电路分析复习第1-6章
- 格式:doc
- 大小:150.00 KB
- 文档页数:10
电路分析基础知识点概要请同学们注意:复习时不需要做很多题,但是在做题时,一定要把相关的知识点联系起来进行整理复习,参看以下内容:1、书上的例题2、课件上的例题3、各章布置的作业题4、测试题第1、2、3章电阻电路分析1、功率P的计算、功率守恒:一个完整电路,电源提供的功率和电阻吸收的功率相等关联参考方向:ui=P-P=;非关联参考方向:ui<P吸收功率0P提供(产生)功率>注意:若计算出功率P=-20W,则可以说,吸收-20W功率,或提供20W功率2、网孔分析法的应用:理论依据---KVL和支路的VCR关系1)标出网孔电流的变量符号和参考方向,且参考方向一致;2)按标准形式列写方程:自电阻为正,互电阻为负;等式右边是顺着网孔方向电压(包括电压源、电流源、受控源提供的电压)升的代数和。
3)特殊情况:①有电流源支路:电流源处于网孔边界:设网孔电流=±电流源值电流源处于网孔之间:增设电流源的端电压u并增补方程②有受控源支路:受控源暂时当独立电源对待,要添加控制量的辅助方程3、节点分析法的应用:理论依据---KCL和支路的伏安关系1)选择参考节点,对其余的独立节点编号;2)按标准形式列写方程:自电导为正,互电导为负;等式右边是流入节点的电流(包括电流源、电压源、受控源提供的电流)的代数和。
3)特殊情况:①与电流源串联的电阻不参与电导的组成;②有电压源支路:位于独立节点与参考节点之间:设节点电压=±电压源值位于两个独立节点之间:增设流过电压源的电流i 并增补方程③有受控源支路:受控源暂时当独立电源对待,要添加控制量的辅助方程4、求取无源单口网络的输入电阻i R (注:含受控源,外施电源法,端口处电压与电流关联参考方向时,iu R i =) 5、叠加原理的应用当一个独立电源单独作用时,其它的独立电源应置零,即:独立电压源用短路代替,独立电流源用开路代替;但受控源要保留。
注意:每个独立源单独作用时,要画出相应的电路图;计算功率时用叠加后的电压或电流变量求取。
第一章电路的基本概念和基尔霍夫定律主要内容:1.电路的基本变量i(t),u(t),p(t)电流、电压及其参考方向;电流与电压的关联参考方向(影响功率、元件VCR等表达式);功率:支路在单位时间内吸收的电能。
2.电路相关名词:支路、节点、回路、网孔3.基尔霍夫电流定律(KCL):适用于节点、割集(广义节点)。
表述为:对于任意集中参数电路中的任一节点,在任一时刻,流入(或流出)该节点的所有支路电流代数和为零。
4.基尔霍夫电压定律(KVL):体现在各个回路上。
表述为:对任意集中参数电路中的任一回路,在任一时刻,沿该回路所有支路电压降的代数和为零。
先设回路参考方向,若支路参考极性与回路绕行方向一致取正,相反取负。
再考虑支路电压真实极性与参考极性间的关系。
5.四种电路基本元件(电阻元件、电压源、电流源、受控电源)及其特性例题:第二章电阻电路的等效变换主要内容:1.单口网络(二端网络)的等效电路等效的意思就是对于任何外电路,端口的VCR都相同,所以求等效电路实际上就是求该单口网络的VCR。
(1)电阻串并联的等效,太简单了,不讲(2)多个电压源的串联,多个电流源的并联,电压源与其他元件或支路的并联,电流源与其他元件或支路的串联。
(3)实际电源的两种电路模型以及两者的等效变换(注意方向)2.受控电源的等效变换不含独立源只含受控源和电阻的单口网络可以用一个等效电阻代替,这个等效电阻可能取负值,表示供出能量。
3.T型网络与π型网络的等效变换例题:1.求下图所示电路中开关S断开和闭合时的电流I。
2.求等效电路(不含独立源而含受控源和电阻的单口网络,先列端口VCR,将其化为只含u、i的形式,根据式子得等效电路3.求等效电路课本2-10,2-15,2-20第三章线性电路的一般分析方法主要内容:1.几个概念:树;割集,基本割集;回路,基本回路(会考,送分的)2.电路的独立变量独立变量的概念;需要满足独立性和完备性;独立电流变量:网孔电流(网孔分析法),连支电流;独立电压变量:节点电压(节点分析法),树支电压。
直流电路、动态电路、交流电路(含耦合电感、变压器)三个部分。
第一部分直流电路一、复习内容1.电压、电位、电流及参考方向、电功率:UI P =P.5(1)U 、I 参考方向关联:⎩⎨⎧<>=)(00提供实发实吸吸UIP (2)U 、I 参考方向非关联:⎩⎨⎧<>-=)(00提供实发实吸吸UIP 2.欧姆定律:(1)U 、I 参考方向关联:RI U =;(2)U 、I 参考方向非关联:RI U -=3.电压源、电流源及各自特性4.无源和有源二端网络的等效变换(最简等效电路)5.基尔霍夫定律:⎪⎩⎪⎨⎧==∑∑0ii U KVLI KCL6.两种实际电源的等效变换:P.49(1)有伴电压源等效变换成有伴电流源;(2)有伴电流源等效变换成有伴电压源。
注意:任何支路或元件与电压源并联,对外电路而言,总可等效为电压源;任何支路或元件与电流源串联,对外电路而言,总可等效为电流源;理想电压源与理想电流源之间无等效关系。
P.487.支路电流法:1-n 个节点电流(KCL )方程,1+-n b 个回路电压(KVL )方程。
8.网孔电流法:P.98(1)当支路有电流源时的处理,P.99例3-6;(2)当支路有受控源时的处理,P.99例3-7,要列补充方程。
9.节点电压法:P.105(1)只含一个独立节点的节点电压方程:弥尔曼定理。
P.107图3-21;(2)含独立无伴电压源的处理:P.107例3-13;(3)含受控源的处理:P.108例3-14;(4)利用节点电压法求解运算放大电路:P.111例3-17。
10.叠加定理:P.115。
(1)电压源s U 不作用,短路之;(2)电流源s I 不作用,开路之;(3)线性电路中的电压、电流响应可以表为激励的线性组合。
11.戴维南定理:oc U ,开路电压;i R,除源后等效电阻。
I12.最大功率传递定理:当L i R R =时,max 4ociP R =13.运算放大器:利用虚短路、虚断路(虚开路),KCL ;利用节点电压法,注意不得对输出点列写方程。
“电路分析基础”教材各章小结第一章小结:1.电路理论的研究对象是实际电路的理想化模型,它是由理想电路元件组成。
理想电路元件是从实际电路器件中抽象出来的,可以用数学公式精确定义。
2.电流和电压是电路中最基本的物理量,分别定义为电流tqidd=,方向为正电荷运动的方向。
电压qwudd=,方向为电位降低的方向。
3.参考方向是人为假设的电流或电压数值为正的方向,电路理论中涉及的电流或电压都是对应于假设的参考方向的代数量。
当一个元件或一段电路上电流和电压参考方向一致时,称为关联参考方向。
4.功率是电路分析中常用的物理量。
当支路电流和电压为关联参考方向时,ui p=;当电流和电压为非关联参考方向时,uip-=。
计算结果0>p表示支路吸收(消耗)功率;计算结果<p表示支路提供(产生)功率。
5.电路元件可分为有源和无源元件;线性和非线性元件;时变和非时变元件。
电路元件的电压-电流关系表明该元件电压和电流必须遵守的规律,又称为元件的约束关系。
(1)线性非时变电阻元件的电压-电流关系满足欧姆定律。
当电压和电流为关联参考方向时,表示为u=Ri;当电压和电流为非关联参考方向时,表示为u=-Ri。
电阻元件的伏安特性曲线是u-i平面上通过原点的一条直线。
特别地,R→∞称为开路;R=0称为短路。
(2)独立电源有两种电压源的电压按给定的时间函数u S(t)变化,电流由其外电路确定。
特别地,直流电压源的伏安特性曲线是u-i平面上平行于i轴且u轴坐标为U S的直线。
电流源的电流按给定的时间函数i S(t)变化,电压由其外电路确决定。
特别地,直流电流源的伏安特性曲线是u-i平面上平行于u轴且i轴坐标为I S的直线。
(3)受控电源受控电源不能单独作为电路的激励,又称为非独立电源,受控电源的输出电压或电流受到电路中某部分的电压或电流的控制。
有四种类型:VCVS、VCCS、CCVS和CCCS。
6.基尔霍夫定律表明电路中支路电流、支路电压的拓扑约束关系,它与组成支路的元件性质无关。
电路分析基础知识第一章1.参考电压和参考电流的表示方法。
(1)电流参考方向的两种表示:A)用箭头表示:箭头的指向为电流的参考方向。
(图中标出箭头)B)用双下标表示:如i AB , 电流的参考方向由A指向B。
(图中标出A、B)(2) 参考电压方向: 即电压假定的正方向,通常用一个箭头、“+”、”-”极性或“双下标”表示。
(3)电路中两点间的电压降就等于这两点的电位差,即U ab = V a- V b2.关联参考方向和非关联参考方向的定义若二端元件上的电压的参考方向与电流的参考方向一致(即参考电流从参考电压的正极流向负极),则称之为关联参考方向。
否则为非关联参考方向。
3.关联参考方向和非关联参考方向下功率的计算公式:(1)u, i 取关联参考方向:p = u i (2)u, i 取非关联参考方向:p =- ui 按此方法,如果计算结果p>0,表示元件吸收功率或消耗功率;p<0,表示发出功率或产生功率。
关联参考方向和非关联参考方向下欧姆定律的表达式:(1)电压与电流取关联参考方向:u Ri(2)电压与电流取非关联参考方向: u –Ri 。
4.电容元件(1)伏安特性(2)两端的电压与与电路对电容的充电过去状况有关(3)关联参考方向下电容元件吸收的功率(4)电容元件的功率与储能5.电感元件(1)电感元件的电压-电流关系——伏安特性(2)电感两端的电压与流过的电流无关,而与电流的变化率成正比(3)电感元件的功率与储能6.实际电压源随着输出电流的增大,端电压将下降,可以用理想电压源U S和一个内阻R0串联来等效。
7.实际电流源可以用理想电流源与一个电阻并联来等效. 电流源两端电压愈大,流过内阻的电流越大,输出的电流就愈小。
8.基尔霍夫电流定律(KCL)的内容及表达式。
KCL:对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电流的代数和为零。
即例:对图示电路有:KCL的推广:KCL不仅适用于电路的节点,也适用于电路中任意假设的封闭面。
第一章:电路模型和电路定理 一.电流、电压、功率概念1.电流的参考方向可以任意指定,分析时:假设参考方向与实际方向一致,则i>0,反之i<0。
电压的参考方向也可以任意指定,分析时:假设参考方向与实际方向一致,则u>0反之u<0。
2. 功率平衡一个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3.欧姆定律:,,运用欧姆定理的时候要先判断电压与电流方向是否关联,如果不关联需要加负号 4. 电路的断路与短路电路的断路处:I =0,U≠0 电路的短路处:U =0,I≠0 三. 基尔霍夫定律 1. 几个概念:支路:是电路的一个分支。
结点:三条〔或三条以上〕支路的联接点称为结点。
回路:由支路构成的闭合路径称为回路。
网孔:电路中无其他支路穿过的回路称为网孔。
2. 基尔霍夫电流定律:〔1〕 定义:任一时刻,流入一个结点的电流的代数和为零。
或者说:流入的电流等于流出的电流。
〔2〕 表达式:i 进总和=0 或: i 进=i 出 〔3〕 可以推广到一个闭合面。
3. 基尔霍夫电压定律〔1〕 定义:经过任何一个闭合的路径,电压的升等于电压的降。
或者说:在一个闭合的回路中,电压的代数和为零。
或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。
〔2〕基尔霍夫电压定律可以推广到一个非闭合回路 第二章电阻电路的等效变换概念:两个两端电路,端口具有相同的电压、电流关系,则称它们是等效的电路。
对外等效,对内不等效2. 串联电路的总电阻等于各分电阻之和,各电阻顺序连接,流过同一电流,串联电阻具有分压作用,Ri u =i u R =Gu R u i ==u R R R u 2111+=u R R R u 2122+=3.电阻并联等效电导等于并联的各电导之和,并联电阻具有分流作用4. 电阻的Y 形连接和形连接的等效变换,。
假设三个电阻相等(对称),则有5. 理想电压源〔1〕 不管负载电阻的大小,不管输出电流的大小,理想电压源的输出电压不变。
第1章典型题一、填空题1、电流所经过的路径叫做电路,通常由电源、负载和中间环节三部分组成。
2、实际电路按功能可分为电力系统的电路和电子技术的电路两大类,其中电力系统的电路其主要功能是对发电厂发出的电能进行传输、分配和转换;电子技术的电路主要功能则是对电信号进行传递、变换、存储和处理。
3、实际电路元件的电特性多元而复杂,理想电路元件的电特性则单一和确切。
无源二端理想电路元件包括电阻元件、电感元件和电容元件。
4、由理想电路元件构成的、与实际电路相对应的电路称为电路模型,这类电路只适用集总参数元件构成的低、中频电路的分析。
5、大小和方向均不随时间变化的电压和电流称为稳恒直流电,大小和方向均随时间变化的电压和电流称为交流电,大小和方向均随时间按照正弦规律变化的电压和电流被称为正弦交流电。
6、电压是电路中产生电流的根本原因,数值上等于电路中两点电位的差值。
7、电位具有相对性,其大小正负相对于电路参考点而言。
8、衡量电源力作功本领的物理量称为电动势,它只存在于电源内部,其参考方向规定由电源正极高电位指向电源负极低电位,与电源端电压的参考方向相反。
9、电流所做的功称为电功,其单位有焦耳和度;单位时间内电流所做的功称为电功率,其单位有瓦特和千瓦。
10、通常我们把负载上的电压、电流方向称作关联方向;而把电源上的电压和电流方向称为非关联方向。
11、欧姆定律体现了线性电路元件上电压、电流的约束关系,与电路的连接方式无关;基尔霍夫定律则是反映了电路的整体规律,其中KCL定律体现了电路中任意结点上汇集的所有支路电流的约束关系,KVL定律体现了电路中任意回路上所有元件上电压的约束关系,具有普遍性。
12、理想电压源输出的电压值恒定,输出的电流值由它本身和外电路共同决定;理想电流源输出的电流值恒定,输出的电压由它本身和外电路共同决定。
P U S2/4R0。
13、负载上获得最大功率的条件是电源内阻等于负载电阻,获得的最大功率min二、单项选择题1、当电路中电流的参考方向与电流的真实方向相反时,该电流(B)A、一定为正值B、一定为负值C、不能肯定是正值或负值2、已知空间有a、b两点,电压U ab=10V,a点电位为V a=4V,则b点电位V b为(B)A、6VB、-6VC、14V4、一电阻R上u、i参考方向不一致,令u=-10V,消耗功率为0.5W,则电阻R为(A)A、200ΩB、-200ΩC、±200Ω5、两个电阻串联,R1:R2=1:2,总电压为60V,则U1的大小为(B )A、10VB、20VC、30V7、电阻是(C)元件,电感是(B)的元件,电容是(A)的元件。
A、储存电场能量B、储存磁场能量C、耗能三、判断下列说法的正确与错误1、电流由元件的低电位端流向高电位端的参考方向称为关联方向。
(×)2、电路中任意两个结点之间连接的电路统称为支路。
(∨)3、网孔都是回路,而回路则不一定是网孔。
(∨)4、应用基尔霍夫定律列写方程式时,可以不参照参考方向。
(×)5、电压和电流计算结果得负值,说明它们的参考方向假设反了。
(∨)6、理想电压源和理想电流源可以等效互换。
(×)7、两个电路等效,即它们无论其内部还是外部都相同。
(×)8、负载上获得最大功率时,说明电源的利用率达到了最大。
(×)9、电路等效变换时,如果一条支路的电流为零,可按短路处理。
(×)四、计算题第一章例题:1.4第一章习题:1.5, 1.8,1.10,1.11一、填空题1、以客观存在的支路电流为未知量,直接应用KCL定律和KVL定律求解电路的方法,称为支路电流法。
2、当复杂电路的支路数较多、回路数较少时,应用回路电流法可以适当减少方程式数目。
这种解题方法中,是以假想的回路电流为未知量,直接应用KVL定律求解电路的方法。
3、当复杂电路的支路数较多、结点数较少时,应用节点电压法可以适当减少方程式数目。
这种解题方法中,是以客观存在的节点电压为未知量,直接应用KCL定律和欧姆定律求解电路的方法。
4、当电路只有两个结点时,应用节点电压法只需对电路列写1个方程式,方程式的一般表达式,称作弥尔曼定理。
5、在多个电源共同作用的线性电路中,任一支路的响应均可看成是由各个激励单独作用下在该支路上所产生的响应的叠加,称为叠加定理。
6、具有两个引出端钮的电路称为二端网络,其内部含有电源称为有源二端网络,内部不包含电源的称为无源二端网络。
7、“等效”是指对端口处等效以外的电路作用效果相同。
戴维南等效电路是指一个电阻和一个电压源的串联组合,其中电阻等于原有源二端网络除源后的入端电阻,电压源等于原有源二端网络的开路电压。
二、单项选择题1、叠加定理只适用于( C )A、交流电路B、直流电路C、线性电路2、自动满足基尔霍夫第一定律的电路求解法是(B)A、支路电流法B、回路电流法C、结点电压法3、必须设立电路参考点后才能求解电路的方法是( C )A、支路电流法B、回路电流法C、结点电压法三、判断下列说法的正确与错误1、叠加定理只适合于直流电路的分析。
(×)2、回路电流是为了减少方程式数目而人为假想的绕回路流动的电流。
(∨)3、应用结点电压法求解电路,自动满足基尔霍夫第二定律。
(∨)四、计算分析题1. 计算图中电阻R中的电流第二章例题:2.1,2.2,用节点电压法求2.1, 2.4,2.5第二章习题:2.1,2.4,2.9一、填空题1、正弦交流电的三要素是指正弦量的 最大值 、 角频率 和 初相 。
2、已知一正弦量A )30314sin(07.7︒-=t i ,则该正弦电流的最大值是 7.07 A ;有效值是 5 A ;角频率是 314 rad/s ;频率是 50 Hz ;周期是 0.02 s ;随时间的变化进程相位是 314t-30°电角 ;初相是 -30° ;合 -π/6 弧度。
4、正弦量的 有效 值等于它的瞬时值的平方在一个周期内的平均值的 开方 ,交流电的 有效 值等于与其 热效应 相同的直流电的数值。
5、实际应用的电表交流指示值和我们实验的交流测量值,都是交流电的 有效 值。
工程上所说的交流电压、交流电流的数值,通常也都是它们的 有效 值,此值与交流电最大值的数量关系为: 最大值是有效值的1.414倍 。
7、电阻元件上的电压、电流在相位上是 同相 关系;电感元件上的电压电压 超前 电流π/2。
电容元件上的电压 滞后 电流π/2。
8、 同相 的电压和电流构成的是有功功率,用P 表示,单位为 W ; 正交 的电压和电流构成无功功率,用Q 表示,单位为 Var 。
10、正弦交流电路中,电阻元件上的阻抗z = R ,与频率 无关 ;电感元件上的阻抗z = X L ,与频率 成正比 ;电容元件上的阻抗z = X C ,与频率 成反比 。
二、单项选择题1、在正弦交流电路中,电感元件的瞬时值伏安关系可表达为( C )A 、L iX u =B 、u =ji ωLC 、dtdi L u = 2、已知工频电压有效值和初始值均为380V ,则该电压的瞬时值表达式为( B )A 、t u 314sin 380=VB 、)45314sin(537︒+=t u VC 、)90314sin(380︒+=t u V3、已知)90314sin(101︒+=t i A ,︒+=30628sin(102t i )A ,则( C )A 、i 1超前i 260°B 、i 1滞后i 260°C 、相位差无法判断4、电容元件的正弦交流电路中,电压有效值不变,当频率增大时,电路中电流将( A )A 、增大B 、减小C 、不变5、电感元件的正弦交流电路中,电压有值不变,当频率增大时,电路中电流将( B )A 、增大B 、减小 效C 、不变6、实验室中的交流电压表和电流表,其读数值是交流电的( B )。
A 、最大值B 、有效值C 、瞬时值7、在电阻元件的正弦交流电路中,伏安关系表示错误的是( B )A 、iR u =B 、U =IRC 、R I U ∙∙=8、u =100sin (6πt +10°)V 超前i =5cos (6πt -15°)A 的相位差是( A )A 、25°B 、95°C 、115°三、判断下列说法的正确与错误(建议每小题1分)1、正弦量的三要素是指它的最大值、角频率和相位。
( × )2、V 314sin 22201t u =超前V )45628sin(3112︒-=t u 为45°电角。
( × )3、电阻元件上只消耗有功功率,不产生无功功率。
( ∨ )4、从电压、电流瞬时值关系式来看,电感元件属于动态元件。
( ∨ )5、几个电容元件相串联,其电容量一定增大。
( × )6、单一电感元件的正弦交流电路中,消耗的有功功率比较小。
( × )第四章 典型题一、填空题1、与正弦量具有一一对应关系的复数电压、复数电流称之为 相量 。
最大值 相量 的模对应于正弦量的 最大 值,有效值 相量 的模对应正弦量的 有效 值,它们的幅角对应正弦量的 初相 。
2、单一电阻元件的正弦交流电路中,复阻抗Z= R ;单一电感元件的正弦交流电路中,复阻抗Z= j X L ;单一电容元件的正弦交流电路中,复阻抗Z= -j X C ;电阻电感相串联的正弦交流电路中,复阻抗Z= R +j X L ;电阻电容相串联的正弦交流电路中,复阻抗Z= R -j X C ;电阻电感电容相串联的正弦交流电路中,复阻抗Z= R +j (X L -X C ) 。
3、单一电阻元件的正弦交流电路中,复导纳Y= G ;单一电感元件的正弦交流电路中,复导纳Y= -j B L ;单一电容元件的正弦交流电路中,复导纳Y= j B C ;电阻电感电容相并联的正弦交流电路中,复导纳Y= G +j (B C -B L ) 。
4、按照各个正弦量的大小和相位关系用初始位置的有向线段画出的若干个相量的图形,称为 相量 图。
5、相量分析法,就是把正弦交流电路用相量模型来表示,其中正弦量用 相量 代替,R 、L 、C 电路参数用对应的 复阻抗 表示,则直流电阻性电路中所有的公式定律均适用于对相量模型的分析,只是计算形式以 复数 运算代替了代数运算。
6、有效值相量图中,各相量的线段长度对应了正弦量的 有效 值,各相量与正向实轴之间的夹角对应正弦量的 初相 。
相量图直观地反映了各正弦量之间的 数量 关系和 相位 关系。
7、 电压 三角形是相量图,因此可定性地反映各电压相量之间的 数量 关系及相位关系, 阻抗 三角形和 功率 三角形不是相量图,因此它们只能定性地反映各量之间的 数量 关系。