等差数列学习资料基础篇及提高篇(含答案)
- 格式:docx
- 大小:196.50 KB
- 文档页数:8
专题02 等差数列一、考情分析二、经验分享【基础知识】1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
①等差数列定义:定义法或。
②分类:若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
2、等差数列的判断方法:定义法或3、等差数列的通项:或。
①当0d ≠时,等差数列的通项公式是关于n 的一次函数,且斜率为公差d ; 4、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
①前n 和是关于n 的二次函数且常数项为0.5、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
①当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. 6、若{}n a 是等差数列 ,232,,n n n n n S S S S S -- ,…也成等差数列. 【方法总结】1、等差数列基本运算的解题思路: (1)设基本量a 1和公差d .(2)列、解方程组:把条件转化为关于a 1和d 的方程(组),然后求解,注意整体计算,以减少运算量.2、求解等差数列通项公式的方法主要有两种: (1)定义法.(2)前n 项和法,即根据前n 项和n S 与n a 的关系求解. 3、等差数列前n 项和公式的应用方法:根据不同的已知条件选用不同的求和公式,若已知首项和公差,则使用1(1)=2n n n S na d -+; 若已知通项公式,则使用1()=2n n n a a S +,同时注意与性质“”的结合使用. 4、等差数列的判定与证明的方法:①定义法:1()n n a a d n +-=∈*N 或1(2,)n n a a d n n --=≥∈⇔*N 是等差数列;②定义变形法:验证是否满足11(2,)n n n n a a a a n n +--=-≥∈*N ; ③等差中项法:为等差数列;④通项公式法:通项公式形如为常数)⇔为等差数列;⑤前n 项和公式法:2(,n S pn qn p q =+为常数)⇔为等差数列.5、等差数列的性质是每年高考的热点之一,利用等差数列的性质进行求解可使题目减少运算量,题型以选择题或填空题为主,难度不大,属中低档题.应用等差数列性质的注意点: (1)熟练掌握等差数列性质的实质等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题. (2)应用等差数列的性质解答问题的关键寻找项数之间的关系,但要注意性质运用的条件,如若m n p q +=+,则q p n m a a a a +=+(,m n,p, ,需要当序号之和相等、项数相同时才成立,再比如只有当等差数列{a n }的前n 项和S n 中的n 为奇数时,才有S n =na 中成立.6、等差数列的前n 项和的最值问题(3)不等式法:由,解不等式组确定n的范围,进而确定n的值和n S的最大值.三、题型分析(一) 等差数列的概念及其定义一般地,如果一个数列从______________,相邻每一项与它的前一项的差等于同一个______________,那么这个数列就叫做______________,这个常数叫做等比数列的公差;公比通常用字母________表示,即:____________________________或____________________________。
4.2.1.1等差数列的概念和通项公式要点一 等差数列的概念(1)文字语言:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d_表示. (2)符号语言:a n +1-a n =d (d 为常数,n ∈N *). 【重点概要】(1)“从第2项起”是因为首项没有“前一项”.(2)一个数列从第2项起,每一项与它前一项的差即使等于常数,这个数列也不一定是等差数列,因为当这些常数不同时,该数列不是等差数列,因此定义中强调“同一个常数”,即该常数与n 无关.(3)求公差d 时,可以用d =a n -a n -1来求,也可以用d =a n +1-a n 来求.注意公差是每一项与其前一项的差,且用a n -a n -1求公差时,要求n ≥2,n ∈N *. 要点二 等差中项(1)条件:如果a ,A ,b 成等差数列. (2)结论:那么A 叫做a 与b 的等差中项. (3)满足的关系式是________. 【重点概要】在等差数列{a n }中,任取相邻的三项a n -1,a n ,a n +1(n ≥2,n ∈N *),则a n 是a n -1与a n +1的等差中项. 反之,若a n -1+a n +1=2a n 对任意的n ≥2,n ∈N *均成立,则数列{a n }是等差数列.因此,数列{a n }是等差数列⇔2a n =a n -1+a n +1(n ≥2,n ∈N *).用此结论可判断所给数列是不是等差数列,此方法称为等差中项法.要点三 等差数列的通项公式以a 1为首项,d 为公差的等差数列{a n }的通项公式a n =1(1)a n d +-【重点总结】从函数角度认识等差数列{a n }若数列{a n }是等差数列,首项为a 1,公差为d ,则a n =f(n)=a 1+(n -1)d =nd +(a 1-d). (1)点(n ,a n )落在直线y =dx +(a 1-d)上; (2)这些点的横坐标每增加1,函数值增加d. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性与公差d 有关.( )(3)若三个数a ,b ,c 满足2b =a +c ,则a ,b ,c 一定是等差数列.( )(4)一个无穷等差数列{a n }中取出所有偶数项构成一个新数列,公差仍然与原数列相等.( ) 【答案】(1)×(2)√(3)√(4)×2.(多选题)下列数列是等差数列的有( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 【答案】ABC3.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( )A .2B .3C .-2D .-3 【答案】C【解析】由等差数列的定义,得d =a 2-a 1=-1-1=-2.故选C. 4.在△ABC 中,三内角A 、B 、C 成等差数列,则B 等于________. 【答案】60°【解析】因为三内角A 、B 、C 成等差数列, 所以2B =A +C ,又因为A +B +C =180°, 所以3B =180°,所以B =60°.题型一 等差数列的通项公式 探究1 基本量的计算【例1】(1)在等差数列{a n }中,已知a 6=12,a 18=36,则a n =________. (2)已知数列{a n }为等差数列,a 3=54,a 7=-74,则a 15=________.【答案】(1)2n (2)-314【解析】(1)由题意得⎩⎪⎨⎪⎧ a 1+5d =12a 1+17d =36,⎩⎪⎨⎪⎧解得d =2,a 1=2,∴a n =2+(n -1)×2=2n .(2)法一:(方程组法)由⎩⎨⎧a 3=54,a 7=-74,得⎩⎨⎧a 1+2d =54,a 1+6d =-74,解得⎩⎨⎧a 1=114,d =-34,∴a 15=a 1+(15-1)d =114+14×⎝⎛⎭⎫-34=-314. 法二:(利用a m =a n +(m -n )d 求解)由a 7=a 3+(7-3)d ,即-74=54+4d ,解得d =-34,∴a 15=a 3+(15-3)d =54+12×⎝⎛⎭⎫-34=-314. 探究2 判断数列中的项【例2】100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,说明理由. 【解析】∵a n =2+(n -1)×7=7n -5, 由7n -5=100,得n =15, ∴100是这个数列的第15项.探究3 等差数列中的数学文化 【例3】《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是( )A.116B.103C.56D.53【答案】D【解析】由题意可得中间的那份为20个面包, 设最小的一份为a 1,公差为d ,由题意可得[20+(a 1+3d )+(a 1+4d )]×17=a 1+(a 1+d ),解得a 1=53,故选D.【方法归纳】(1)已知a n ,a 1,n ,d 中的任意三个量,求出第四个量.(2)应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎪⎨⎪⎧a 1+(m -1)d =aa 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式.(3)若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷. 【跟踪训练】(1)等差数列{a n }中,a 1=13,a 2+a 5=4,a n =33,则n 等于( )A .50B .49C .48D .47 【答案】A【解析】由题得2a 1+5d =4,将a 1=13代入得,d =23,则a n =13+23(n -1)=33,故n =50.(2)等差数列{a n }中,已知a 5=10,a 12=31. ①求a 20;②85是不是该数列中的项?若不是,说明原因;若是,是第几项? 【解析】(2)①设数列{a n }的公差为d . 因为a 5=10,a 12=31,由a n =a 1+(n -1)d 得,⎩⎪⎨⎪⎧ a 1+4d =10,a 1+11d =31,解得⎩⎪⎨⎪⎧a 1=-2,d =3. 即a n =-2+3(n -1)=3n -5,则a 20=3×20-5=55. ②令3n -5=85,得n =30,所以85是该数列{a n }的第30项. 题型二 等差数列的判定与证明【例4】已知数列{a n }满足a 1=4且a n =4-4a n -1(n >1),记b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.【解析】(1)证明:∵b n +1-b n =1a n +1-2-1a n -2=1⎝⎛⎭⎫4-4a n -2-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12又b 1=1a 1-2=12∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知,b n =12+(n -1)×12=12n ∵b n =1a n -2∴a n =1b n +2=2n+2.要证{b n }是等差数列,只需证b n +1-b n =常数或b n -b n -1=常数(n ≥2).【变式探究1】将本例中的条件“a 1=4,a n =4-4a n -1”改为“a 1=2,a n +1=2a na n +2”,求a n .【解析】∵a n +1=2a na n +2∴取倒数得:1a n +1=a n +22a n =12+1a n ∴1a n +1-1a n =12,又1a 1=12,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公差为12的等差数列, ∴1a n =1a 1+(n -1)×12=12+n 2-12=n 2,∴a n =2n . 【方法归纳】定义法判断或证明数列{a n }是等差数列的步骤: (1)作差a n +1-a n ,将差变形;(2)当a n +1-a n 是一个与n 无关的常数时,数列{a n }是等差数列;当a n +1-a n 不是常数,是与n 有关的代数式时,数列{a n }不是等差数列.【跟踪训练】已知数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n2n -1,证明:数列{b n }是等差数列.(2)求数列{a n }的通项公式.【解析】(1)证明:因为a n +1=2a n +2n ,所以a n +12n =2a n +2n 2n =a n2n -1+1,所以a n +12n -a n2n -1=1,n ∈N *.又b n =a n2n -1,所以b n +1-b n =1.所以数列{b n }是等差数列,其首项b 1=a 1=1,公差为1. (2)由(1)知b n =1+(n -1)×1=n ,所以a n =2n -1b n =n ·2n -1,经检验,n =1时a 1=1也满足上式. 题型三 等差中项【例5】已知三个数成等差数列,其和为15,其平方和为83,则这三个数为________. 【答案】3,5,7或7,5,3【解析】设此三个数分别为x -d ,x ,x +d , 则⎩⎪⎨⎪⎧(x -d )+x +(x +d )=15(x -d )2+x 2+(x +d )2=83 解得x =5,d =±2.∴所求三个数分别为3,5,7或7,5,3.【总结】三个数成等差数列可设为x -d,x,x+d【变式探究2】已知四个数成等差数列,它们的和为26,中间两项的积为40,求这四个数. 【解析】法一:(设四个变量)设这四个数分别为a ,b ,c ,d ,根据题意,得⎩⎪⎨⎪⎧b -a =c -b =d -c ,a +b +c +d =26,bc =40,解得⎩⎪⎨⎪⎧ a =2,b =5,c =8,d =11或⎩⎪⎨⎪⎧a =11,b =8,c =5,d =2,∴这四个数分别为2,5,8,11或11,8,5,2.法二:(设首项与公差)设此等差数列的首项为a 1,公差为d ,根据题意,得 ⎩⎪⎨⎪⎧a 1+(a 1+d )+(a 1+2d )+(a 1+3d )=26,(a 1+d )(a 1+2d )=40,化简,得⎩⎪⎨⎪⎧4a 1+6d =26,a 21+3a 1d +2d 2=40, 解得⎩⎪⎨⎪⎧ a 1=2,d =3,或⎩⎪⎨⎪⎧a 1=11,d =-3,∴这四个数分别为2,5,8,11或11,8,5,2.法三:(灵活设元)设这四个数分别为a -3d ,a -d ,a +d ,a +3d ,根据题意,得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,化简,得⎩⎪⎨⎪⎧4a =26,a 2-d 2=40,解得⎩⎨⎧a =132,d =±32.∴这四个数分别为2,5,8,11或11,8,5,2.【小结】四个数成等差数列可设为a -3d ,a -d ,a +d ,a +3d【变式探究3】已知五个数成等差数列,它们的和为5,平方和为859,求这5个数.【解析】设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有 ⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 整理得⎩⎪⎨⎪⎧ 5a =5,5a 2+10d 2=859.解得⎩⎪⎨⎪⎧a =1,d =±23. 当d =23时,这5个分数分别是-13,13,1,53,73.当d =-23时,这5个数分别是73,53,1,13,-13.综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13.【方法归纳】当等差数列{a n }的项数n 为奇数时,可设中间的一项为a ,再以d 为公差向两边分别设项,即设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;当等差数列的项数n 为偶数时,可设中间两项分别为a -d ,a +d ,再以2d 为公差向两边分别设项,即设为…,a -3d ,a -d ,a +d ,a +3d ,….【易错辨析】忽视等差数列中的隐含条件致误【例6】已知{a n }为等差数列,首项为125,它从第10项开始比1大,那么公差d 的取值范围是( )A .d >875B .d <325C.875<d <325D.875<d ≤325 【答案】D【解析】由题意可得a 1=125,且⎩⎪⎨⎪⎧a 10>1a 9≤1即⎩⎨⎧125+9d >1125+8d ≤1解得875<d ≤325,故选D.【易错警示】1. 出错原因(1)错选A ,只看到了a 10>1而忽视了a 9≤1,是审题不仔细而致误; (2)错选C ,误认为a 9<1,是由不会读题,马虎造成错误. 2. 纠错心得认真审题,充分挖掘题目中的隐含条件.一、单选题1.等差数列{}n a 的公差为3,若2a ,4a ,8a 成等比数列,则{}n a 的前2n 项2n S =( ). A .3(21)n n - B .3(21)n n + C .3(1)2n n + D .3(1)2n n - 【答案】B 【分析】根据等差数列与等比数列的性质可得数列的通项公式,进而可得2n S . 【解析】等差数列{}n a 的公差为3,且2a ,4a ,8a 成等比数列,2428a a a ∴=,()()2222618a a a ∴+=+,解得26a =,1233a a ∴=-=,{}∴n a 的前2n 项, 22(21)2332n n n S n -=⋅+⨯ 3(21)n n =+.故选:B .2.已知数列{}n a 满足()()11220n n n n a a a a ++--+=,下列结论正确的是( ) A .当11a =时,10a 的最大值258 B .当11a =时,9a 的最小值384- C .当101a =时,1a 的最小值17- D .当91a =时,1a 的最大值132【答案】C【分析】根据题干中的条件可得:12n n a a +-=或120n n a a ++=,即{}n a 是等差数列或等比数列,A 选项分别把两种情况下的10a 算出来,比较大小,求出10a 的最大值,同样的道理,其他选项也可以判断出来,进而选出正确的选项 【解析】()()11220n n n n a a a a ++--+=则120n n aa +--=或120n n a a ++=A 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,101911819a a d =+=+= 当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()9102512a =-=-,10a 的最大值为19,故A 选项错误;B 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当11a =时,91811617a a d =+=+=当120n n a a ++=时,12n na a +=-,{}n a 是等比数列,公比为-2,当11a =时,()892256a =-=,9a 的最小值为17,故B 选项错误;C 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当101a =时,即1192a +⨯=,解得:117a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当101a =时,即()9112a -=,解得:11512a =-,117512<--,故1a 的最小值为17-,故选项C 正确 D 选项,当120n n a a +--=时,{}n a 是等差数列,公差为2,当91a =时,1161a += ,解得:115a =- 当120n n a a ++=时,12n n a a +=-,{}n a 是等比数列,公比为-2,当91a =时,即()8112a -=,解得:11256a =,此时1a 的最大值为1256,D 选项错误 故选:C3.记n S 为等差数列{}n a 的前n 项和,若235a a +=,728S =,则数列{}n a 的公差为( ) A .1- B .2-C .1D .2【答案】C 【分析】由等差数列性质,747S a =求得44a =,根据项与项之间的关系代入条件求得公差. 【解析】由题知,74728S a ==,则44a =,设数列公差为d ,则234424435a a a d a d d +=-+-=+-=, 解得1d =, 故选:C4.在等差数列{}n a 中,前9项和918S =,266a a +=,则3n a =( ) A .33-n B .35n + C .73n - D .213n -【答案】C 【分析】根据918S =,266a a +=,可求得公差,再利用等差数列的通项公式即可得解. 【解析】 解:()199599182a a S a ===+,52a ∴=,又26426a a a +==,43a ∴=,∴公差541d a a =-=-,()447n a a n d n =+-⋅=-,373n a n ∴=-.故选:C.5.在ABC ∆中,“π3B =”是“角A ,B ,C 成等差数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】C 【分析】若π3B =,则2π23AC B +==,若A ,B ,C 成等差数列,则π3B =,得到答案. 【解析】在ABC ∆中,若π3B =,则2ππ23A CB B +=-==,所以A ,B ,C 成等差数列,充分性成立. 反之,若A ,B ,C 成等差数列,则2B A C =+,因为3πA B C B ++==,所以π3B =,必要性成立.所以“π3B =”是“角A ,B ,C 成等差数列”的充要条件. 故选:C.6.已知数列{}n a 的前n 项和n S ,且{}n a 满足122n n n a a a ++=+,532a a -=,若424S S =,则9a =( ) A .9 B .172C .10D .192【答案】B 【分析】根据122n n n a a a ++=+判断出{}n a 是等差数列,然后将条件化为基本量,进而解出答案. 【解析】由122n n n a a a ++=+可知,{}n a 是等差数列,设公差为d ,所以53221a a d d -==⇒=, 由()1421114642241S S a a a ⇒+=⨯+⇒==,所以9117822a =+=. 故选:B.7.等差数列{}n a 的前n 项和为n S ,若3724a a +=,840S =,则29a a +等于( ) A .44- B .14C .24D .38【答案】D 【分析】根据条件,列出方程组,求出首项和公差即可求解. 【解析】设等差数列{}n a 的公差为d ,由3724a a +=,840S =得112824,82840,a d a d +=⎧⎨+=⎩ 解得144,14,a d =-⎧⎨=⎩则2912938a a a d +=+= 故选:D8.已知等差数列{}n a 的前n 项和为n S ,43a =,1224S =,若i 0j a a +=(i ,j N *∈,且1i j ≤<),则i 的取值集合是( )A .{}1,2,3B .{}1,2,3,4,5C .{}6,7,8D .{}6,7,8,9,10【答案】B 【分析】设公差为d ,结合等差数列的通项公式和求和公式即可求出首项和公差,即可写出数列中的项,从而可选出正确答案. 【解析】设公差为d ,由4133a a d =+=-及121121112242S a d ⨯=+=,解得19a =-,2d =, 所以数列为9-,7-,5-,3-,1-,1,3,5,7,9,11,…,故i 取值的集合为{}1,2,3,4,5. 故选:B .二、多选题9.将2n 个数排成n 行n 列的一个数阵,如下图: 1112131n a a a a ⋯⋯ 2122232n a a a a ⋯⋯ 3132333n a a a a ⋯⋯ ……123n n n nn a a a a ⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知1113612,1a a a ==+,记这2n 个数的和为S .下列结论正确的有( ) A .3m =B .767173a =⨯C .1()313j ij a i -=⨯-D . (13)131(4)n S n n =-+ 【答案】ACD 【分析】根据题意,利用等差数列和等比数列的通项公式以及求和公式,对各选项进行判断,即可得到结果. 【解析】由11136121a a a ==+,,可得22131161112525a a m m a a m m ===+=+,,所以22251m m =++,解得3m =或12m =- (舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111[()][2]11333()(3)1j j j j ij i a a m a i m m i i ----==+-⋅⋅=+-⨯⨯=-⨯,所以选项C 是正确的;又由这2n 个数的和为S ,则111212122212()()()n n n n nn S a a a a a a a a a =++⋯++++⋯++⋯+++⋯+()()()11211131313...131313n n n n a a a ---=+++--- ()()()()23111 313131224n n n n n n +-=-⨯=+-,所以选项D 是正确的; 故选:ACD.10.设等差数列{a n }的前n 项和为S n .若S 3=0,a 4=8,则( )A .S n =2n 2-6nB .S n =n 2-3nC .a n =4n -8D .a n =2n【答案】AC【分析】根据已知条件求得1,a d ,由此求得,n n a S ,从而确定正确选项,【解析】 依题意3408S a =⎧⎨=⎩, 1113304,438a d a d a d +=⎧⇒=-=⎨+=⎩, 所以2148,262n n n a a a n S n n n +=-=⋅=-. 故选:AC11.已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2021是该数列的一项,则公差d 不可能是( ) A .2B .3C .4D .5【答案】BCD【分析】由已知得2021=3+(n -1)d ,即有n =2018d +1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.由此可得选项.【解析】解:由2021是该数列的一项,即2021=3+(n -1)d ,所以n =2018d+1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.故选:BCD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.设n S 为正项数列{n a }的前n 14n a +,则通项公式n a =___________ 【答案】21()4n n N +-∈ 【分析】当1n =时,求得114a =;当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减得到112n n a a --=,结合等差数列的定义,即可求解其通项公式. 【解析】由n S 为正项数列{n a }的前n 14n a =+,当1n =114a =+,可得2111()4a a =+,解得114a =, 当2n ≥时,可得21()4n n S a =+,则2111()4n n S a --=+, 两式相减,可得1-11()()02n n n n a a a a -+--=, 因为0n a >,所以112n n a a --=, 所以数列{n a }是以12为公差,以14为首项的等差数列, 所以1121(1)424n n a n -=+-=. 故答案为:21()4n n N +-∈. 13.在等差数列{a n }中,a 3=0.如果a k 是a 6与a k +6的等比中项,那么k =________.【答案】9【分析】根据等比数列的性质以及等差数列的通项公式求解即可.【解析】设等差数列{a n }的公差为d ,由题意得a 3=a 1+2d =0,∈a 1=-2d .又∈a k 是a 6与a k +6的等比中项,266k k a a a +∴=,即[a 1+(k -1)d ]2=(a 1+5d )·[a 1+(k +5)d ],[(k -3)d ]2=3d ·(k +3)d ,解得k =9或k =0(舍去). 故答案为:914.在等差数列{a n }中,a 1+a 5=2,a 3+a 7=8,则a 11+a 15=________.【答案】32【分析】由a 1+a 5=2,a 3+a 7=8,两式相减求得公差即可.【解析】因为a 1+a 5=2,a 3+a 7=8,所以(a 3+a 7)-(a 1+a 5)=4d =6,解得d =32, 所以a 11+a 15=(a 1+a 5)+20d =2+20×32=32. 故答案为:32四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且28S =,9411S a =. (1)求n a ;(2)若3n n S a =+2 ,求n .【答案】(1)21n a n =+(2)4n =【分析】(1)设公差为d ,根据28S =,9411S a =,列出方程组,求得首项跟公差,即可得出答案; (2)利用等差数列前n 项和的公式求得n S ,再根据3n n S a =+2 ,即可的解. (1)解:设公差为d ,由已知294811S S a =⎧⎨=⎩, 得:()11128936113a d a d a d +=⎧⎨+=+⎩,解得:132a d =⎧⎨=⎩, 所以21n a n =+;(2)解:()232122n n n S n n ++==+, 因为3n n S a =+2 ,即()223212n n n +=++,得2450n n --=,解得4n =,或1n =-(舍去), 所以4n =.16.已知等差数列{}n a 的前n 项和为n S ,1646,2a a a +==. (1)求数列{}n a 的通项公式; (2)求n S 的最大值及相应的n 的值.【答案】(1)102n a n =-(2)当4n =或5n =时,n S 有最大值是20【分析】(1)用等差数列的通项公式即可. (2)用等差数列的求和公式即可. (1)在等差数列{}n a 中,∈1646,2a a a +==, ∈1125632a d a d +=⎧⎨+=⎩, 解得182a d =⎧⎨=-⎩, ∈1(1)102n a n d a n ==--+;(2)∈18,2a d ==-,1(1)2n n n S na d -=+ ∈1(1)(1)8(2)22n n n n n S na d n --=+=+-29n n =-+ , ∈当4n =或5n =时,n S 有最大值是20。
1.等差数列的定义 一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项如果A =a +b 2,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × )(5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________________________________________________________________________. 答案 6解析 设等差数列{a n }的公差为d ,∵a 1+a 9=a 4+a 6=-6,且a 1=-11,∴a 9=5,从而d =2.∴S n =-11n +n (n -1)=n 2-12n ,∴当n =6时,S n 取最小值.2.一个首项为23,公差为整数的等差数列,如果前6项均为正数,从第7项起为负数,则它的公差为________.答案 -4解析 a n =23+(n -1)d ,由题意知⎩⎪⎨⎪⎧ a 6>0,a 7<0, 即⎩⎪⎨⎪⎧23+5d >0,23+6d <0,解得-235<d <-236, 又d 为整数,所以d =-4.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________.答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=________.答案 (1)52 (2)210 解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)因为a 2=7,a 4=15,所以d =4,a 1=3,故S 10=10×3+12×10×9×4=210. 思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________________________________________________________________________.(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是________. 答案 (1)5 (2)2解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,得a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5. (2)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7.设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是________.①公差为3的等差数列 ②公差为4的等差数列③公差为6的等差数列 ④公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为______________. 答案 (1)③ (2)a n =1n解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2)=(a 2n -1-a 2n -3)+2(a 2n -a 2n -2)=2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.(2)由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . 题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53 =-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴a 13=0.又a 1=-20,∴a 12<0,a 14>0,∴当n =12或13时,S n 取得最小值,最小值S 12=S 13=13(a 1+a 13)2=-130. 思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ; b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m . (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为________.(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)6 (2)5或6 (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________.(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________. 思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎨⎧ 10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. (3)因为⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5.答案 (1)45 (2)-110 (3)S 5温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *;(2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.[失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练(时间:40分钟)1.(2015·课标全国Ⅰ改编)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________________________________________________________________________. 答案 192解析 ∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192. 2.(2015·北京改编)设{a n }是等差数列,下列结论中正确的是________.①若a 1+a 2>0,则a 2+a 3>0;②若a 1+a 3<0,则a 1+a 2<0;③若0<a 1<a 2,则a 2>a 1a 3;④若a 1<0,则(a 2-a 1)(a 2-a 3)>0.答案 ③解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故①错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故②错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故③正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故④错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 答案 5解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________.答案 3解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2.∵b 3=-2,∴b 1=b 3-2d =-2-4=-6.∴b 1+b 2+…+b 7=7b 1+7×62d =7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为________.答案 7或8解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.10.(2015·济南模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大, 则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,即⎩⎨⎧ a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.方法四 由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升(时间:20分钟)11.已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________. 答案 4解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212,解得k =13. 13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________.答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧ a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧ a 1=1,d =4.所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,所以2c2+c=0,所以c=-1或c=0(舍去),2时,{b n}是等差数列,经验证c=-12故c=-12.。
等差数列的性质总结1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈, 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而mn a a d mn --=;3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+ 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.8. 等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
等差数列知识点及考点试题解析一.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.二.等差中项如果三个数a,A,b组成等差数列,那么A叫做a与b的等差中项,由等差数列的定义知2A =a+b.①a,A,b是等差数列的充要条件是2A=a+b.②数列{an}是等差数列⇔2an=an-1+an+1(n≥2).③若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.三.等差数列的通项公式首项为a1,公差为d的等差数列{an}的通项公式为an=a1+(n-1)d;an=am+(n-m)d(n,m ∈N*)四.等差数列的前n项和公式1.设等差数列{an}的首项为a1,公差为d,其前n项和Sn=n(a1+an)2或Sn=na1+n(n-1)d.22.等差数列的前n项和公式与函数的关系Sn=dn2n⇌数列{an}是等差数列⇔Sn=2An2+Bn(A,B为常数).3.等差数列的前n项和的最值在等差数列{an}中,若a1>0,d<0≥0,+1≤0的项数m 使得Sn 取得最大值Sm ;若a1<0,d>0≤0,+1≥0的项数m 使得Sn 取得最小值Sm .一.等差数列运算问题的通性方法1.等差数列运算的一般求法是设出首项a1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.2.等差数列的通项公式及前n 项和公式,共涉及五个量a1,an ,d ,n ,Sn ,知其中三个就能求另外两个。
二.等差数列的判定与证明的常用方法1.定义法:an +1-an =d(d 是常数,n ∈N*)或an -an -1=d(d 是常数,n ∈N*,n≥2)⇔{an}为等差数列.2.等差中项法:2an +1=an +an +2(n ∈N*)⇔{an}为等差数列.3.通项公式法:an =an +b(a ,b 是常数,n ∈N*)⇔{an}为等差数列.4.前n 项和公式法:Sn =an2,b 为常数)⇔{an}为等差数列.三.在等差数列{an}中前n项和性质1.Sm ,S2m -Sm ,S3m -S2m ,…,构成等差数列;2.S2n =n(a1+a2n)=…=n(an +an +1);3.S2n -1=(2n -1)an .n n n n 2n 1n 2n 1n 2n-12m 1m2n 1n(S T a b n S (2n 1)a S a 1S =(2)T (2m 1)b T b -----==-−−→特例n 4.数列项数为奇数2n-1时、分别是等差数列、的前项和)()(2n-1)a 5.若项数为偶数2n ,则S2n =n(a1+a2n)=n(an +an +1);S 偶-S 奇=nd ;S 奇S 偶=anan +1.6.若项数为奇数2n-1,则S2n-1=(2n-1)an;S奇-S偶=an;S奇S偶=nn-1.四.求等差数列前n项和Sn及最值1,二次函数法:用求二次函数最值的方法(配方法)求其前n项和的最值,但要注意n∈N*.2.图象法:利用二次函数图象的对称性来确定n的值,使Sn取得最值.3.项的符号法(邻项变号法):①当a1>0,d<0≥0,+1≤0的项数m使得Sn取得最大值为Sm;②当a1<0,d>0≤0,+1≥0的项数m使得Sn取得最小值为Sm.数列的单调性当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.考点等差数列基本量的计算【例1-1】(2023·河南洛阳·模拟预测)已知等差数列{}na的前n项和为nS,131,18a S==,则6S=()A.54B.71C.80D.81【答案】D【解析】设等差数列{}n a的公差为d ,因为131,18a S ==,可得1333318a d d +=+=,解得5d =,所以166********S a d =+=+⨯=.故选:D.【例1-2】(2023·河北·统考模拟预测)已知等差数列{}n a 的前n 项和是376,1,3n S a S a ==,则3S =()A .1B .1-C .3D .3-【答案】D【解析】由已知设等差数列的公差为d ,则3121a a d =+=,117673(5)2a d a d ⨯+=+,解得13a =-,2d =,所以31333S a d =+=-.故选:D.【例1-3】(2023·全国·统考高考真题)记n S 为等差数列{}n a的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .15【答案】C【解析】方法一:设等差数列{}n a的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选:C.【一隅三反】1.(2023·四川雅安·统考三模)已知数列{}n a 的前n 项和为n S .若()*111,2N n n n a S S a n +==++∈,则5S =()A .16B .25C .29D .32【答案】B【解析】由12n n n S S a +=++可得12n n a a +=+,即12n n a a +-=,故数列{}n a是以11a =为首项,2为公差的等差数列,所以5154=52252S a ⨯+⨯=,故选:B2.(2023春·广东佛山)(多选)若{}n a为等差数列,211a =,55a =,则下列说法正确的是()A .152n a n=-B .-11是数列{}n a中的项C .数列{}n a 的前n 项和212n S n n =-+D .数列{}n a的前7项和最大【答案】ABD【解析】2111a a d =+=,5145a a d =+=,解得113a =,2d =-,对选项A :()()1312152n a n n=+-⨯-=-,正确;对选项B :取15211n a n =-=-,13n =,正确;对选项C :()21132142n n n S n n n -=-⨯=-+,错误;对选项D :152n a n =-,710a =>,810a =-<,故数列{}n a的前7项和最大,正确.故选:ABD3.(2023·全国·高三专题练习)(多选)已知等差数列{}n a为递减数列,且31a =,2434a a =,则下列结论中正确的有()A .数列{}n a的公差为12-B .1522n a n =-+C .数列{}1n a a 是公差为1-的等差数列D .1741a a a +=-【答案】ABC【解析】由题意知,2432 2.a a a +==又2434a a =,故24,a a 可看出方程23204x x -+=的两根,∵数列{}n a为递减数列,412a ∴=,232a =.∴公差42122a a d -==-,故A 正确;又122a a d =-=,11521222n a n n ∴=+-⨯-=-+()(),故B 正确;由上可知12n n a a a =,则当2n ≥时,()111222212n n n n a a a a --⎛⎫-=-=⨯-=- ⎪⎝⎭,当1n =时,214a =,∴数列{}1n a a 是首项为4,公差为1-的等差数列,故C 正确;由C 选项知:15n a a n =-,故17572a a =-=-,∵451222a =-=,174135722a a a ∴+=-+=-,故D 错误.故选:ABC4.(2023·河北唐山·唐山市第十中学校考模拟预测)(多选)已知数列{}n a的前n 项和为n S ,若数列{}n a和均为等差数列,且518a=,则()A .16a =B .830a =C .560S =D .798S =【答案】BD【解析】数列{}n a为等差数列,设其首项为1a ,公差为d ,则18(5)185n n d dn d a =+-=+-,5(184)(3692182)n n nS d dn d dn d +-=+-+=-,由数列为等差数列,可得则7215d -=两边平方整理得,28160d d -+=,解之得4d =,则42n a n =-,22n S n =,选项A :1422a =-=.判断错误;选项B :848230a =⨯-=.判断正确;选项C :252550S =⨯=.判断错误;选项D :272798S =⨯=.判断正确.故选:BD考点等差数列的判定与证明【例2-1】(2023·全国·高三专题练习)已知数列{}n a满足1111,22n n a a a +=-=--.证明:11n a ⎧⎫⎨⎬+⎩⎭是等差数列,并求出数11n a ⎧⎫⎨+⎩⎭的通项公式.【答案】证明见解析,111n n a =++【解析】因为112n n a a +=--,所以1111122n n n n a a a a +++=+=--+,则12111111n n n n a a a a ++==++++,即111111n n a a +-=++,又112a =-,则1121112n a ==+-,所以11n a ⎧⎫⎨+⎩⎭是首项为2,公差为1的等差数列,所以()121111n n n a =+-⨯=++.【例2-2】(2023·北京)已知数列{}n a满足()1144,41n n a a n a -==->,记12n n b a =-.求证:数列{}n b 是等差数列.【答案】证明见解析【解析】(定义法)111111422242n n n n n nb b a a a a ++-=-=------()121222nn a a -==-,所以数列{}n b 是首项为11122a =-,公差为12的等差数列.(等差中项法)12n n b a =-,()1111422242n n n n na b a a a ++===----,()1214412224242n nn n n n n a a a b a a a +++--==--⎛⎫-- ⎪⎝⎭,所以()21112202222n n n n n n n n a a b b b a a a ++-+-=+-⨯=---,所以()*212N n n n b b b n +++=∈,所以数列{}n b 是首项为11122a =-,公差为12的等差数列.【一隅三反】1.(2023·安徽)若数列{}n a为等差数列,则下列说法中错误的是()A .数列12a ,22a ,32a ,…,2n a …为等差数列B .数列2a ,4a ,6a ,…,2n a ,…为等差数列C .数列{}1n n a a +为等差数列D .数列{}1n n a a ++为等差数列【答案】C【解析】A 选项:因为{}n a为等差数列,所以设1n n a a d --=(d 为常数),又()112222n n n n a a a a d---=-=,所以数列{}2n a 也为等差数列,故A 正确;B 选项:2222n n a a d --=,所以数列{}2n a 为等差数列,故B 正确;C 选项:112n n n n n a a a a da +--={}1n n a a +不是等差数列,故C 错;D 选项:()112n n n n a a a a d+-+-+=,所以数列{}1n n a a ++为等差数列,故D 正确.故选:C.2.(2023·云南)已知等差数列{}n a的前n 项和为n S ,若6812,72,a S ==(1)求数列{}n a的通项公式.(2)证明:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列.【答案】(1)2n a n =(2)证明见解析【解析】(1)设等差数列{}n a 的公差为d ,由题意得11512878722a d a d +=⎧⎪⎨⨯+=⎪⎩,解得122a d =⎧⎨=⎩,有22(1)2n a n n=+-=,所以等差数列{}n a 的通项公式为2n a n =;(2)由(1)知(22)(1)2n nS n n n =+=+,1n S n n =+,所以1(1)1(1)11n n S S n n n n +-=++-+=+,又121S =,故数列n S n ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列.3.(2023·广东)已知数列{n a }满足112,12nn n a a a a +==+.(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列{n a }的通项公式.【答案】(1)证明见解析(2)243n a n =-【解析】(1)证明:数列{n a }满足112,12nn n a a a a +==+.两边取倒数可得:1112n n a a +=+,即1112n n a a +-=,∴数列{1n a }是等差数列,首项为1112=a ,公差为2;(2)由(1)可得:()11432122n n n a -=+-=,解得243n a n =-.。
等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。
{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。
{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
三、等差数列的前n 项和1.等差数列前n 项和公式n a 通项公式得到)★ 21()22n d dS n a n =+-(以n 为变量,体现二次函数) 2n S An Bn =+(简化写法,不含常数项的二次函数)2.和的有关性质等差数列{}n a ,公差为d ,前n 项和为n S ,那么: (1){}n S n也成等差数列,其首项与{}n a 首项相同,公差是{}n a 公差的12.(2)等差数列{}n b ,前n 项和为n T (21(21)n n S n a -=-).★ (3)数列232,,,k k k k k S S S S S --是等差数列,公差为2k d .★(4)S 奇表示奇数项的和,S 偶表示偶数项的和,则有:①当项数为偶数2n 时,S S nd -=偶奇,1nn S a S a +=奇偶; ②当项数为奇数21n -时,n S S a -=奇偶,1S nS n =-奇偶.3.和与函数的关系及和的最值 21()22n d dS n a n =+-简写为2()n S An Bn n =+∈*N ,可以把(,)n n S 看作是二次函数图像上孤立的点,因此可以用二次函数的性质来研究和的性质,比如对称和求最值.练习题:D.9答案解析:11 | 1312 | 1313 | 13当12n <时,n S 很明显都是小于0的 故n S 取到最小正数时的n 为12. 答案:1231解析:由1020S S =知对称轴为15n =,故最大值为前15项之和. 答案:A 32解析:41434442S a d ⨯=+=,81878562S a d ⨯=+=两式联立解得114a =,2d =- 故2(1)14(2)152n n n S n n n -=+⨯-=-+ 对称轴为7.5,故当7n =或8n =时取最大值27715756S =-+⨯=.答案:最大值为7856S S ==33解析:根据对称性,由67S S =可知58S S =,49S S = 由中间到两端以此减小,所以985S S S <=,C 选项错误. 答案:C34解析:由条件可知函数零点在18与19之间,又函数过原点则对称轴应介于182与192之间,即大于9小于9.5 数列的下标只能取正整数,离对称轴最近的正整数为9,故9S 最大. 答案:C数学浪子整理制作,侵权必究。
二、等差数列1.等差数列的定义如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差,通常用字母d 表示.递推式表示为1n n a a d +-=或1(2)n n a a d n --=≥.例如:数列{}n a 满足12n n a a +=+,则数列{}n a 是公差为2的等差数列. 注:0d >时,为递增数列;0d <时,为递减数列;0d =时,为常数列. 2.等差中项若三个数a ,A ,b 成等差数列,则A 叫作a 与b 的等差中项. 此时2a b A +=3.等差数列的通项公式等差数列{}n a 的首项为1a ,公差为d ,则1(1)n a a n d =+-.4.等差数列的性质(1)等差数列{}n a 的第m 项为m a ,则()n m a a n m d =+-.★ 例如:8123107652a a d a d a d a d =+=+=+=-=L .(2)若m n p q +=+,则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=.★ 例如:1928374652a a a a a a a a a +=+=+=+=,12132n n n a a a a a a --+=+=+=L . (3)下标成等差数列且公差为m 的项k a ,k m a +,2k m a +,L 组成公差为md 的等差数列. 例如:135721,,,,,,n a a a a a -L L 组成公差为2d 的等差数列;51015205,,,,,,n a a a a a L L 组成公差为5d 的等差数列.(4){}n a 是公差为d 的等差数列,则{}n ka b +也是等差数列,公差为kd . (5){}n a ,{}n b 都是等差数列,则{}n n a b ±,{}n n pa qb ±也是等差数列.5.判断一个数列是等差数列的方法 (1)定义法:1n n a a d +-=(常数).(2)等差中项法:122++=+n n n a a a 或112-+=+n n n a a a .★ (3)通项公式法:=n a kn b +(公差为k ).(4)前n 项和公式法:2n S An Bn =+(不含常数项的二次函数).★练习题:答案解析:112(1)nna=+-,121nan=-.答案:C25解析:设公差为d,则7311411da a=+++,解得124d=故197111211da a=+++1=,19a∴=.答案:A26解析:原式变形为211(11)n na a++=++,1111n na a+∴+=++{1}na∴+是以1为首项,1为公差的等差数列则11(1)na n+=+-,21na n=-故213131168a=-=.答案:C数学浪子整理制作,侵权必究。
等差数列提高题第I卷徐荣先汇编一.选择题(共20小题)1.记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1 B.2 C.4 D.82.等差数列{an }中,a3,a7是函数f(x)=x2﹣4x+3的两个零点,则{an}的前9项和等于()A.﹣18 B.9 C.18 D.363.已知Sn 为等差数列{an}的前n项和,若a4+a9=10,则S12等于()A.30 B.45 C.60 D.1204.等差数列{an }中,a3=5,a4+a8=22,则{an}的前8项的和为()A.32 B.64 C.108 D.1285.设等差数列{an }的前n项和为Sn,若a2+a4+a9=24,则S9=()A.36 B.72 C.144 D.706.在等差数列{an }中,a9=a12+3,则数列{an}的前11项和S11=()A.24 B.48 C.66 D.1327.已知等差数列{an }的前n项和为Sn,且S6=24,S9=63,则a4=()A.4 B.5 C.6 D.78.一已知等差数列{an }中,其前n项和为Sn,若a3+a4+a5=42,则S7=()A.98 B.49 C.14 D.1479.等差数列{an }的前n项和为Sn,且S5=6,a2=1,则公差d等于()A.B.C.D.210.已知等差数列{an }的前n项和Sn,其中且a11=20,则S13=()A.60 B.130 C.160 D.26011.已知Sn 是等差数列{an}的前n项和,若4S6+3S8=96,则S7=()A.48 B.24 C.14 D.712.等差数列{an }的前n项和为Sn,且满足a4+a10=20,则S13=()A.6 B.130 C.200 D.26013.在等差数列{an }中,Sn为其前n项和,若a3+a4+a8=25,则S9=()A.60 B.75 C.90 D.10514.等差数列{an }的前n项和为Sn,且S5=﹣15,a2+a5=﹣2,则公差d等于()A.5 B.4 C.3 D.215.已知等差数列{an },a1=50,d=﹣2,Sn=0,则n等于()A.48 B.49 C.50 D.5116.设等差数列{an }的前n项和为Sn,若S4=﹣4,S6=6,则S5=()A.1 B.0 C.﹣2 D.417.设等差数列{an }的前n项和为Sn,若a4,a6是方程x2﹣18x+p=0的两根,那么S9=()A.9 B.81 C.5 D.4518.等差数列{an }的前n项和为Sn,且S5=15,a2=5,则公差d等于()A.﹣3 B.﹣2 C.﹣1 D.219.等差数列{an }中,a1+a3+a5=39,a5+a7+a9=27,则数列{an}的前9项的和S9等于()A.66 B.99 C.144 D.29720.等差数列{an }中,a2+a3+a4=3,Sn为等差数列{an}的前n项和,则S5=()A.3 B.4 C.5 D.6 二.选择题(共10小题)21.设Sn 是等差数列{an}的前n项和,已知a2=3,a6=11,则S7= .22.已知等差数列{an }的前n项和为Sn,若a3=4,S3=3,则公差d= .23.已知等差数列{an }中,a1=1,a2+a3=8,则数列{an}的前n项和Sn= .24.设等差数列{an }的前n项和为Sn,若公差d=2,a5=10,则S10的值是.25.设{an }是等差数列,若a4+a5+a6=21,则S9= .26.已知等差数列{an }的前n项和为Sn,若a3=9﹣a6,则S8= .27.设数列{an }是首项为1的等差数列,前n项和Sn,S5=20,则公差为.28.记等差数列{an }的前n项和为Sn,若,则d= ,S6= .29.设等差数列{an }的前n项和为Sn,若a4=4,则S7= .30.已知等差数列{an }中,a2=2,a12=﹣2,则{an}的前10项和为.I卷答案一.选择题(共20小题)1.(2017•新课标Ⅰ)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1 B.2 C.4 D.8【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{an}的公差为4.故选:C.2.(2017•于都县模拟)等差数列{an }中,a3,a7是函数f(x)=x2﹣4x+3的两个零点,则{an}的前9项和等于()A.﹣18 B.9 C.18 D.36【解答】解:∵等差数列{an }中,a3,a7是函数f(x)=x2﹣4x+3的两个零点,∴a3+a7=4,∴{an }的前9项和S9===.故选:C.3.(2017•江西模拟)已知Sn 为等差数列{an}的前n项和,若a4+a9=10,则S12等于()A.30 B.45 C.60 D.120【解答】解:由等差数列的性质可得:.故选:C.4.(2017•尖山区校级四模)等差数列{an }中,a3=5,a4+a8=22,则{an}的前8项的和为()A.32 B.64 C.108 D.128【解答】解:a4+a8=2a6=22⇒a6=11,a3=5,∴,故选:B.5.(2017•宁德三模)设等差数列{an }的前n项和为Sn,若a2+a4+a9=24,则S9=()A.36 B.72 C.144 D.70 【解答】解:在等差数列{an}中,由a2+a4+a9=24,得:3a1+12d=24,即a1+4d=a5=8.∴S9=9a5=9×8=72.故选:B.6.(2017•湖南一模)在等差数列{an }中,a9=a12+3,则数列{an}的前11项和S11=()A.24 B.48 C.66 D.132【解答】解:在等差数列{an }中,a9=a12+3,∴,解a1+5d=6,∴数列{an }的前11项和S11=(a1+a11)=11(a1+5d)=11×6=66.故选:C.7.(2017•商丘三模)已知等差数列{an }的前n项和为Sn,且S6=24,S9=63,则a4=()A.4 B.5 C.6 D.7【解答】解:∵等差数列{an }的前n项和为Sn,且S6=24,S9=63,∴,解得a1=﹣1,d=2,∴a4=﹣1+2×3=5.故选:B.8.(2017•葫芦岛一模)一已知等差数列{an }中,其前n项和为Sn,若a3+a4+a5=42,则S7=()A.98 B.49 C.14 D.147【解答】解:等差数列{an }中,因为a3+a4+a5=42,所以3a4=42,解得a4=14,所以S7==7a4=7×14=98,故选A.9.(2017•南关区校级模拟)等差数列{an }的前n项和为Sn,且S5=6,a2=1,则公差d等于()A.B.C.D.2【解答】解:∵等差数列{an }的前n项和为Sn,且S5=6,a2=1,∴,解得,d=.故选:A.10.(2017•锦州一模)已知等差数列{an }的前n项和Sn,其中且a11=20,则S13=()A.60 B.130 C.160 D.260【解答】解:∵数列{an}为等差数列,∴2a3=a3,即a3=0又∵a11=20,∴d=S13=•(a1+a13)=•(a3+a11)=•20=130故选B.11.(2017•龙门县校级模拟)已知Sn 是等差数列{an}的前n项和,若4S6+3S8=96,则S7=()A.48 B.24 C.14 D.7【解答】解:设等差数列{an}的公差为d,∵4S6+3S8=96,∴+=96,化为:a1+3d=2=a4.则S7==7a4=14.故选:C.12.(2017•大连模拟)等差数列{an }的前n项和为Sn,且满足a4+a10=20,则S13=()A.6 B.130 C.200 D.260【解答】解:∵等差数列{an }的前n项和为Sn,且满足a4+a10=20,∴S13=(a1+a13)=(a4+a10)=20=130.故选:B.13.(2017•大东区一模)在等差数列{an }中,Sn为其前n项和,若a3+a4+a8=25,则S9=()A.60 B.75 C.90 D.105【解答】解:∵等差数列{an }中,Sn为其前n项和,a3+a4+a8=25,∴3a1+12d=25,∴,∴S9==9a5=9×=75.故选:B.14.(2017•延边州模拟)等差数列{an }的前n项和为Sn,且S5=﹣15,a2+a5=﹣2,则公差d等于()A.5 B.4 C.3 D.2【解答】解:∵等差数列{an }的前n项和为Sn,且S5=﹣15,a2+a5=﹣2,∴,解得a3=﹣2,d=4.故选:B.15.(2017•金凤区校级四模)已知等差数列{an },a1=50,d=﹣2,Sn=0,则n等于()A.48 B.49 C.50 D.51【解答】解:由等差数列的求和公式可得,==0整理可得,n2﹣51n=0∴n=51故选D16.(2017•唐山一模)设等差数列{an }的前n项和为Sn,若S4=﹣4,S6=6,则S5=()A.1 B.0 C.﹣2 D.4【解答】解:设等差数列{an }的公差为d,∵S4=﹣4,S6=6,∴d=﹣4,d=6,解得a1=﹣4,d=2.则S5=5×(﹣4)+×2=0,故选:B.17.(2017•南关区校级模拟)设等差数列{an }的前n项和为Sn,若a4,a6是方程x2﹣18x+p=0的两根,那么S9=()A.9 B.81 C.5 D.45【解答】解:∵等差数列{an }的前n项和为Sn,a 4,a6是方程x2﹣18x+p=0的两根,那∴a4+a6=18,∴S9===81.故选:B.18.(2017•宜宾模拟)等差数列{an }的前n项和为Sn,且S5=15,a2=5,则公差d等于()A.﹣3 B.﹣2 C.﹣1 D.2【解答】解:∵等差数列{an }的前n项和为Sn,且S5=15,a2=5,∴,解得a1=7,d=﹣2,∴公差d等于﹣2.故选:B.19.(2017•西宁模拟)等差数列{an }中,a1+a3+a5=39,a5+a7+a9=27,则数列{an}的前9项的和S9等于()A.66 B.99 C.144 D.297【解答】解:∵等差数列{an }中,a1+a3+a5=39,a5+a7+a9=27,∴3a3=39,3a7=27,解得a3=13,a7=9,∴数列{an}的前9项的和:S9===.故选:B.20.(2017•大庆二模)等差数列{an }中,a2+a3+a4=3,Sn为等差数列{an}的前n项和,则S5=()A.3 B.4 C.5 D.6【解答】解:∵等差数列{an }中,a2+a3+a4=3,S n 为等差数列{an}的前n项和,∴a2+a3+a4=3a3=3,解得a3=1,∴S5==5a3=5.故选:C.二.选择题(共10小题)21.(2017•榆林一模)设Sn 是等差数列{an}的前n项和,已知a2=3,a6=11,则S7= 49 .【解答】解:∵a2+a6=a1+a7∴故答案是4922.(2017•宝清县校级一模)已知等差数列{an }的前n项和为Sn,若a3=4,S3=3,则公差d= 3 .【解答】解:由等差数列的性质可得S3===3,解得a2=1,故公差d=a3﹣a2=4﹣1=3故答案为:323.(2017•费县校级模拟)已知等差数列{an }中,a1=1,a2+a3=8,则数列{an}的前n项和Sn= n2.【解答】解:设等差数列{an}的公差为d,∵a1=1,a2+a3=8,∴2×1+3d=8,解得d=2.则数列{an }的前n项和Sn=n+=n2.故答案为:n2.24.(2017•淮安四模)设等差数列{an }的前n项和为Sn,若公差d=2,a5=10,则S10的值是110 .【解答】解:∵等差数列{an }的前n项和为Sn,若公差d=2,a5=10,∴a5=a1+4×2=10,解得a1=2,∴S10=10×2+=110.故答案为:110.25.(2017•盐城一模)设{an }是等差数列,若a4+a5+a6=21,则S9= 63 .【解答】解:∵{an }是等差数列,a4+a5+a6=21,∴a4+a5+a6=3a5=21,解得a5=7,∴=63.故答案为:63.26.(2017•乐山三模)已知等差数列{an }的前n项和为Sn,若a3=9﹣a6,则S8=72 .【解答】解:由题意可得a3+a6=18,由等差数列的性质可得a1+a8=18故S8=(a1+a8)=4×18=72故答案为:7227.(2017•凉山州模拟)设数列{an }是首项为1的等差数列,前n项和Sn,S5=20,则公差为.【解答】解:设等差数列{an }的公差为d,∵a1=1,S5=20,∴5+d=20,解得d=.故答案为:.28.(2017•鹿城区校级模拟)记等差数列{an }的前n项和为Sn,若,则d= 3 ,S6= 48 .【解答】解:设等差数列{an}的公差为d,∵,∴+d=20,解得d=3.∴S6==48.故答案为:3,48.29.(2017•金凤区校级一模)设等差数列{an }的前n项和为Sn,若a4=4,则S7=28 .【解答】解:∵等差数列{an }的前n项和为Sn,a4=4,∴S7=(a1+a7)=7a4=28.故答案为:28.30.(2017•衡阳三模)已知等差数列{an }中,a2=2,a12=﹣2,则{an}的前10项和为 6 .【解答】解:∵等差数列{an }中,a2=2,a12=﹣2,∴,解得a1=2.4,d=﹣0.4,∴{an}的前10项和为:=6.故答案为:6.第II 卷一、选择题1.在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D.252.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.123.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n 等于( ) A .9 B .10 C .11D.124.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D.125.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D.-15二、填空题6.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =________.7.{a n }为等差数列,S n 为其前n 项和,已知a 7=5,S 7=21,则S 10=________.8.若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1nn +1的前n 项和为S n ,且S n =1920,则n =________.[能力提升]1.如图224所示将若干个点摆成三角形图案,每条边(包括两个端点)有n (n >1,n ∈N *)个点,相应的图案中总的点数记为a n ,则a 2+a 3+a 4+…+a n等于( )图22 4A.3n22B.n n+12C.3n n-12D.n n-123.(2015·安徽高考)已知数列{a n}中,a1=1,a n=a n-1+12(n≥2),则数列{a n}的前9项和等于________.资*源%库4.(2015·全国卷Ⅰ)S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=1anan+1,求数列{b n}的前n项和.第III卷1.已知{a n}为等差数列,a1=35,d=-2,S n=0,则n等于( ) A.33 B.34C.35 D.36【答案】 D【解析】本题考查等差数列的前n项和公式.由S n=na1+n n-12d=35n+n n-12×(-2)=0,可以求出n=36.2.等差数列{a n}中,3(a3+a5)+2(a7+a10+a13)=24,则数列前13项的和是( )A.13 B.26C.52 D.156【答案】 B【解析】3(a3+a5)+2(a7+a10+a13)=24⇒6a4+6a10=24⇒a4+a10=4⇒S13=13a 1+a 132=13a 4+a 102=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28.【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d2n 2+n (a 1-d2)得S n n =d 2n +(a 1-d2),故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n n -12d .由已知条件得:⎩⎪⎨⎪⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n n -12×4=2n 2-17n ,所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧ 122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n n -12d ,所以S n n =a 1-d 2+d2n ,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列,所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( ) A .100 B .210 C .380 D .400【答案】 B 【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C【解析】 由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9【答案】 A【解析】 ⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n n -12d =-11n +n 2-n =n 2-12n .=(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34,a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36,S n =n a1+a n2=n×362=234.∴n=13,S13=13a7=234.∴a7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( ) A.8 B.7C.6 D.5【答案】 D【解析】S奇=6a1+6×52×2d=30,a1+5d=5,S偶=5a2+5×42×2d=5(a1+5d)=25,a中=S奇-S偶=30-25=5.7.若两个等差数列{a n}和{b n}的前n项和分别是S n,T n,已知SnTn=7nn+3,则a5b5等于( )A.7 B.2 3C.278D.214【答案】 D【解析】a5b5=2a52b5=a1+a9b1+b9=92a1+a992b1+b9=S9T9=214.8.已知数列{a n}中,a1=-60,a n+1=a n+3,则|a1|+|a2|+|a3|+…+|a30|等于( )A.445 B.765C.1 080 D.1 305【答案】 B【解析】a n+1-a n=3,∴{a n}为等差数列.∴a n=-60+(n-1)×3,即a n=3n-63.∴a n=0时,n=21,a n>0时,n>21,a n<0时,n<21.S′30=|a1|+|a2|+|a3|+…+|a30|=-a1-a2-a3-…-a21+a22+a23+…+a30=-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n=________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则 ⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5, ∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3,∴a8=a6+2d=10+2×3=16,S 8=8a1+a82=44.(2)由S n=n a1+a n2=n-512+12=-1 022,解得n=4.又由a n=a1+(n-1)d,即-512=1+(4-1)d,解得d=-171.【规律方法】一般地,等差数列的五个基本量a1,a n,d,n,S n,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a1和d,然后再用公式求出其他的量.12.已知等差数列{a n},且满足a n=40-4n,求前多少项的和最大,最大值为多少?【解析】方法一:(二次函数法)∵a n=40-4n,∴a1=40-4=36,∴S n=a1+a n n2=36+40-4n2·n=-2n2+38n=-2[n2-19n+(192)2]+1922=-2(n-192)2+1922.令n-192=0,则n=192=9.5,且n∈N+,∴当n=9或n=10时,S n最大,∴S n的最大值为S9=S10=-2(10-192)2+1922=180.方法二:(图象法)∵a n=40-4n,∴a1=40-4=36,a2=40-4×2=32,∴d=32-36=-4,S n =na1+n n-12d=36n+n n-12·(-4)=-2n2+38n,点(n,S n)在二次函数y=-2x2+38x的图象上,S n有最大值,其对称轴为x=-382×-2=192=9.5, ∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列. 令⎩⎨⎧ a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4n +1≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大. ∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m-1=S m 同为S n 的最值.。
AP等差数列1:(概念\通项公式)定义\等差中项\等差数列的通项公式\.等差数列的通项公式:a n=a1+(n−1)d等差数列通项公式的推导:○1归纳法(由特殊到一般的思想)○2逐差法○3累加法○4迭代法等差数列通项公式的变形:.对任意正整数m,n∈N∗,有a n=a m+(n−m)d,即d=a n−a mn−m等差数列的性质(重点):设{a n}是公差为d的等差数列,那么(1)在等差数列{a n}中,若m+n=p+q(m,n,p,q∈N∗),则a m+a n=a p+a q.注:○1若m+n=2k(m,n,k∈N∗),则a m+a n=a2k.○2若{a n}是有穷等差数列,则与首尾两项等距离的两项之和都相等,且等于首位两项之和,即a1+a n=a2+a n−1=⋯.(2)数列{λa n+b}(λ,b为非零常数)是公差为λd的等差数列.(3)若数列{b n}也是等差数列,则数列{a n±b n},{ka n+mb n}(m,k∈R)是等差数列.(4)等差数列的单调性:(三种情况)1.等差数列的判定:方法:(1)定义法;(2)等差中项法;(3)通项公式法.(不再举例)还是举一个例子吧:例15:已知各项均为正数的两个数列{a n }和{b n }满足:a n+1=n n√a n +b nn ∈N ∗.设b n+1=1+b na n,n ∈N ∗,求证:数列{(b n a n)2}是等差数列.2.灵活设项求解等差数列问题:方法:(1)若所给等差数列为2n (n ∈N ∗)项,则这个数列可设为:a −(2n −1)d,…,a −3d,a +d,a +3d,…,a +(2n −1)d ,此数列公差为2d.(2)若所给等差数列的项数为2n +1(n ∈N ∗)项,则这个等差数列可设为:a −nd,a −(n −1)d,…,a −d,a,a +d,…,a +(n −1)d,a +nd,此数列的公差为d .例:成等差数列的四个书之和为26,第二个数与第三个数之积为40,求这四个数.分析:总共四个数,即2n(n ∈N ∗)个,用对称设法:解:设这四个数为a −3d,a −d,a +d,a +3d,由题意可知{(a −3d )+(a −d )+(a +d )+(a +3d )=26(a −d )(a +d )=40 ,即{4a =26a 2−d 2=40.解的{a =132d =32 或 {a =132d =−32. 故这四个数为2,5,8,11或11,8,5,2.(今后也许会遇到这种设法了解一下即可)变式:一直四个数依次成等差数列,且这四个数的平方和为94,首尾两数之积比中间两素数之积少18,求这四个数.(等差数列的性质应用)例:在数列{a n}中,a1=1且对任意大于1的正整数n,点(√a n,√a n+1)在直线x−y−√3=0上,则a n= .例16:若{a n}是等差数列,a3,a10,是方程x2−3x−5=0的两根 ,则a5+a6+a7+a8= .例17:若数列{a n}为等差数列,且a1+a7+a13=π,则tan(a2+a12)= .例18:在∆ABC中,a,b,c分别为A,B,C的对边,如果a,b,c成等差数列,B= 30°,∆ABC的面积为1.5,那么b= .例19:已知∆ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则∆ABC的面积为.(需要使用余弦定理)例20:若{a n}是等差数列,且a1+a4+a7=45,a2+a5+a8=39,则a3+a6+a9= .例21:若等差数列{a n},a3+a4+a5=12,那么a1+a2+⋯+a7= .例22:在数列{a n}中,若a3+a5+a7+a9+a11=100,则3a9−a13= .a8= .例23:在数列{a n}中,若a2+a4+a6+a8+a10=80,则a7−12例24:已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32 ,若a m=8,则m为.例25:若{a n}为等差数列,且a1+a5+a8=π,则cos(a2+a8)的值为.例26:已知在等差数列{a n }中,a 3+a 4=1,则a 1+a 2+a 3+a 4+a 5+a 6= .例27:已知数列{a n }中,a 1=0,a 2=2,且a n+1+a n−1=2(a n +1)(n ≥2) (1)求证:数列{a n+1−a n }是等差数列. (2)求{a n }的通项公式.等差数列2:(等差数列的前n 项和)a n 与S n 的关系:若数列的前n 项和为S n ,则通项公式a n ={S 1 (n =1),S n −S n−1 (n ≥2).已知S n 求a n ,不能直接用a n =S n −S n−1,必须有n ≥2,因为S 0是没有意义的. a 1应单独解出,在验证是否符合a n =S n −S n−1(n ≥2).若符合,写成统一的式子;若不符合,则用分段函数的形式给出.等差数列前n 项和公式:S n =n(a 1+a n )2或S n =na 1+n(n−1)2d .(知道)等差数列前n 项和的公式的推导(仅有一个倒叙相加法):1.等差数列前n项和的性质:(重点)设S n是等差数列{a n}的前n项和,d是{a n}的公差,那么:(1)S k,S2k−S k,S3k−S2k,…(k∈N∗)构成公差为k2d的等差数列.(2)设等差数列{a n}的项数为2n,(n∈N∗),则有:○1S2n=n(a n+a n+1)○2S偶−S奇=nd,S偶S奇=a n+1a n,(S偶,S奇分别为数列{a n}的所有奇数项的和,偶数项和.)○3设等差数列{a n}的项数为2n−1(n∈N∗),则S2n−1=(2n−1)a n(a n是数的列中间项),S奇−S偶=a n,S奇S偶=nn+1.(3)数列{S nn}是等差数列,首项为a1,公差为d2.(4)在等差数列{a n}中,若a1>0,d<0,则S n存在最大值;若a1<0,d>0,则S n 存在最小值.(注:若等差数列{a n}中,若a1>0,d<0,且a k>0,a k+1<0,则S k为最大值;若a k>0,a k+1=0,则S k=S k+1且S k与S k+1均为最大值.若等差数列{a n}中,a1>0,d> 0,情况与此相似.)(5)在等差数列{a n}中,○1若a n=m,a m=n(m≠n),则a m+n=0;○2若S n=m,S m=n(m≠n),则S m+n=−(m+n).○3若S n=S m(m≠n),则S m+n=0.2.等差数列前n项和比值的问题:(难点\重点):(1)设等差数列{a n}的首项为a1,公差为d1,等差数列{b n}的公差为b1,公差为d2,它们的前n项和分别为S n,T n,则它们的前n项和的比S n Tn有下列性质:○1等差数列{a n}的前n项和S n与等差数列{b n}的前n项和T n的比S nT n是关于n的一次函数,即S nT n =an+bcn+d.○2若等差数列{a n},{b n}的前n项和分别为S n,T n,则a mb m=S2m−1T2m−1.a mb n=2n−12m−1∙S2m−1T2n−1(证明:a mb n =2a m2b n(分子分母同乘2)=a1+a2m−1b1+b2n−1(化为a1+a n的模式)=a1+a2m−12b1+b2n−12(分子分母同乘12)=(2m−1)∙a1+a2m−12(2n−1)∙b1+b2n−12×2n−12m−1(这步,分子分母同乘a n,只不过此时的n为(2m−1)⋅(2n−1) )特别地:当n=m时:a mb m=S2m−1T2m−1) (详细的不能再详细了(*^_^*))(上面的公式需要记忆,证明过程看懂就行)(2)设等差数列{a n}的前n项和为S n,则S m,S n与a m,a n有如下性质:○1S2k−1S2l−1=(2k−1)a k(2l−1)a l○2S mS n=am2+bman2+bn.3.等差数列的前n项和公式与函数的关系:等差数列前n项和公式: S n=na1+n(n−1)2d可以写成S n=d2n2+(a1−d2)n.若令d2=A,a1−d2=B,则上式可以写成S n=An2+Bn,即S n是关于n的函数.则有以下总结:(1)一个数列{a n}是等差数列的前提条件是其前n项和的公式S n=f(n)是关于n的二次函数或一次函数或常函数,且其常数项为0,即S n=An2+Bn(A,B为常数).(2)若一个数列的前n 的项和的表达式为S n =An 2+Bn +C(A,B,C 为常数),则当C ≠0时,函数{a n }不是等差数列,但从第2项起是等差数列.例28:已知数列{a n }的前n 项和为S n =n 2,则a 8的值为 .例29:已知数列{a n }的前n 项和为S n ,且a 2+a 9=10,则S 10= .例30:等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S n T n=7n+45n−3,则是得an b n为正整数n 的和数是 .例31:已知S n 表示数列{a n }的前n 项和,且S 5S 10=13,那么S5S 20= .例32:等差数列{a n },{b n }的前n 项和之比为(5n+13)(4n+5),求a10b10的值.有关数列的基本量计算题目不举例了.例33:(1)等差数列{a n }中,a 2+a 7+a 14=24,求S 13.(2)已知等差数列{a n }的前n 项和为377,项数n 为奇数,且前n 项和中奇数项和与偶数项和之比为7:6,求中间项.例34:已知等差数列{a n},{b n}的前n项和分别为S n,和T n,若S nT n =2n3n+1,求a8b8.例35:若数列{a n}的通项公式为a n=1n(n+1),求其前n项和.1.裂项(拆项)相消法求和:方法:把数列的通项拆成两项之差,数列的每一项按如此拆法拆成两项之差,在求和时一些项正负抵消,于是前n项和变成首尾如若干项之和.此法对通项公式如1(an+b)(cn+d)的数列尤为适用.例36:若数列{a n}的通项公式为a n=1(3n−2)(3n−1),求其前n项和S n.例37:已知数列{a n}的前n项和为S n,且满足a n+2S n S n−1=0(n≥2),a1=12.(1)求证:{1S n}是等差数列;(2)求a n的表达式;(3)若b n=2(1−n)a n(n≥2),求b2b3+b3b4+⋯+b n b n+1.2.等差数列前n项和最值的求法:方法:(1)设等差数列{a n}的首项为a1,公差为d.○1当a1>0,d<0时,{a n}只有前面有限的几项为非负数,从某项开始其余所有项均为负数,所以由{a m≥0a m+1<0可得S n的最大值为S m.○2当a1<0,d>0时,{a n}只有前面有限的几项为负数,从某项开始其余所有项均为非负数,所以由{a m<0a m+1≥0可得S n的最小值为S m.(2)二次函数法(具体不再详细说了,没什么内容,看例题)例38:设等差数列{a n}的前n项和为S n,若a1=−11,a4+a6=−6,则当S n 取最小值时,n等于 .例39:在等差数列{a n}中,a1=25,S17=S9,求其前n项和S n的最大值.例40:设等差数列{a n}的前n项和为S n,若S m−1=−2,S m=0,S m+1=3,则m= .例41:等差数列{a n}的前n项和为S n,若a1+a2=5,a3+a4=9,则S10的值为 .例42:已知等差数列{a n}的前n项和为S n,若S n=S n−1+n+2(n∈N∗,n≥2),则S5的值为 .例43: 已知等差数列{a n}满足:a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求{a n}及S n;(n∈N∗),求数列b n的前n项和T n.(2)令b n=1a n2−1例44:已知数列{a n},{b n}满足a1=2,2a n=1+a n a n+1,b n=a n−1,设数列{b n}的前n项和为S n,令T n=S2n−S n.(1)求数列{b n}的通项公式;(2)求证:T n+1>T n(n∈N∗).例45:已知等差数列{a n}的前n项和为S n满足S3=0,S5=−5.(1)求{a n}的通项公式;}的前n项和.(2)求数列{1a2n−1a2n+1= .例46:已知等差数列{a n}的前n项和为S n,S100=100S10,则a100a10例47:已知数列{a n}的前n项和为S n=n2−n+1,则数列{a n}的通项公式为 .例48:求下面各数列的前n项和S n:(1)11×3,13×5,15×7,17×9…;(2)11×2×3,12×3×4,13×4×5,14×5×6….例49:一个等差数列共10项,其中奇数项的和为1212,偶数项的和为15,则公差是 .例50:已知等差数列{a n},首项a1>0,a2005+a2006>0,a2005⋅a2006<0,则使前n项和S n>0成立的最大自然数n是 .例51:在等差数列{a n}中,其前n项和为100,其后的2n项和为500,则紧随其后的3n项和为 .例52:已知等差数列{a n}的公差d<0,若a3a7=9,a1+a9=10,则该数列的前n项和S n的最大值为 .例53:设数列{a n}(n∈N)满足a0=0,a1=2,且对一切n∈N,有a n+2=2a n+1−a n+2.(1)求数列{a n}的通项公式;(2)设T n=13a1+14a2+15a3+⋯+1(n+2)a n,求T n的取值范围.。
等差数列答案高频考点一 等差数列基本量的运算例1、(1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10C.52D.54(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10等于( ) A .100 B .210 C .380D .400答案 (1)C (2)B【感悟提升】(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.【变式探究】 (1)(2015·课标全国Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5等于( )A .5B .7C .9D .11(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( ) A.12B .1C .2D .3 答案 (1)A (2)C解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3, ∴a 1+a 3+a 5=3a 3=3,得a 3=1, ∴S 5=a 1+a 52=5a 3=5.故选A. (2)∵S n =n a 1+a n 2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2,∴数列{a n }的公差为2.高频考点二 等差数列的判定与证明例2、已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1-1an-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.【感悟提升】等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.【变式探究】(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 (1)C (2)A高频考点三 等差数列的性质及应用例2、 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60.【变式探究】在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653.得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.【感悟提升】(1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则 a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1); b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .【举一反三】(1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( )A .5B .6C .7D .8(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A .5B .6C .5或6D .11(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.答案 (1)B (2)C (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,选B.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,选C. (3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得, S n =na 1+n n -2d =20n -n n -2×2=-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.习题:1.数列{a n }为等差数列,a 1,a 2, a 3成等比数列,a 5=1,则a 10=( )A .5B .-1C .0D .1解析:设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d 2=a 1a 1+2da 1+4d =1,解得⎩⎪⎨⎪⎧a 1=1d =0,所以a 10=a 1+9d =1,故选D 。
1等差数列复习一、目标:掌握等差数列的有关概念、性质及简单应用 二、基础知识:1、a n 与S n 的关系式a n =⎩⎨⎧2、等差数列的定义式: 或 ;通项公式: ,前n 项和公式S n = = 。
3、等差数列的常见性质及结论:设{a n }为等差数列,公差为d (1)a n =a m + ;d= (m ≠n ) (2)若m+n=s+t=2l (m, n, s, t, l ∈N *),则 。
(3)S k ,S 2k -S k ,S 3k -S 2k …构成公差为 的等差数列。
(4)项数为2n 的等差数列中:S 偶-S 奇= 项数为2n+1的等差数列中:奇偶S S = 。
(5)若a 1>0,d <0,则S n 有最 值 n 由⎩⎨⎧ 确定若a 1<0,d >0,则S n 有最 值 n 由⎩⎨⎧ 确定(6)若{a n }为等差数列,则}{n ac (c >0,c ≠1)为 数列。
(7)等差数列{a n }的一般形式:a n = S n = ,d= =三.[基础巩固]1.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .442.等差数列{a n }的前n 项和为S n ,若a 2+a 6+a 7=18,则S 9的值是( )A .64B .72C .54D .以上都不对3.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .8B .7C .6D .94.已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为( )A .3B .-1C .2D .3或-15.已知数列2,x ,y,3为等差数列,数列2,m ,n,3为等比数列,则x +y +mn 的值为( )A .16B .11C .-11D .±116.在函数y =f(x)的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f(x)的解析式可能为( )A .f(x)=2x +1B .f(x)=4x 2C .f(x)=log 3xD .f(x)=⎝⎛⎭⎫34x7.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________. 8.将正偶数按下表排成5列:那么2010应该在第________行第________列.9.已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f(x)=3x 2-2x 的图象上. (1)求数列{a n }的通项公式;(2)设b n =3a n ·a n +1,求数列{b n }的第n 项和T n .2四.[能力提升]10.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( )A .1+ 2B .1- 2C .3+2 2D .3-2 211.已知在等差数列{a n }中,对任意n ∈N *,都有a n >a n +1,且a 2,a 8是方程x 2-12x +m =0的两根,且前15项的和S 15=m ,则数列{a n }的公差是( )A .-2或-3B .2或3C .-2D .312.“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为( )A.1升B.6766升C.4744升D.3733升13.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P(1,a n ),点Q(2011,a 2011),则OP →·OQ →等于( )A .2011B .-2011C .0D .114.若数列{x n }满足x n -x n -1=d ,(n ∈N *,n≥2),其中d 为常数,x 1+x 2+…+x 20=80,则x 5+x 16=________.15.已知正数数列{a n }的前n 项和为S n ,且对任意的正整数n 满足2S n =a n +1. (1)求数列{a n }的通项公式;(2)设b n =1a n ·a n +1,求数列{b n }的前n 项和B n .16.已知数列{a n }的前n 项和S n =2-a n ,数列{b n }满足b 1=1,b 3+b 7=18,且b n -1+b n +1=2b n (n≥2).(1)求数列{a n }和{b n }的通项公式;(2)若c n =b na n,求数列{c n }的前n 项和T n .17.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列. (1)求数列{a n }的通项公式;(2)设T n 为数列{1a n a n +1}的前n 项和,若T n ≤λa n +1对一切n ∈N *恒成立,求实数λ的最小值.3等差数列复习答案二、1、a n =⎩⎨⎧≥-=-2111n S S n S n n2、)2(1≥=--n d a a n n )2(211≥=--+n a a a n n n d n a a n )1(1-+=d n n na a a n 2)1(2)(211++=+ 3、(1)a m +(n-m)d mn a a mn -- (2)a m +a n =a s +a t =2a l(3)k 2d (4)nd 1+n n(5)大 ⎩⎨⎧≤≥+001n n a a 小⎩⎨⎧≥≤+001n n a a(6)等比 (7)kn+b An 2+Bn R=2A三.[基础巩固]1.[答案] C[解析] 根据等差数列的性质可知S 11=11 a 1+a 11 2=11 a 2+a 102=11×42=22,故选C.2.[答案] C [解析] 由a 2+a 6+a 7=3a 1+12d =3a 5=18,得a 5=6.3.[答案] C[解析] 设等差数列{a n }的公差为d ,依题意得a 3+a 7=2a 5=-6,∴a 5=-3,∴d =a 5-a 15-1=2,∴a n =-11+(n -1)×2=2n -13.令a n >0得n>6.5,即在数列{a n }中,前6项均为负数,自第7项起以后各项均为正数,因此当n =6时,S n 取最小值,选C.4.[答案] D[解析] 由x 2-2x -3<0及x ∈Z 得x =0,1,2. ∴a 4=3或-1.故选D. 5.[答案] B [解析] 依题意得x +y =2+3=5,mn =2×3=6,x +y +mn =11,选B.6.[答案] D [解析] 对于函数f(x)=⎝⎛⎭⎫34x上的点列(x n ,y n ),有y n =⎝⎛⎭⎫34x n,由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n =⎝⎛⎭⎫34x n+1⎝⎛⎭⎫34x n =⎝⎛⎭⎫34x n +1-x n=⎝⎛⎭⎫34d ,这是一个与n 无关的常数,故{y n }是等比数列.故选D.7.[答案] 110[解析] 由题意,设公差为d ,⎩⎪⎨⎪⎧a 1+2d =1620a 1+20× 20-12d =20,解得⎩⎪⎨⎪⎧a 1=20d =-2 ∴S 10=10a 1+10 10-12d =110.8.[答案] 252,4[解析] 通项a n =2n ,故2010为第1005项,∵1005=4×251+1,又251为奇数,因此2010应排在第252行,且第252行从右向左排第一个数,即252行第4列.9.[解析] (1)由已知点(n ,S n )(n ∈N +)在函数f(x)=3x 2-2x 的图象上,可得S n =3n 2-2n. 当n≥2时,a n =S n -S n -1=3n 2-2n -3(n -1)2+2(n -1)=6n -5, 当n =1时,a 1=S 1=1也适合上式,∴a n =6n -5.(2)b n =3a n a n +1=36n -5 6n +1=12(16n -5-16n +1) ∴T n =12(11-17+17-113+…+16n -5-16n +1)=12(1-16n +1)=12-112n +2. 四.[能力提升]10.[答案] C[解析] 设等比数列{a n }的公比为q(q>0),则由题意得a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q , ∵a 1>0,∴q 2-2q -1=0,∴q =1±2. 又q>0,因此有q =1+2, ∴a 9+a 10a 7+a 8=q 2 a 7+a 8 a 7+a 8=q 2=(1+2)2=3+22,选C. 11.[答案] A[解析] 由2a 5=a 2+a 8=12,得a 5=6,由S 15=m 得a 8=m15.又因为a 8是方程x 2-12x +m =0的根, 解之得m =0,或m =-45, 则a 8=0,或a 8=-3.由3d =a 8-a 5得d =-2,或d =-3. 12.[答案] B[解析] 设该数列为{a n }公差为d ,则⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3a 7+a 8+a 9=4即⎩⎪⎨⎪⎧4a 1+6d =33a 1+21d =4解之得⎩⎨⎧a 1=1322d =766,所以第5节的容积为a 5=a 1+4d =1322+766×4=6766.13.[答案] A[解析] S 21=S 4000⇒a 22+a 23+…+a 4000=0⇒a 2011=0,又P(1,a n ),Q(2011,a 2011),则OP →=(1,a n ),OQ →=(2011,a 2011), ∴OP →·OQ →=(1,a n )·(2011,a 2011)=2011+a n a 2011=2011,故选A 14.[答案] 8[解析] 由x n -x n -1=d 知{x n }为公差为d 的等差数列, ∴x 1+x 2+…+x 20=80⇒10(x 1+x 20)=80⇒x 1+x 20=8,4∴x 5+x 16=x 1+x 20=8.15.[解析] (1)由2S n =a n +1,n =1代入得a 1=1,两边平方得4S n =(a n +1)2 ① ①式中n 用n -1代替得4S n -1=(a n -1+1)2(n≥2) ② ①-②,得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2, [(a n -1)+(a n -1+1)]·[(a n -1)-(a n -1+1)]=0, ∵{a n }是正数数列,∴a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列, ∴a n =2n -1.(2)b n =1a n ·a n +1=12n -1 2n +1=12⎝⎛⎭⎫12n -1-12n +1,裂项相消得B n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=n2n +1.16.[解析] (1)由题意S n =2-a n , ① 当n≥2时,S n -1=2-a n -1, ② ①-②得a n =S n -S n -1=a n -1-a n ,即a n =12a n -1,又a 1=S 1=2-a 1,∴a 1=1,故数列{a n }是以1为首项,12为公比的等比数列.所以a n =12n -1;由b n -1+b n +1=2b n (n≥2)知,数列{b n }是等差数列,设其公差为d ,则b 5=12(b 3+b 7)=9,所以d =b 5-b 14=2,b n =b 1+(n -1)d =2n -1.综上,数列{a n }和{b n }的通项公式为a n =12n -1,b n =2n -1.(2)c n =b n a n=(2n -1)·2n -1,T n =c 1+c 2+c 3+…+c n=1×20+3×21+5×22+…+(2n -1)×2n -1, ③2T n =1×21+3×22+…+(2n -3)×2n -1+(2n -1)×2n , ④③-④得:-T n =1+2(21+22+23+…+2n -1)-(2n -1)·2n=1+2×2-2n1-2-(2n -1)·2n =-(2n -3)·2n -3.∴T n =(2n -3)·2n +3. 17.[解析] 设公差为d.由已知得⎩⎪⎨⎪⎧4a 1+6d =14,a 1+2d 2=a 1 a 1+6d , 联立解得d =1或d =0(舍去), ∴a 1=2,故a n =n +1.(2)1a n a n +1=1 n +1 n +2 =1n +1-1n +2, ∴T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=n 2 n +2.∵T n ≤λa n +1,∴n 2 n +2 ≤λ(n +2),∴λ≥n2 n +2 2.又n 2 n +2 2=12 n +4n+4≤12 4+4 =116. 等号在n =4n即n =2时成立.∴λ的最小值为116.。
专题01 等差数列必备知识点与考点突破答案◆知识点1:等差数列例:【答案】A 【解析】∵a 1 = 11n s +n s = 1,∵{}n S 是以1为首项,以1为公差的等差数列,n S n ,即2n S n =,∵当2n ≥时,()221121n n n a S S n n n -=-=--=-,当1n =时,11a =也适合上式,所以21n a n =-.故选:A.◆知识点2:等差数列的性质例:【答案】C 【详解】∵数列{}n a 是等差数列,且31140a a +=,∴3117240a a a +==,∴720a =, ∴6787360a a a a ++==故选:C .例:【答案】B 【解析】因为{}n a 是等差数列,所以147a a a ++,258a a a ++,369a a a ++也成等差数列, 所以369a a a ++2582()a a a =++147()a a a -++2211527=⨯-=.故选:B .◆知识点3:等差数列前n 项和例:【答案】12或13【详解】等差数列{}n a 中,1015S S =,则11121314150a a a a a ++++=, ∵1350a =,即130a =,又120a =,易得53d =-,∵()2155125202366n n n S n n n -⎛⎫=+⨯-=-+ ⎪⎝⎭, 当12n =或13时,n S 取得最大值,∵存在正整数k ,使任意*n N ∈,都有k n S S ≥恒成立,且k 为12或13. 故答案为:12或13.◆知识点4:等差数列前n 项和的性质例:【答案】D 【解析】等差数列{}n a 的前n 项和为n S ,则1020103020S S S S S --,,构成等差数列, 即310,3012203101220S --,构成等差数列, 则()301220212203103101510S -=--=,则302730S = 故选:D例:【答案】B 【解析】在等差数列{}n a 中,由7945a a =,得()()11313711717913131345221717175852a a S a a a S a +==⨯=⨯=+,故选:B 【核心考点】◆考点1:等差中项1.【答案】D 【解析】解:依题意()22142x x x +=++,解得0x =;故选:D2.【答案】A 【解析】由等差中项的定义得:则a ,b 的的等差中项为:32322a b+++-=32323-++==A .3.【答案】D 【解析】由题意可知,5a ,34a ,42a -成等差数列,所以45328a a a -=,即233328a q a q a -=,所以2280q q --=,4q =或2q =-(舍),所以2428a a q ==,421764a a a ==,故选:D.4.【答案】D 【解析】解:设等比数列{}n a 的公比为q ,因为231a a a ⋅=,所以223111a a a q a q a =⋅=,解得3141a q a ==,因为4a 与72a 的等差中项为58,则有475228a a +=⨯,即3445228a a q +⋅=⨯,解得12q =,所以4138a a q ==,故141822n n n a --⎛⎫=⨯= ⎪⎝⎭,则18a =,24a =,32a =,41a =,所以1234842164a a a a ⋅⋅⋅=⨯⨯⨯=.故选:D .◆考点2:等差数列的证明1.【答案】D 【解析】数列{}n a 为等差数,设其公差为d ,则等差数列{}n a 的前n 项和()112n d S n n na -=+,所以()112nd S n a n -=+,所以112n n S S d n n +-=+,所以数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列;所以10122212102S S d-=⨯=-,所以2d =-.故选:D. 2.【答案】B 【解析】解:因为等比数列{}n a 满足11a =,12q =,则111121--===n n n n a a a q a ,111a 故数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公比的等比等列,故A 错误;则221221log log lo l 1g og ---===-nn n n a a a q a ,12log 0a =故数列{}2log n a 是以0为首项,以-1为公差的等差数列,故B 正确;由A 知:112n na-=。
等差列必备知识点与考点突破【必备知识点】◆知识点1:等差数列1.定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,常用字母d 表示.2.等差数列的判定(1)1n n a a d +-=(定义法); (2)112n n n a a a -+=+(中项法);(3)n a kn b =+(通项法, 一次函数); (4)2n S An Bn =+(和式法, 其图象是过原点的抛物线上的散点).3.等差数列通项公式11(1);1n n a a a a n d d n -=+-=-的几何意义是过()()11,,,n a n a 两点的直线的斜率. 例:已知数列{an }的前n 项和为S n ,满足a 1 = 11n s +n s = 1,则an =( ) A .2n -1 B .n C .2n - 1 D .2n -1【答案】A 【解析】∵a 1 = 11n s +n s = 1,∵{}n S 是以1为首项,以1为公差的等差数列,n S n =,即2n S n =,∵当2n ≥时,()221121n n n a S S n n n -=-=--=-, 当1n =时,11a =也适合上式, 所以21n a n =-. 故选:A.◆知识点2:等差数列的性质设{}n a 为等差数列,公差为d ,则1.若()*,,,m n p q m n p q +=+∈N ,则m n p q a a a a +=+. 特别地,(1)若2m n p +=,则()*2,,m n p a a a m n p +=∈N ;2.若m n t p q r ++=++,则()*,,,,,m n t p q r a a a a a a m n t p q r ++=++∈N ;3.若{}n a 是有穷等差数列,则与首、末两项等距离的两项之和都相等, 且等于首、末两项之和,即 12132n n n a a a a a a --+=+=+=.4.数列{}(,n a b b λλ+ 是常数)是公差为d λ的等差数列.5.若{}n b 是公差为d '的等差数列,{}n a 与{}n b 的项数一致,则数列{1n a λ+}(212,n b λλλ为常数)是公差为12d d λλ'+的等差数列.6.下标成等差数列且公差为m 的项()*2,,,,k k m k m a a a k m ++∈N 组成公差为md 的等差数列.7.在等差数列{}n a 中,若,,n m a m a n m n ==≠,则有0m n a +=.例:已知数列{}n a 是等差数列,且31140a a +=,则678a a a ++等于( ) A .84 B .72C .60D .43【答案】C 【详解】∵数列{}n a 是等差数列,且31140a a +=, ∴3117240a a a +==,∴720a =, ∴6787360a a a a ++== 故选:C .例:{}n a 是等差数列,且14715a a a ++=,25821a a a ++=,则369a a a ++的值( ) A .24 B .27C .30D .33【答案】B 【解析】因为{}n a 是等差数列,所以147a a a ++,258a a a ++,369a a a ++也成等差数列, 所以369a a a ++2582()a a a =++147()a a a -++2211527=⨯-=. 故选:B .◆知识点3:等差数列前n 项和1.等差数列前n 项和公式(1)()12n n n a a S +=(2)1(1)2n n n S na d -=+ (3) 2122n d d S n a n ⎛⎫=+- ⎪⎝⎭(关于前n 项和的最大值与最小值可选择此二次函数形式)2.等差数列前n 项和公式与二次函数的关系等差数列{}n a 的前n 项和211(1)222n n n d d d S na n a n -⎛⎫=+=+- ⎪⎝⎭,令1,22d dA aB =-=,则 2n S An Bn =+. (1) 当0,0A B ==(即10,0d a ==)时,0n S =是常数函数,{}n a 是各项为0的常数列. (2) 当0,0A B =≠(即10,0d a =≠)时,n S Bn =是关于n 的一次函数,{}n a 是各项为非零的常数列.(3) 当0,0A B ≠≠(即10,0d a ≠≠)时,2n S An Bn =+是关于n 的二次函数(常数项为0).从上面的分析,我们可以看出:(1)一个数列{}n a 是等差数列的条件是其前n 项和公式()n S f n =是关于n 的二次函数或一次函数或常数函数,且2( n S An Bn A B =+为常数).(2)若一个数列{}n a 前n 项和的表达式为2(,,n S An Bn C A B C =++为常数),则当0C ≠时,数列{}n a 不是等差数列,但从第2项起为等差数列;(3)由二次函数图象可知,当0d >时({}n a 是递增数列),n S 有最小值;当0d <时({}n a 是递减数列),n S 有最大值.例:在等差数列{}n a 中,120a =,前n 项和为n S ,且1015.S S =若对一切正整数n ,均有k n S S ≥ 成立,则正整数k =_____________.【答案】12或13 【详解】等差数列{}n a 中,1015S S =,则11121314150a a a a a ++++=,∵1350a =,即130a =,又120a =,易得53d =-,∵()2155125202366n n n S n n n -⎛⎫=+⨯-=-+ ⎪⎝⎭, 当12n =或13时,n S 取得最大值,∵存在正整数k ,使任意*n N ∈,都有k n S S ≥恒成立,且k 为12或13. 故答案为:12或13.◆知识点4:等差数列前n 项和的性质1.等差数列中依次k 项之和232,,,k k k k k S S S S S -- 组成公差为2k d 的等差数列2.若等差数列的项数为()*2n n ∈N ,则() 121,,n n n n nS a S n a a S S nd S a ++=+-==偶奇偶奇 3.若等差数列的项数为()*21n n -∈N ,则21(21)n n S n a -=-⋅(n a 是数列的中间项),1,n S n S S a S n--==偶奇偶奇 4.{}n a 为等差数列n S n ⎧⎫⇒⎨⎬⎩⎭为等差数列 5.若{}{},n n a b 都为等差数列,,n n S T 分别为它们的前n 项和,则2121m n m n a S b T --= 例:设等差数列{}n a 的前n 项和为n S ,且10203101220S S ==,,则30S =( ) A .2330 B .2130 C .2530 D .2730【答案】D 【解析】等差数列{}n a 的前n 项和为n S ,则1020103020S S S S S --,,构成等差数列, 即310,3012203101220S --,构成等差数列, 则()301220212203103101510S -=--=,则302730S = 故选:D例:设n S 是等差数列{}n a 的前n 项和,若7945a a =,则1317SS =( )A .1317B .5285C .1713D .8552【答案】B在等差数列{}n a 中,由7945a a =,得()()11313711717913131345221717175852a a S a a a S a +==⨯=⨯=+, 故选:B【核心考点】◆考点1:等差中项1.等差数列{}n a 的前三项依次为x ,21x +,42x +,则x 的值为( ) A .55+x B .21x + C .2 D .0【答案】D 【解析】解:依题意()22142x x x +=++,解得0x =; 故选:D 2.已知32a =+,32b =-a ,b 的等差中项为( )A 3B 2C 3D 2【答案】A 【解析】由等差中项的定义得: 则a ,b 的的等差中项为:32322a b+++-=32323-++==故选:A .3.正项等比数列{}n a 中,5a ,34a ,42a -成等差数列,若212a =,则17a a =( )A .4B .8C .32D .64【解析】由题意可知,5a ,34a ,42a -成等差数列,所以45328a a a -=,即233328a q a q a -=,所以2280q q --=,4q =或2q =-(舍),所以2428a a q ==,421764a a a ==,故选:D.4.已知{}n a 为等比数列,若231a a a ⋅=,且4a 与72a 的等差中项为58,则1234a a a a ⋅⋅⋅的值为( ). A .5 B .512 C .1024 D .64【答案】D 【解析】解:设等比数列{}n a 的公比为q ,因为231a a a ⋅=,所以223111a a a q a q a =⋅=,解得3141a q a ==,因为4a 与72a 的等差中项为58,则有475228a a +=⨯,即3445228a a q +⋅=⨯,解得12q =,所以4138a a q ==,故141822n n n a --⎛⎫=⨯= ⎪⎝⎭,则18a =,24a =,32a =,41a =, 所以1234842164a a a a ⋅⋅⋅=⨯⨯⨯=. 故选:D .◆考点2:等差数列的证明1.等差数列{}n a 的前n 项和为n S ,若101221210S S -=-则公差d =( ) A .1 B .2C .-1D .-2【答案】D数列{}n a 为等差数,设其公差为d , 则等差数列{}n a 的前n 项和()112n d S n n na -=+,所以()112nd S n a n -=+,所以112n n S S d n n +-=+,所以数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列;所以10122212102S S d-=⨯=-,所以2d =-. 故选:D.2.已知等比数列{}n a 满足11a =,12q =,则( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差等列B .数列{}2log n a 是等差数列C .数列1n a ⎧⎫⎨⎬⎩⎭是递减数列D .数列{}2log n a 是递增数列【答案】B 【解析】解:因为等比数列{}n a 满足11a =,12q =, 则111121--===n n n n a a a qa ,111a 故数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公比的等比等列,故A错误;则221221log log lo l 1g og ---===-nn n n a a a q a ,12log 0a =故数列{}2log n a 是以0为首项,以-1为公差的等差数列,故B 正确;由A 知:112n n a -=。
等差数列学习资料基础篇1、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 482、已知等差数列{}n a ,219n a n =-,那么这个数列的前n 项和n s ( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数3、已知等差数列{}n a 的公差12d =,8010042=+++a a a ,那么=100S A .80 B .120C .135D .160.4、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13SA .390B .195C .180D .1205、从前180个正偶数的和中减去前180个正奇数的和,其差为( )A. 0B. 90C. 180D. 3606、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( )A. 130B. 170C. 210D. 2607、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S =8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10 9、已知某数列前n 项之和3n 为,且前n 个偶数项的和为)34(2+n n ,则前n 个奇数项的和为( ) A .)1(32+-n n B .)34(2-n n C .23n - D .321n 10、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( )A .6B .8C .10D .1211、等差数列{}n a 中,若638a a a =+,则9s = . 12、等差数列{}n a 中,若232n S n n =+,则公差d = . 13、在小于100的正整数中,被3除余2的数的和是14、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10= 15、一个等差数列共有10项,其中奇数项的和为252,偶数项的和为15,则这个数列的第6项是 16、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若337++=n n T S n n ,则88a b = .17、在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++ .18、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.19、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1)}{n a 的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.等差数列学习资料提高篇1.{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( ) A .40 B .200 C .400 D .202.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .3 3.(2014·临川一中质检)已知数列{a n },{b n }都是公差为1的等差数列,其首项分别为a 1,b 1,且a 1+b 1=5,a 1,b 1∈N *.设c n =a b n (n ∈N *),则数列{c n }的前10项和等于( )A .55B .70C .85D .1004.(2012·浙江高考)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( ) A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0 C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列5.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为( )A.1941 B.45 C.2743D.24316.(2011·广东高考)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________. 7.在等差数列{a n }中,a 2=6,a 5=15,b n =a 2n ,则数列{b n }的前5项和S 5=________. 8.已知各项为正数的等差数列{a n }的前20项和为100,那么a 7a 14的最大值为________.9.(2013·新课标全国高考Ⅱ)已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.10.已知各项都不相等的等差数列{a n }的前6项和为60,且a 6为a 1和a 21的等比中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n +1-b n =a n (n ∈N *),且b 1=3,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .11.已知数列{a n }的前n 项和S n =-a n -⎝ ⎛⎭⎪⎫12n -1+2(n ∈N *),数列{b n }满足b n =2n·a n .(1)求证:数列{b n }是等差数列,并求数列{a n }的通项公式;(2)设c n =log 2 n a n ,数列⎩⎨⎧⎭⎬⎫2c n c n +2的前n 项和为T n ,求满足T n <2521(n ∈N *)的n 的最大值.基础篇参考答案一、 1-5 B A C B C 6-10 C B A B A二、 1、0 2、6 3、1650 4、-10 5、3 6、6 三.1、n a n 2.0=,393805251=+++a a a .2、①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩ ,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩ 解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩,又∵2437d -<<- ∴{}n a 是递减数列, ∴1212,,,S S S 中6S 最大.3、解:设等差数列首项为a 1,公差为d ,依题意得⎩⎨⎧-=+-=+75156626411d a d a 解得:a 1=-20,d=3。
⑴2)23320(2)(,233)1(11-+-=+=-=-+=n n n a a S n d n a a n n n 234322n n =-;⑵{}120,3,n a d a n =-=∴ 的项随着的增大而增大1202300,3230,3(1)230,(),7,733k k a a k k k k Z k +≤≥-≤+-≥∴≤≤∈=设且得且即第项之前均为负数∴123141278914||||||||()()a a a a a a a a a a ++++=-+++++++ 1472147S S =-=.提高篇参考答案1.解析:选C S 20-2S 10=20 a 1+a 20 2-2×10 a 1+a 10 2=10(a 20-a 10)=100d .又a 10=a 2+8d ,∴33=1+8d . ∴d =4.∴S 20-2S 10=400.故选C. 2.解析:选C 因为S n =n a 1+a n2,所以S n n =a 1+a n 2.由S 33-S 22=1,得a 32-a 22=1,即a 3-a 2=2,所以数列{a n }的公差为2.故选C.3.解析:选C 由题知a 1+b 1=5,a 1,b 1∈N *.设c n =a b n (n ∈N *),则数列{c n }的前10项和等于a b 1+a b 2+…+a b 10=a b 1+a b 1+1+…+a b 1+9,a b 1=a 1+(b 1-1)=4,∴a b 1+a b 1+1+…+a b 1+9=4+5+6+…+13=85,选C.4.解析:选C 设数列{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n .由二次函数性质知S n 有最大值时,则d <0,故A 、B 正确;因为{S n }为递增数列,但d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确. 5.解析:选A ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=112 a 1+a 11112b 1+b 11 =2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941.故选A. 6.解析:10 由题意S 9=S 4得a 5+a 6+a 7+a 8+a 9=0.∴5a 7=0,即a 7=0.又a k +a 4=0=2a 7,a 10+a 4=2a 7,∴k =10.7.解析:90 在等差数列{a n }中,由a 2=6,a 5=15易知公差d =15-63=3,∴a n =a 2+(n -2)d =3n ,∴b n =a 2n =6n , 所以数列{b n }为公差为6的等差数列, 所以前5项和S 5=52(b 1+b 5),又易知b 1=6,b 5=30,所以S 5=90.8.解析:25 因为{a n }为各项为正数的等差数列,且前20项和为100,所以20 a 1+a 202=100,即a 1+a 20=10,所以a 7+a 14=10.所以a 7·a 14≤⎝⎛⎭⎪⎫a 7+a 1422=25,当且仅当a 7=a 14=5时等号成立.9.已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2. 解:(1)设{a n }的公差为d . 由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =-2或d =0(舍去). 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,所以数列{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .10.已知各项都不相等的等差数列{a n }的前6项和为60,且a 6为a 1和a 21的等比中项. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n +1-b n =a n (n ∈N *),且b 1=3,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .解:(1)设等差数列{a n }的公差为d (d ≠0),则⎩⎪⎨⎪⎧6a 1+15d =60,a 1 a 1+20d = a 1+5d 2,解得⎩⎪⎨⎪⎧d =2,a 1=5.∴a n =2n +3.(2)由b n +1-b n =a n ,得b n -b n -1=a n -1(n ≥2,n ∈N *),b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n -1+a n -2+…+a 1+b 1=(n -1)(n -1+4)+3=n (n +2), ∴b n =n (n +2),n ∈N *. ∴1b n=1n n +2 =12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =12⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=3n 2+5n 4 n +1 n +2. 11.已知数列{a n }的前n 项和S n =-a n -⎝ ⎛⎭⎪⎫12n -1+2(n ∈N *),数列{b n }满足b n =2n·a n .(1)求证:数列{b n }是等差数列,并求数列{a n }的通项公式; (2)设c n =log 2 n a n,数列⎩⎨⎧⎭⎬⎫2c n c n +2的前n 项和为T n ,求满足T n <2521(n ∈N *)的n 的最大值.(1)证明:在S n =-a n -⎝ ⎛⎭⎪⎫12n -1+2中,令n =1,可得S 1=-a 1-1+2=a 1,得a 1=12.当n ≥2时,S n -1=-a n -1-⎝ ⎛⎭⎪⎫12n -2+2,∴a n =S n -S n -1=-a n +a n -1+⎝ ⎛⎭⎪⎫12n -1,即2a n =a n -1+⎝ ⎛⎭⎪⎫12n -1.∴2n ·a n =2n -1·a n -1+1.∵b n =2n·a n ,∴b n =b n -1+1.又b 1=2a 1=1,∴{b n }是以1为首项,1为公差的等差数列.于是b n =1+(n -1)·1=n ,∴a n =n2n .(2)解∵c n =log 2n a n=log 22n=n . ∴2c n c n +2=2n n +2 =1n -1n +2.∴T n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1n +2=1+12-1n +1-1n +2.由T n <2521,得1+12-1n +1-1n +2<2521,即1n +1+1n +2>1342,f (n )=1n +1+1n +2单调递减, ∵f (3)=920,f (4)=1130,f (5)=1342,∴n 的最大值为4.。