X Y t,(2)残差图(3)DW 统计量的值734726.0DW(4)BG LM 自相关检验辅助回归式估计结果是t t t tX e e 000420.0060923.0638831.01因为84.3998223.7,84.31205.0LM ,所以LM 检验量也说明样本回归方程的误差项存在一阶正自相关。
首先估计自相关系数^,得632637.02734726.0121^DW 对原变量做广义差分变换。
令1t 632637.0t t Y Y GDY ,1t 632637.0t t X X GDX 以年1994~1975,,t t GDX GDY 为样本再次回归,得tGDX GDY 173740.0391490.0t 回归方程拟合的效果仍然比较好,651914.1DW 对于给定05.0,查表得,。
43.1,24.1U L d d 因为75.243.11651914.1DW ,依据判别规则,误差项已消除自相关。
由391490.0^*0,得06568.1632637.01/391490.01/^^*0^0则原模型的广义最小二乘估计结果是t X Y 173470.006568.1^t 。
4解:(1)样本回归方程为tGDP Y 694454.0674.2816^t(2)残差图(3)3397.0DW(4)BG LM 自相关检验辅助回归式估计结果是t t t tGDP e e 029062.07871.334985257.01因为84.309615.30,84.31205.0LM ,所以LM 检验量也说明样本回归方程的误差项存在一阶正自相关。
首先估计自相关系数^,得83015.023397.0121^DW对原变量做广义差分变换。
令1t 83015.0t t Y Y GDY ,183015.0t t tGDGDP GDP GDGDP ,以年1994~1975,,t t GDGDP GDY 为样本再次回归,得。
第二章2.4 以下是某城市10个市场苹果需求(Y )和价格(X )的数据: Y 99 91 70 79 60 55 70 101 81 67X 22 24 23 26 27 24 25 2322 26 (1)计算22, , yx xy ∑∑∑。
(2)假设12Y X u ββ=++,计算系数的OLS 估计量12ˆˆ,ββ。
(3)做出散点图和样本回归线(利用统计软件)。
(4)估计苹果在本均值点(,)X Y 的需求弹性(Y X Y X Y X X Y∆∆∆÷=⋅∆)。
答:(1)(2224232627242523+22+26)1024.2X =+++++++= (999170796055701018167)/1077.3Y =+++++++++=22y ()470.89+187.69+53.29+2.89+299.29+497.29+53.29+561.69+13. 69+106.09=2246.1Y Y =-=∑∑22() 4.840.04 1.44 3.247.840.040.64 1.44 4.84 3.2427.6x X X =-=+++++++++=∑∑ ()()47.74 2.748.76 3.0648.44 4.46 5.8428.448.1418.54143.6xy X X Y Y =--=--++-+----=-∑∑(2)22143.6ˆ== 5.20327.6i i i x y x β-=-∑∑ 12ˆˆ=77.3 6.3824.2=203.2126Y X ββ=-- (3)散点图和样本回归线如下图所示:50607080901001102122232425262728X Y(4)224.25.203 1.6377.3Y X Y X X Y X X Y Y β∆∆∆÷=⋅=-⨯=-⨯=-∆ 2.5 DATA1-1给出了中国2011年各省市GDP (Y )和投资(X )的数据。
《计量经济学(第二版)》习题解答第一章1.1 计量经济学的研究任务是什么?计量经济模型研究的经济关系有哪两个基本特征? 答:(1)利用计量经济模型定量分析经济变量之间的随机因果关系。
(2)随机关系、因果关系。
1.2 试述计量经济学与经济学和统计学的关系。
答:(1)计量经济学与经济学:经济学为计量经济研究提供理论依据,计量经济学是对经济理论的具体应用,同时可以实证和发展经济理论。
(2)统计数据是建立和评价计量经济模型的事实依据,计量经济研究是对统计数据资源的深层开发和利用。
1.3 试分别举出三个时间序列数据和横截面数据。
1.4 试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
1.5 试结合一个具体经济问题说明计量经济研究的步骤。
1.6 计量经济模型主要有哪些用途?试举例说明。
1.7 下列设定的计量经济模型是否合理,为什么?(1)ε++=∑=31i iiGDP b a GDPε++=3bGDP a GDP其中,GDP i (i =1,2,3)是第i 产业的国内生产总值。
答:第1个方程是一个统计定义方程,不是随机方程;第2个方程是一个相关关系,而不是因果关系,因为不能用分量来解释总量的变化。
(2)ε++=21bS a S其中,S 1、S 2分别为农村居民和城镇居民年末储蓄存款余额。
答:是一个相关关系,而不是因果关系。
(3)ε+++=t t t L b I b a Y 21其中,Y 、I 、L 分别是建筑业产值、建筑业固定资产投资和职工人数。
答:解释变量I 不合理,根据生产函数要求,资本变量应该是总资本,而固定资产投资只能反映当年的新增资本。
(4)ε++=t t bP a Y其中,Y 、P 分别是居民耐用消费品支出和耐用消费品物价指数。
答:模型设定中缺失了对居民耐用消费品支出有重要影响的其他解释变量。
按照所设定的模型,实际上假定这些其他变量的影响是一个常量,居民耐用消费品支出主要取决于耐用消费品价格的变化;所以,模型的经济意义不合理,估计参数时可能会夸大价格因素的影响。
第一章1、下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?(1)t S =+t R ,其中t S 为第t 年农村居民储蓄增加额(单位:亿元),t R 为第t 年城镇居民可支配收入总额(单位:亿元)。
(2)1t S -=+t R ,其中1t S -为第t-1年底农村居民储蓄余额(单位:亿元),t R 为第t 年农村居民纯收入总额(单位:亿元)。
2、 指出下列假想模型中的错误,并说明理由:其中,t RS 为第t 年社会消费品零售总额(单位:亿元),t RI 为第t 年居民收入总额(单位:亿元)(指城镇居民可支配收入总额与农村居民纯收入总额之和),t IV 为第t 年全社会固定资产投资总额(单位:亿元)。
3、 下列设定的精良经济模型是否合理?为什么?(1)301i i i GDP GDP ββμ==+⋅+∑ 其中,i GDP (i=1,2,3)是第一产业、第二产业、第三产业增加值,μ为随机干扰项。
(2)财政收入=f (财政支出)+ μ,μ为随机干扰项。
答案1、(1)不是。
因为农村居民储蓄增加额应与农村居民可支配收入总额有关,而与城镇居民可支配收入总额没有因果关系。
(2)不是。
第t 年农村居民的纯收入对当年及以后年份的农村居民储蓄有影响,但并不对第t-1的储蓄产生影响。
2、一是居民收入总额RI t 前参数符号有误,应是正号;二是全社会固定资产投资总额IV t 这一解释变量的选择有误,它对社会消费品零售总额应该没有直接的影响。
3、(1)不合理,因为作为解释变量的第一产业、第二产业和第三产业的增加值是GDP 的构成部分,三部分之和正为GDP 的值,因此三变量与GDP 之间的关系并非随机关系,也非因果关系。
(2)不合理,一般来说财政支出影响财政收入,而非相反,因此若建立两者之间的模型,解释变量应该为财政收入,被解释变量应为财政支出;另外,模型没有给出具体的数学形式,是不完整的。
第二章五、计算分析题1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。
计量经济学讲义第四讲(共⼗讲)第四讲异⽅差⼀、同⽅差与异⽅差:图形展⽰⾼斯-马尔科夫假定四即同⽅差假定:22iεδδ=。
维持其他假定,并假设真实模型是12i i i y x ββε=++,那么这意味着:12222()iii iy E y x εββδδδ=+==为了理解该假定,我们先考察图⼀。
图⼀同⽅差情况在图⼀中,空⼼圆点代表(,())i i x E y ,实⼼圆点代表观测值(,)iix y 观测,iy观测是随机变量i y 的⼀个实现【注意,按照假定,i x 是⾮随机的,即在重复抽样的情况下,给定i 的取值,ix 不随样本的变化⽽变化】,倾斜的直线代表总体回归函数:12()i i E y x ββ=+。
图⼀显⽰了⼀个重要特征,即,尽管12,,...y y 的期望值随着12,,...x x 的不同⽽随之变化,但由于假定222iiy εδδδ==,它们的离散程度(⽅差)是不变的。
然⽽,假定误差项同⽅差从⽽被解释变量同⽅差可能并不符合经济现实。
例如,如果被解释变量y代表居民储蓄,x代表收⼊,那么经常出现的情况是,低收⼊居民间的储蓄不会有太⼤的差异,这是因为在满⾜基本消费后剩余收⼊已不多。
但在⾼收⼊居民间,储蓄可能受消费习惯、家庭成员构成等因素的影响⽽千差万别。
图⼆能够展⽰这种现象。
图⼆异⽅差情况在图⼆中,依据x1所对应的分布曲线形状,x5所对应的实⼼圆点看起来是⼀个异常点,但依据x5所对应的分布曲线形状,它也许是正常的,因为x5所对应的分布曲线形状表明,随机变量y5的⽅差很⼤。
如果我们有很多观测值,那么在上述情况下,⼀个典型的散点图如图三所⽰。
事实上,利⽤散点图来初步识别异⽅差现象在实践中经常被采⽤。
图三异⽅差情况下的散点图笔记:应该注意的是,如果第⼀个⾼斯-马尔科夫假定被违背,即模型设定有误,那么也可能出现“异⽅差”现象。
例如,正确模型是⾮线性的,但我们错误地设定为线性,以这个线性模型为参照,散点图也许显⽰出明显的异⽅差症状。
计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3什么是时间序列和横截面数据? 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NS S x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
第一章 绪论(一)基本知识类题型1-1. 什么是计量经济学?1-2. 简述当代计量经济学发展的动向。
1-3. 计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1-5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么? 1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-10.试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
1-12.模型的检验包括几个方面?其具体含义是什么?1-13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题?1-16.经济数据在计量经济分析中的作用是什么?1-17.下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?⑴ S R t t =+1120012.. 其中S t 为第t 年农村居民储蓄增加额(亿元)、R t 为第t 年城镇居民可支配收入总额(亿元)。
⑵ S R t t -=+144320030.. 其中S t -1为第(1-t )年底农村居民储蓄余额(亿元)、R t 为第t 年农村居民纯收入总额(亿元)。
1-18.指出下列假想模型中的错误,并说明理由:(1)RS RI IV t t t =-+83000024112...其中,RS t 为第t 年社会消费品零售总额(亿元),RI t 为第t 年居民收入总额(亿元)(城镇居民可支配收入总额与农村居民纯收入总额之和),IV t 为第t 年全社会固定资产投资总额(亿元)。
目 录第1章 绪 论第2章 经典单方程计量经济学模型:一元线性回归模型第3章 经典单方程计量经济学模型:多元线性回归模型第4章 经典单方程计量经济学模型:放宽基本假定的模型第5章 经典单方程计量经济学模型:专门问题第6章 联立方程计量经济学模型:理论与方法第7章 扩展的单方程计量经济学模型第8章 时间序列计量经济学模型第9章 计量经济学应用模型第1章 绪 论1什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:(1)计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为主要内容,是由经济理论、统计学和数学三者结合而成的交叉学科。
(2)计量经济学方法通过建立随机的数学方程来描述经济活动,并通过对模型中参数的估计来揭示经济活动中各个因素之间的定量关系,是对经济理论赋予经验内容;而一般经济数学方法是以确定性的数学方程来描述经济活动,揭示的是经济活动中各个因素之间的理论关系。
2计量经济学的研究对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:(1)计量经济学的研究对象是经济现象,主要研究的是经济现象中的具体数量规律,即是利用数学方法,依据统计方法所收集和整理到的经济数据,对反映经济现象本质的经济数量关系进行研究。
(2)计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用计量经济学。
任何一项计量经济学研究和任何一个计量经济学模型赖以成功的三要素是理论、方法和数据。
(3)计量经济学模型研究的经济关系的两个基本特征是随机关系和因果关系。
3为什么说计量经济学在当代经济学科中占据重要地位?当代计量经济学发展的基本特征与动向是什么?答:(1)计量经济学自20世纪20年代末30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过20世纪50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中最具有权威的一部分;②从1969~2003年诺贝尔经济学奖的53位获奖者中有10位是与研究和应用计量经济学有关;③计量经济学方法与其他经济数学方法结合应用得到了长足的发展。
计量经济学课后习题答案——湘潭大学出版社(龚志民马知遥)本文档由湘潭大学13级经济学1班整理第一章导论1.1 说明什么是横截面数据、时间序列数据、合并截面数据和面板数据。
答:截面数据是指一个变量或多个变量在某个时点的数据集。
也就是说,在同一个时点观察多个对象的某个属性或变量取值。
时间序列数据是指对一个或几个变量跨期观察得到的数据。
也就是按固定的时间间隔观察某个对象的属性或变量的取值。
合并截面数据是指在不同时点截面数据的合并。
不同时点的截面单位可以不同,即不同时点抽取的样本不必相同。
面板数据也称纵列数据,是对若干固定对象的属性或变量值跟踪观察而得的数据,跟踪观察一般是按固定时间间隔的跨期观察。
1.2 你如何理解计量经济学?答:计量经济学是在对经济数据的收集和加工,并以图、表等各种形式展现经济发展现状的基础上,进行定量研究,同时进行经济理论的探索和经济变量之间关系的研究,并注重理论的可度量性及其经验验证。
总之,计量经济学是利用经济学理论、数学、数理统计学方法、计算机工具和统计软件研究经济学问题的一门学科。
1.3 DA TA1-1给出了2010-2011年中国31个省市GDP和固定资产投资的数据,你能想到那些方法研究两者之间的关系?答:方法一:用一元线性回归模型的方法。
方法二:相关分析。
利用数据可以求出两者之间的相关系数r,利用相关系数的性质即可判断出两者是否存在相关关系。
1.4 DA TA1-2给出了中国1952-2012年GDP和消费支出的数据,尝试对消费和收入的关系作出描述。
从中你有什么发现?答:从表中数据可以看出:当收入增加时,消费也会相应的增长;当收入增加幅度变大时,消费增加的幅度也变大,但消费增加的幅度比收入增加的幅度小。
也就是说,收入增加时,收入增加的一部分用于消费,而不是全部。
这很符合消费者边际消费倾向小于1的理论。
由此可见,消费和收入可能存在高度相关性。
通过描图更能直观地说明问题。
第一章1、下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?(1)t S =112.0+0.12t R ,其中t S 为第t 年农村居民储蓄增加额(单位:亿元),t R 为第t 年城镇居民可支配收入总额(单位:亿元)。
(2)1t S -=4432.0+0.30t R ,其中1t S -为第t-1年底农村居民储蓄余额(单位:亿元),t R 为第t 年农村居民纯收入总额(单位:亿元)。
2、 指出下列假想模型中的错误,并说明理由:8300.00.24 1.12t t t RS RI IV =-+其中,t RS 为第t 年社会消费品零售总额(单位:亿元),t RI 为第t 年居民收入总额(单位:亿元)(指城镇居民可支配收入总额与农村居民纯收入总额之和),t IV 为第t 年全社会固定资产投资总额(单位:亿元)。
3、 下列设定的精良经济模型是否合理?为什么?(1)301i i i GDP GDP ββμ==+⋅+∑其中,i GDP (i=1,2,3)是第一产业、第二产业、第三产业增加值,μ为随机干扰项。
(2)财政收入=f (财政支出)+ μ,μ为随机干扰项。
答案1、(1)不是。
因为农村居民储蓄增加额应与农村居民可支配收入总额有关,而与城镇居民可支配收入总额没有因果关系。
(2)不是。
第t 年农村居民的纯收入对当年及以后年份的农村居民储蓄有影响,但并不对第t-1的储蓄产生影响。
2、一是居民收入总额RI t 前参数符号有误,应是正号;二是全社会固定资产投资总额IV t 这一解释变量的选择有误,它对社会消费品零售总额应该没有直接的影响。
3、(1)不合理,因为作为解释变量的第一产业、第二产业和第三产业的增加值是GDP 的构成部分,三部分之和正为GDP 的值,因此三变量与GDP 之间的关系并非随机关系,也非因果关系。
(2)不合理,一般来说财政支出影响财政收入,而非相反,因此若建立两者之间的模型,解释变量应该为财政收入,被解释变量应为财政支出;另外,模型没有给出具体的数学形式,是不完整的。
第二章五、计算分析题1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。
生育率对受教育年数的简单回归模型为μββ++=educ kids 10(1)随机扰动项μ包含什么样的因素?它们可能与受教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
2、已知回归模型μβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。
随机扰动项μ的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释α和β。
(2)OLS 估计量αˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。
(3)对参数的假设检验还能进行吗?简单陈述理由。
(4)如果被解释变量新员工起始薪金的计量单位由元改为100元,估计的截距项、斜率项有无变化?(5)若解释变量所受教育水平的度量单位由年改为月,估计的截距项与斜率项有无变化?3、假设模型为t t t X Y μβα++=。
给定n 个观察值),(11Y X ,),(22Y X ,…,),(n n Y X ,按如下步骤建立β的一个估计量:在散点图上把第1个点和第2个点连接起来并计算该直线的斜率;同理继续,最终将第1个点和最后一个点连接起来并计算该条线的斜率;最后对这些斜率取平均值,称之为βˆ,即β的估计值。
(1)画出散点图, 推出βˆ的代数表达式。
(2)计算βˆ的期望值并对所做假设进行陈述。
这个估计值是有偏还是无偏的?解释理由。
(3)判定该估计值与我们以前用OLS 方法所获得的估计值相比的优劣,并做具体解释。
4、对于人均存款与人均收入之间的关系式t t t Y S μβα++=使用美国36年的年度数据得如下估计模型,括号内为标准差:ˆt tS =384.105+0.067Y (151.105)(0.011) 2R =0.538 023.199ˆ=σ (1)β的经济解释是什么? (2)α和β的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3)对于拟合优度你有什么看法吗?(4)检验是否每一个回归系数都与零显著不同(在1%水平下)。
同时对零假设和备择假设、检验统计值、其分布和自由度以及拒绝零假设的标准进行陈述。
你的结论是什么?5、现代投资分析的特征线涉及如下回归方程:01t mt t r r ββμ=++;其中:r 表示股票或债券的收益率;m r 表示有价证券的收益率(用市场指数表示,如标准普尔500指数);t 表示时间。
在投资分析中,1β被称为债券的安全系数β,是用来度量市场的风险程度的,即市场的发展对公司的财产有何影响。
依据1956~1976年间240个月的数据,Fogler 和Ganpathy 得到IBM 股票的回归方程(括号内为标准差),市场指数是在芝加哥大学建立的市场有价证券指数。
ˆ0.7264 1.0598t mt rr =+ 20.4710R = (0.3001) (0.0728)要求:(1)解释回归参数的意义;(2)如何解释2R ?(3)安全系数1β>的证券称为不稳定证券,建立适当的零假设及备选假设,并用t 检验进行检验(5%α=)。
6、假定有如下的回归结果:t t X Y 4795.06911.2-=∧,其中,Y 表示美国的咖啡的消费量(每天每人消费的杯数),X 表示咖啡的零售价格(美元/杯),t 表示时间。
要求:(1)这是一个时间序列回归还是横截面序列回归?(2)如何解释截距的意义,它有经济含义吗?如何解释斜率?(3)能否求出真实的总体回归函数?(4)根据需求的价格弹性定义:弹性=斜率×(X/Y ),依据上述回归结果,你能求出对咖啡需求的价格弹性吗?如果不能,计算此弹性还需要其他什么信息?7、若经济变量y 和x 之间的关系为2(5)i i i y A x e αμ=-,其中A 、α为参数,i μ为随机误差, 问能否用一元线性回归模型进行分析?为什么?8、上海市居民1981~1998年期间的收入和消费数据如表所示,回归模型为i i i x y μββ++=10,其中,被解释变量i y 为人均消费,解释变量i x 为人均可支配收入。
试用普通最小二乘法估计模型中的参数01,ββ,并求随机误差项方差的估计值。
1、解:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它们被包含在了随机扰动项之中。
有些因素可能与受教育水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。
(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ 相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设3不满足。
2、解:(1)N βα+为接受过N 年教育的员工的总体平均起始薪金。
当N 为零时,平均薪金为α,因此α表示没有接受过教育员工的平均起始薪金。
β是N 每变化一个单位所引起的E 的变化,即表示每多接受一年教育所对应的薪金增加值。
(2)OLS 估计量αˆ和仍βˆ满足线性性、无偏性及有效性,因为这些性质的的成立无需随机扰动项μ的正态分布假设。
(3)如果t μ的分布未知,则所有的假设检验都是无效的。
因为t 检验与F 检验是建立在μ的正态分布假设之上的。
(4)考察被解释变量度量单位变化的情形。
以E*表示以百元为度量单位的薪金,则μβα++=⨯=N E E 100*由此有如下新模型)100/()100/()100/(*μβα++=N E或 ****μβα++=N E这里100/*αα=,100/*ββ=。
所以新的回归系数将为原始模型回归系数的1/100(5)再考虑解释变量度量单位变化的情形。
设N*为用月份表示的新员工受教育的时间长度,则N*=12N ,于是μβαμβα++=++=)12/*(N N E或 μβα++=*)12/(N E可见,估计的截距项不变,而斜率项将为原回归系数的1/12。
3、解:(1(X n ,Y n )首先计算)1Y 和),(t t Y X 的直线斜率为)/()(11X X Y Y t t --。
由于共有n -1条这样的直线,因此][11ˆ211∑==---=n t t t t X X Y Y n β(2)因为X 非随机且0)(=t E μ,因此βμμβμβαμβα=--+=-++-++=--][])()([][1111111X X E X X X X E X X Y Y E t t t t t t t 这意味着求和中的每一项都有期望值β,所以平均值也会有同样的期望值,则表明是无偏的。
(3)根据高斯-马尔可夫定理,只有β的OLS 估计量是最佳线性无偏估计量,因此,这里得到的βˆ的有效性不如β的OLS 估计量,所以较差。
4、解:(1)β为收入的边际储蓄倾向,表示人均收入每增加1美元时人均储蓄的预期平均变化量。
(2)由于收入为零时,家庭仍会有支出,可预期零收入时的平均储蓄为负,因此α符号应为负。
储蓄是收入的一部分,且会随着收入的增加而增加,因此预期β的符号为正。
实际的回归式中,β的符号为正,与预期的一致。
但截距项为正,与预期不符。
这可能是模型的错误设定造成的。
如家庭的人口数可能影响家庭的储蓄行为,省略该变量将对截距项的估计产生了影响;另外线性设定可能不正确。
(3)拟合优度刻画解释变量对被解释变量变化的解释能力。
模型中53.8%的拟合优度,表明收入的变化可以解释储蓄中53.8 %的变动。
(4)检验单个参数采用t 检验,零假设为参数为零,备择假设为参数不为零。
在零假设下t 分布的自由度为n-2=36-2=34。
由t 分布表知,双侧1%下的临界值位于2.750与2.704之间。
斜率项的t 值为0.067/0.011=6.09,截距项的t 值为384.105/151.105=2.54。
可见斜率项的t 值大于临界值,截距项小于临界值,因此拒绝斜率项为零的假设,但不拒绝截距项为零的假设。
5、解:(1)回归方程的截距0.7264表示当0m r =时的股票或债券收益率,本身没有经济意义;回归方程的斜率1.0598表明当有价证券的收益率每上升(或下降)1个点将使得股票或债券收益率上升(或下降)1.0598个点。
(2)2R 为可决系数,是度量回归方程拟合优度的指标,它表明该回归方程中47.10%的股票或债券收益率的变化是由m r 变化引起的。
当然20.4710R = 也表明回归方程对数据的拟合效果不是很好。
(3)建立零假设01:1H β=,备择假设11:1H β>,0.05α=,240n =,查表可得临界值0.05(238) 1.645t =,由于111 1.059810.8214 1.6450.0728t S ββ--===<,所以接受零假设01:1H β=,拒绝备择假设11:1H β>。