高考数学前三道大题练习
- 格式:doc
- 大小:6.74 MB
- 文档页数:44
前三题练习(3)1、平面直角坐标系中有点(1,cos )P x ,(cos ,1)Q x ,且[],44x ππ∈-.(Ⅰ)求向量OP 与OQ 的夹角θ的余弦值用x 表示的函数()f x ; (Ⅱ)求θ的最值. 2、已知数列{}nn a 12-的前n 项和nSn69-=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设)3log3(2nn a n b -=,求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和.3、 甲、乙两个同学解数学题,他们答对的概率分别是0.5与0.8,如果每人都解两道题,(Ⅰ)求甲两题都解对,且乙至少解对一题的概率;(Ⅱ)若解对一题得10分,未解对得0分、求甲、乙得分相等的概率.前三题练习(3)答案1、解:(Ⅰ))cos ,1(x OP=)1,(cos x OQ =x OQ OPcos 2=⋅∴xx OQ OP 222cos11cos cos1||||+=+∙+=∙xx x f 2cos1cos 2)(cos +==∴θ x ∈[4,4ππ-] .6分(Ⅱ)2cos ()[123cos cos x f x xx∈⇒=∈+10分 即]1,322[cos ∈θ又],0[πθ∈ , 0,322arccosmin max ==θθ 12分2.(Ⅰ)当1n =时,,62,2,3,32111110-=-=≥=∴==--n n n n S S a n a S a 时当故223--=n na ,即数列的通项公式为⎪⎩⎪⎨⎧≥-==-.)2(23,)1(32n n a n n …6分(Ⅱ)当1n =时,,31log 321=-=b 当),1()2.33log3(,222+=-=≥-n n n b n n n 时故,111)1(11+-=+=n nn n b n1165)111()3121(3111121+-=+-++-+=+++n n nb b b n由此可知,数列{}n b 的前n 项和n T 为⎪⎪⎩⎪⎪⎨⎧≥+-==)2(1165)1(31n n n T n …13分3、解(Ⅰ)24.0)8.02.08.0(5.022212222=+⨯⨯=C C C P (6)分(Ⅱ)两人都得零分的概率为 0202220.50.20.02C C ⨯=两人都得10分的概率为 121220.50.80.20.16C C ⨯⨯=两人都得20分的概率为 2222220.50.80.16C C ⨯=∴2212122222222220.50.20.50.80.20.50.80.34P C C C C C C =⨯+⨯⨯+⨯=13分ACEDPB。
高考大题纵横练 高考大题纵横练(一)1.已知函数f (x )=2sin ωx (0<ω<1)在[0,π2]上的最大值为2,当把f (x )的图象上的所有点向右平移φ(0<φ<π2)个单位后,得到图象对应函数g (x )的图象关于直线x =7π6对称.(1)求函数g (x )的解析式;(2)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,已知g (x )在y 轴右侧的第一个零点为C ,若c =4,求△ABC 的面积S 的最大值. 解 (1)由题意知,函数f (x )在区间[0,π2]上单调递增,∴2sin ωπ2=2, ∴ωπ2=2k π+π4,k ∈Z , 得ω=4k +12,k ∈Z .经验证当k =0时满足题意,故求得ω=12,∴g (x )=2sin(12x -φ2),故12×7π6-12φ=k π+π2,k ∈Z , ∴φ=-2k π+π6,k ∈Z ,又0<φ<π2,∴φ=π6.故g (x )=2sin(x 2-π12).(2)根据题意,得x 2-π12=k π,k ∈Z ,∴x =2k π+π6,k ∈Z ,∴C =π6.又c =4,得16=a 2+b 2-2ab cos π6,∴a 2+b 2=16+3ab ≥2ab , ∴ab ≤32+163,∴S =12ab sin C =14ab ≤8+43,∴S 的最大值为8+4 3.2.如图,在直角梯形ABCP 中,CP ∥AB ,CP ⊥CB ,AB =BC =12CP =2,D 是CP 中点,将△P AD 沿AD 折起,使得PD ⊥底面ABCD .(1)求证:平面P AD ⊥平面PCD ;(2)若E 是PC 的中点,求三棱锥A —PEB 的体积. (1)证明 ∵PD ⊥底面ABCD , ∴PD ⊥AD .又由于CP ∥AB ,CP ⊥ CB ,AB =BC , ∴四边形ABCD 是正方形, ∴AD ⊥CD .又PD ∩CD =D ,故AD ⊥平面PCD , ∵AD ⊂平面P AD , ∴平面P AD ⊥平面PCD .(2)解 ∵ AD ∥BC ,BC ⊂平面PBC , AD ⊄平面PBC ,∴ AD ∥平面PBC ,∴点A 到平面PBC 的距离即为点D 到平面PBC 的距离. 又∵PD =DC ,E 是PC 的中点, ∴PC ⊥ DE ,由(1)知AD ⊥平面PCD , ∴AD ⊥DE . 故BC ⊥ DE .又∵PC ∩BC =C ,∴DE ⊥平面PBC .又∵ AD ⊥平面PCD ,∴AD ⊥CP ,∴PC ⊥BC ,∴S△PEB=12S△PBC=12×(12×BC×PC)=2,V A—PEB=V D—PEB=13×DE×S△PEB=23.3.已知数列{a n}的前n项和为S n,且S n=2n2+n(n∈N*),数列{a n}满足a n=4log2b n+3(n∈N*).(1)求a n,b n;(2)求数列{a n·b n}的前n项和T n.解(1)由S n=2n2+n,得a1=S1=3;当n≥2时,a n=S n-S n-1=4n-1.又a1=3也适合上式.所以a n=4n-1,n∈N*,由4n-1=a n=4log2b n+3,得b n=2n-1,n∈N*.(2)由(1)知a n b n=(4n-1)2n-1,n∈N*.所以T n=3+7×2+11×22+…+(4n-1)2n-1,所以2T n=3×2+7×22+…+(4n-5)2n-1+(4n-1)2n,所以2T n-T n=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5.故T n=(4n-5)2n+5,n∈N*.4.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解 (1) 由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,得x =0.007 5,所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a , 由(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5, 得a =224,所以月平均用电量的中位数是224.(3)月平均用电量为[220,240)的用户有0.012 5×20×100=25(户),月平均用电量为[240,260)的用户有0.007 5×20×100=15(户),月平均用电量为[260,280)的用户有0.005×20×100=10(户),月平均用电量为[280,300]的用户有0.002 5×20×100=5(户),抽取比例=1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).5.如图,在平面直角坐标系xOy 中,已知A ,B ,C 是椭圆x 2a 2+y 2b 2=1(a >b >0)上不同的三点,A (32,322),B (-3,-3),C 在第三象限,线段BC 的中点在直线OA 上.(1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点A ,B ,C )且直线PB ,PC 分别交直线OA 于M ,N 两点,证明OM →·ON →为定值并求出该定值.解 (1)由已知,得⎩⎪⎨⎪⎧18a 2+92b2=1,9a 2+9b 2=1,解得⎩⎪⎨⎪⎧a 2=27,b 2=272.∴椭圆的标准方程为x 227+y 2272=1.(2)设点C (m ,n )(m <0,n <0), 则BC 中点为(m -32,n -32).由已知,求得直线OA 的方程为x -2y =0, 从而m =2n -3.①又∵点C 在椭圆上,∴m 2+2n 2=27.② 由①②,解得n =3(舍),n =-1,从而m =-5. ∴点C 的坐标为(-5,-1).(3)设P (x 0,y 0),M (2y 1,y 1),N (2y 2,y 2). ∵P ,B ,M 三点共线,∴y 1+32y 1+3=y 0+3x 0+3,整理得y 1=3(y 0-x 0)x 0-2y 0-3.∵P ,C ,N 三点共线,∴y 2+12y 2+5=y 0+1x 0+5,整理得y 2=5y 0-x 0x 0-2y 0+3.∵点P 在椭圆上,∴x 20+2y 20=27,x 20=27-2y 20. 从而y 1y 2=3(x 20+5y 20-6x 0y 0)x 20+4y 20-4x 0y 0-9 =3(3y 20-6x 0y 0+27)2y 20-4x 0y 0+18=3×32=92. ∴OM →·ON →=5y 1y 2=452,∴OM →·ON →为定值,定值为452.6.已知函数f (x )=x +a ln x 在x =1处的切线与直线x +2y =0垂直,函数g (x )=f (x )+12x 2-bx .(1)求实数a 的值;(2)若函数g (x )存在单调递减区间,求实数b 的取值范围;(3)设x 1,x 2 (x 1<x 2)是函数g (x )的两个极值点,若b ≥72,求g (x 1)-g (x 2)的最小值.解 (1)∵f (x )=x +a ln x ,∴f ′(x )=1+ax ,∵切线与直线x +2y =0垂直, ∴f ′(1)=1+a =2,∴a =1. (2)∵g (x )=ln x +12x 2-(b -1)x (x >0),g ′(x )=1x +x -(b -1)=x 2-(b -1)x +1x .设μ(x )=x 2-(b -1)x +1,则μ(0)=1>0只需 ⎩⎪⎨⎪⎧b -12>0,Δ=(b -1)2-4>0⇒⎩⎪⎨⎪⎧b >1,b >3或b <-1⇒b >3. ∴b 的取值范围为(3,+∞).(3)令g ′(x )=0,则x 2-(b -1)x +1=0, ∴x 1+x 2=b -1,x 1x 2=1. g (x 1)-g (x 2)=ln x 1x 2+12(x 21-x 22)-(b -1)(x 1-x 2) =lnx 1x 2+12(x 21-x 22)-(x 1+x 2)(x 1-x 2) =ln x 1x 2-12x 21-x 22x 1x 2=ln x 1x 2-12(x 1x 2-x 2x 1),设t =x 1x 2,∵0<x 1<x 2,∴0<t <1,又∵⎩⎪⎨⎪⎧x 1+x 2=b -1,x 1x 2=1⇒(x 1+x 2)2x 1x 2=(b -1)2,得t +1t +2≥(72-1)2=254,∴4t 2-17t +4≥0,∴0<t ≤14.令h (t )=ln t -12(t -1t )(0<t ≤14),h ′(t )=1t -12(1+1t 2)=-(t -1)22t 2<0,∴h (t )在(0,14]上单调递减,h (t )≥h (14)=158-2ln 2.故g (x 1)-g (x 2)的最小值为158-2ln 2.高考大题纵横练(二)1.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc . (1)求角A 的大小;(2)设函数f (x )=sin x +2cos 2x2,a =2,f (B )=2+1,求b .解 (1)在△ABC 中,∵b 2+c 2-a 2=bc , 由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,∵0<A <π,∴A =π3.(2)f (x )=sin x +2cos 2 x2=sin x +cos x +1=2sin(x +π4)+1,f (B )=2sin(B +π4)+1=2+1,∴B =π4.∵a sin A =b sin B ,即2sin π3 =bsin π4, ∴b =2×2232=263.2.如图,在四棱锥P —ABCD 中,底面ABCD 为边长为2的正方形,P A ⊥BD .(1)求证:PB =PD ;(2)若E ,F 分别为PC ,AB 的中点,EF ⊥平面PCD ,求三棱锥D —ACE 的体积.(1)证明 连接AC 交BD 于点O ,连接PO ,因为底面ABCD 是正方形, 所以AC ⊥BD 且O 为BD 的中点. 又P A ⊥BD ,P A ∩AC =A , 所以BD ⊥平面P AC ,由于PO ⊂平面P AC ,故BD ⊥PO . 又BO =DO ,故PB =PD .(2)解 设PD 的中点为Q ,连接AQ ,EQ ,EQ 綊12CD ,所以AFEQ 为平行四边形,EF ∥AQ . 因为EF ⊥平面PCD , 所以AQ ⊥平面PCD ,所以AQ ⊥PD ,因为PD 的中点为Q , 所以AP =AD = 2.由AQ ⊥平面PCD ,可得AQ ⊥CD , 又AD ⊥CD ,AQ ∩AD =A , 所以CD ⊥平面P AD , 所以CD ⊥P A .又BD ⊥P A ,所以P A ⊥平面ABCD . V D —ACE =V E —ACD =13×12P A ×S △ACD=13×12×2×12×2×2=26, 故三棱锥D —ACE 的体积为26.3.已知数列{a n }的首项a 1=1,a n +1=1-14a n,其中n ∈N *.(1)设b n =22a n -1,求证:数列{b n }是等差数列,并求出{a n }的通项公式;(2)设c n =4a n n +1,数列{c n c n +2}的前n 项和为T n ,是否存在正整数m ,使得T n <1c m c m +1对于n ∈N *恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 解 (1)∵b n +1-b n =22a n +1-1-22a n -1=22(1-14a n )-1-22a n -1 =4a n 2a n -1-22a n -1=2(常数), ∴数列{b n }是等差数列. ∵a 1=1,∴b 1=2,因此b n =2+(n -1)×2=2n , 由b n =22a n -1得a n =n +12n .(2)由c n =4a n n +1,a n =n +12n 得c n =2n ,∴c n c n +2=4n (n +2)=2(1n -1n +2),∴T n =2(1-13+12-14+13-15+…+1n -1n +2)=2(1+12-1n +1-1n +2)<3,依题意要使T n <1c m c m +1对于n ∈N *恒成立, 只需1c m c m +1≥3,即m (m +1)4≥3,解得m ≥3或m ≤-4,又m 为正整数, ∴m 的最小值为3.4.某单位员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)下表是年龄的频率分布表,求正整数a ,b 的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组抽取的员工的人数分别是多少?(3) 在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率. 解 (1)由题设可知,a =0.08×5×500=200,b =0.02×5×500=50.(2)因为第1,2,3组共有50+50+200=300(人),利用分层抽样在300名员工中抽取6名员工,每组抽取人数分别为:第1组的人数为6×50300=1,第2组的人数为6×50300=1,第3组的人数为6×200300=4.所以第1,2,3组分别抽取1人,1人,4人.(3)设第1组的1位员工为A ,第2组的1位员工为B ,第3组的4位员工为C 1,C 2,C 3,C 4,则从6位员工中抽取2人有(A ,B ),(A ,C 1),(A ,C 2),(A ,C 3),(A ,C 4),(B ,C 1),(B ,C 2),(B ,C 3),(B ,C 4),(C 1,C 2),(C 1,C 3),(C 1,C 4),(C 2,C 3),(C 2,C 4),(C 3,C 4)共15种可能. 其中2人年龄都不在第3组的有:(A ,B ),共1种可能. 所以至少有1人年龄在第3组的概率为1-115=1415.5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1、F 2,短轴两个端点为A 、B ,且四边形F 1AF 2B 是边长为2的正方形.(1)求椭圆方程;(2)若C ,D 分别是椭圆长轴的左,右端点,动点M 满足MD ⊥CD ,连接CM ,交椭圆于点P ,证明:OM →·OP →为定值;(3)在(2)的条件下,试问x 轴上是否存在异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP ,MQ 的交点?若存在,求出点Q 的坐标;若不存在,请说明理由.(1)解 ∵a =2,b =c ,a 2=b 2+c 2,∴b 2=2,∴椭圆方程为x 24+y 22=1. (2)证明 C (-2,0),D (2,0),设M (2,y 0),P (x 1,y 1),则OP →=(x 1,y 1),OM →=(2,y 0),直线CM :x -24=y -y 0y 0,即y =y 04x +12y 0,代入椭圆x 2+2y 2=4得,(1+y 208)x 2+12y 20x +12y 20-4=0. ∵x 1·(-2)=4(y 20-8)y 20+8, ∴x 1=-2(y 20-8)y 20+8,∴y 1=8y 0y 20+8, ∴OP →=(-2(y 20-8)y 20+8,8y 0y 20+8), ∴OP →·OM →=-4(y 20-8)y 20+8+8y 20y 20+8=4y 20+32y 20+8=4(定值). (3)解 设存在Q (m,0)满足条件,则MQ ⊥DP ,MQ →=(m -2,-y 0),DP →=(-4y 20y 20+8,8y 0y 20+8), 则由MQ →·DP →=0,得-4y 20y 20+8(m -2)-8y 20y 20+8=0. 从而得m =0,∴存在Q (0,0)满足条件.6.已知函数f (x )=ln x +1e x(e 是自然对数的底数),h (x )=1-x -x ln x . (1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求h (x )的最大值;(3)设g (x )=xf ′(x ),其中f ′(x )为f (x )的导函数. 证明:对任意x >0,g (x )<1+e -2.(1)解 由f (x )=ln x +1e x ,得f (1)=1e, f ′(x )=1-x -x ln x x e x ,所以k =f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =1e. (2)解 因为h (x )=1-x -x ln x (x >0).所以h ′(x )=-ln x -2.令h ′(x )=0得,x =e -2. 因此当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增; 当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减. 所以h (x )在x =e -2处取得极大值,也是最大值.h (x )的最大值为h (e -2)=1+e -2.(3)证明 因为g (x )=xf ′(x ),所以g (x )=1-x -x ln x e x(x >0), g (x )<1+e -2等价于1-x -x ln x <e x (1+e -2).由(2)知h (x )的最大值为h (e -2)=1+e -2,故1-x -x ln x ≤1+e -2.只需证明x >0时,e x >1成立,这显然成立. 所以1-x -x ln x ≤1+e -2<e x (1+e -2),因此对任意x >0,g (x )<1+e -2.。
一、(三角函数部分)1、已知A 、B 、C 的坐标分别为A(4,0)、B(0.4)、C(3cos α,3sin α)(Ⅰ)若(,0)απ∈-,且||||AC BC = .求角α的值;(Ⅱ)若0AC BC = .求22sin sin 21tan ααα++的值.2、已知向量(2sin ,cos ),,2cos ),()2a x x b x x f x a b ===⋅- 定义函数.(1) 求f (256π)的值;(2)求函数)(x f 的最小正周期及单调减区间; 高考数学前三题专题练习二、(概率部分)1、一台仪器每启动一次都随机地出现一个5位的二进制数12345A a a a a a =,其中 A 的各位数字中,11,(2,3,4,5)k a a k ==出现0的概率为13,出现1的概率为23.例如:A=10001,其中152341,0a a a a a =====.记12345a a a a a ξ=++++,当启动仪器一次时,(Ⅰ)求3ξ=的概率;(Ⅱ)求ξ的概率分布列及E ξ.2、甲、乙、丙、丁四人独立回答同一道数学问题,其中任何一人答对与否,对其它人答题结果无影响。
已知甲答对的概率为31,乙、丙、丁答对的概率均为21,设有ξ人答对此题,请写出随机变量ξ的概率分布及期望。
3、学校生物实验室养了10条金鱼,其中6条是红色的,其余是黑色的。
实验员每天随机地取出3条金鱼,准备生物老师上课使用,上完课再放回实验室。
(1)求一天中取到两种颜色金鱼的概率;(2)求一个星期的五天中,至少有三天都取到两种颜色金鱼的概率;(用分数表示)(3)在一个星期五天中,求取得两种颜色金鱼的数学期望.三、(立体几何部分)DA 1C 11、如图,直三棱柱ABC —A 1B 1C 1中,0190,2,4ACB BC AC AA ∠====,D 为棱CC 1上的一动点,M 、N 分别为11,ABD A B D ∆∆的重心.(I ) 求证:MN BC ⊥;(II )若点C 在ABD ∆上的射影正好为M ,(ⅰ)求二面角C —AB —D 的大小,(ⅱ)求点C 1到平面A 1B 1D 的距离.。
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、在长方体ABCD—A′B′C′D′的12条棱中,与棱AA′成异面直线的棱有()A.3条B.4条C.6条D.8条2、如图1在正方体ABCD—A′B′C′D′中,直线AC与直线BC′所成的角为() A.30°B.60°C.90°D.45°3、若a∥α,⊂bα,则a和b的关系是()A.平行B.相交C.平行或异面D.以上都不对4、已知PD⊥矩形ABCD所在的平面(图2),图中相互垂直的平面有()A.1对B.2对C.3对D.5对5、棱长为2的正方体内切球的表面积为()A.π4B.π16C.π8D.π26.函数sin24y xπ⎛⎫=+⎪⎝⎭在一个周期内的图像可能是()PA BCD图27.在ABC △中,若2AB BC CA === ,则AB BC ⋅ 等于()A.23- B.23 C.-2 D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m 10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A. B. C.2 D.111.等边△ABC 的边长为a,过△ABC 的中心O 作OP⊥平面ABC,且OP=63a,则点P 到△ABC 的边的距离为()A.a B.32a C.33a D.63a 12.已知函数f (x)是定义域为R 的奇函数,给出下列6个函数:①g (x)=sin x (1-sin x)1-sin x ;②g (x)=sin(52π+x);③g (x)=1+sin x-cos x 1+sin x+cos x;④g (x)=lg sin x ;⑤g (x)=lg(x2+1+x);⑥g (x)=2ex+1-1。
普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.已知关于x 的方程02=-+a ax x 有两个不等的实根,则()A、4-<a 或0>a B、0≥a C、04<<-a D、4->a 2.已知a ⊥b ,并且a ),3(x =,b)12,7(=,则x=()A47-B47C37-D373.等差数列{}n a 中,12010=S ,那么29a a +的值是()A12B24C 16D484.下列函数为奇函数的是()A.1+=x y B.2x y =C.xx y +=2D.3x y =5.已知a、b 为两个单位向量,则一定有()A.a =bB.若a //b ,则a =bC.1=⋅b a D.bb a a ⋅=⋅6、设x∈R,则“|x﹣|<”是“x 3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7、已知a=log 2e,b=ln2,c=log,则a,b,c 的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b 8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=110、如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.311.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有()A.38C种B.38A种C.39C种D.311C种12.某师范大学的2名男生和4名女生被分配到两所中学作实习教师,每所中学分配1名男生和2名女生,则不同的分配方法有()A.6种B.8种C.12种D.16种二、填空题(共4小题,每小题5分;共计20分)1.已知椭圆22195x y+=的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.2.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.3.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是___________,最大值是___________.4.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = _____.三、大题:(满分70分)1.已知数列{an}和{bn}满足a1=1,b1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.2.已知函数()11ln x f x x x -=-+.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线e xy =的切线.3.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C.(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P,Q 两点,点P 在第一象限,PE⊥x 轴,垂足为E,连结QE 并延长交C 于点G.(i)证明:PQG △是直角三角形;(ii)求PQG △面积的最大值.4.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P.(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.5.知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.6.直线02=-+y x l :,一束光线过点)13,0(+P ,以︒120的倾斜角投射到l 上,经l 反射,求反射线所在直线的方程.参考答案:一、选择题:1-5题答案:AABDD 6-10题答案:ADACA 11-12题答案:AC6、设x∈R,则“|x﹣|<”是“x 3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x 3<1,解得x<1,故“|x﹣|<”是“x 3<1”的充分不必要条件,故选:A.7、已知a=log 2e,b=ln2,c=log,则a,b,c 的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log 2e>1,0<b=ln2<1,c=log =log 23>log 2e=a,则a,b,c 的大小关系c>a>b,故选:D.8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.10、如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=ABsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.二、填空题:152、433、0,54、{1,6}三、大题:1.解:(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+.又因为a1+b1=l,所以{}n n a b +是首项为1,公比为12的等比数列.由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a1–b1=l,所以{}n n a b -是首项为1,公差为2的等差数列.(2)由(1)知,112n n n a b -+=,21n n a b n -=-.所以111[()()]222n n n n n n a a b a b n =++-=+-,111[()()]222n n n n n n b a b a b n =+--=-+.2.解:(1)f(x)的定义域为(0,1),(1,+∞)单调递增.因为f(e)=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f(x)在(1,+∞)有唯一零点x1,即f(x1)=0.又1101x <<,1111111(ln ()01x f x f x x x +=-+=-=-,故f(x)在(0,1)有唯一零点11x .综上,f(x)有且仅有两个零点.(2)因为0ln 01e x x -=,故点B(–lnx0,01x )在曲线y=ex 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----.曲线y=ex 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x ,所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y=ex 的切线.3.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i)设直线PQ 的斜率为k,则其方程为(0)y kx k =>.由22142y kx x y =⎧⎪⎨+=⎪⎩得x =记u =(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii)由(i)得||2PQ =221||2PG k =+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k ++===++++‖.设t=k+1k ,则由k>0得t≥2,当且仅当k=1时取等号.因为2812tS t =+在[2,+∞)单调递减,所以当t=2,即k=1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.4.解:(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==.由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.5.知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.分析:先求1l 与2l 的交点,再列两条直线夹角公式,利用l 与3l 夹角为4π,求得l 的斜率.也可使用过两直线交点的直线系方程的方法省去求交点的过程,直接利用夹角公式求解.解法一:由方程组⎩⎨⎧=--=+0104302y x y x 解得直线1l 与2l 的交点)1,2(-.于是,所求直线l 的方程为)2(1-=+x k y .又由已知直线03253=+-y x l :的斜率253=k ,而且l 与3l 的夹角为4π,故由两直线夹角正切公式,得3314tan kk k k +-=π,即k k 251254tan +-=π.有125125±=+-k k ,15252±=+-k k ,当15252=+-k k 时,解得37-=k ;当15252-=+-kk 时,解得73=k .故所求的直线l 的方程为)2(731-=+x y 或)2(371--=+x y ,即01373=--y x 或01137=-+y x .解法二:由已知直线l 经过两条直线1l 与2l 的交点,则可设直线l 的方程为0)2()1043(=++--y x y x λ,(*)即010)42()3(=--++y x λλ.又由l 与3l 的夹角为4π,3l 的方程为0325=+-y x ,有212112214tanB B A A B A B A +-=π,即)42)(2()3(55)42()2)(3(1--++⨯---+=λλλλ,也即λλ+-=2312141,从而1231214=+-λλ,1231214-=+-λλ.解得139-=λ,1137=λ.代入(*)式,可得直线l 的方程为01373=--y x 或01137=-+y x .说明:此题用到两直线的夹角公式,注意夹角公式与到角公式的区别。
2024届新高考数学复习:专项(解三角形的综合运用大题)历年好题练习1.[2023ꞏ新课标Ⅰ卷]已知在△ABC中,A+B=3C,2sin (A-C)=sin B.(1)求sin A;(2)设AB=5,求AB边上的高.2.△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.3.[2023ꞏ新课标Ⅱ卷]记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC面积为3,D为BC的中点,且AD=1.(1)若∠ADC=π3,求tan B;(2)若b2+c2=8,求b,c.4.[2022ꞏ新高考Ⅰ卷,18]记△ABC的内角A,B,C的对边分别为a,b,c,已知cos A 1+sin A=sin 2B1+cos 2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.5.[2023ꞏ全国乙卷(理)]在△ABC 中,已知∠BAC =120°,AB =2,AC =1. (1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.6.[2023ꞏ河北石家庄模拟]在①cos C =217 ,②a sin C =c cos ⎝⎛⎭⎫A -π6 ,这两个条件中任选一个,补充在下面问题中的横线处,并完成解答.问题:△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B =π3 ,D 是边BC 上一点,BD =5,AD =7,且________,试判断CD 和BD 的大小关系________.注:如果选择多个条件分别解答,按第一个解答计分.7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2 a +b =2c ,求sin C .8.[2022ꞏ全国乙卷(理),17]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin (A -B )=sin B sin (C -A ).(1)证明:2a 2=b 2+c 2;(2)若a =5,cos A =2531 ,求△ABC 的周长.参考答案1.答案解析:方法一 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -π4 )=sin (3π4 -A ),展开并整理得2 (sin A -cos A )=22 (cos A +sin A ), 得sin A =3cos A ,又sin 2A +cos 2A =1,且sin A >0,所以sin A =31010 .(2)由正弦定理BCsin A =AB sin C ,得BC =AB sin C ×sin A =522×31010 =35 ,由余弦定理AB 2=AC 2+BC 2-2AC ꞏBC cos C ,得52=AC 2+(35 )2-2AC ꞏ35 cos π4 , 整理得AC 2-310 AC +20=0, 解得AC =10 或AC =210 ,由(1)得,tan A =3>3 ,所以π3 <A <π2 ,又A +B =3π4 ,所以B >π4 ,即C <B ,所以AB <AC ,所以AC =210 ,设AB 边上的高为h ,则12 ×AB ×h =12 ×AC ×BC sin C ,即5h =210 ×35 ×22 ,解得h =6,所以AB 边上的高为6.方法二 (1)在△ABC 中,A +B =π-C ,因为A +B =3C ,所以3C =π-C ,所以C =π4 . 因为2sin (A -C )=sin B ,所以2sin (A -C )=sin [π-(A +C )]=sin (A +C ),所以2sin A cos C -2cos A sin C =sin A cos C +cos A sin C , 所以sin A cos C =3cos A sin C , 易得cos A cos C ≠0,所以tan A =3tan C =3tan π4 =3,又sin A >0,所以sin A =332+12 =31010 . (2)由(1)知sin A =31010 ,tan A =3>0,所以A 为锐角,所以cos A =10,所以sin B =sin (3π4 -A )=22 (cos A +sin A )=22 ×(1010 +31010 )=255 ,由正弦定理AC sin B =ABsin C ,得AC =AB ꞏsin Bsin C =5×25522=210 ,故AB 边上的高为AC ×sin A =210 ×31010 =6.2.答案解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ꞏAB .① 由余弦定理得BC 2=AC 2+AB 2-2AC ꞏAB cos A .②由①②得cos A =-12 .因为0<A <π,所以A =2π3 .(2)由正弦定理及(1)得AC sin B =AB sin C =BCsin A =23 ,从而AC =23 sin B ,AB =23 sin (π-A -B )=3cos B -3 sin B .故BC +AC +AB =3+3 sin B +3cos B =3+23 sin ⎝⎛⎭⎫B +π3 . 又0<B <π3 ,所以当B =π6 时,△ABC 周长取得最大值3+23 . 3.答案解析:(1)因为D 为BC 的中点,所以S △ABC =2S △ADC =2×12 ×AD ×DC sin ∠ADC =2×12 ×1×DC ×32 =3 , 解得DC =2,所以BD =DC =2,a =4.因为∠ADC =π3 ,所以∠ADB =2π3 .在△ABD 中,由余弦定理,得c 2=AD 2+BD 2-2AD ꞏBD cos ∠ADB =1+4+2=7,所以c =7 .在△ADC 中,由余弦定理,得b 2=AD 2+DC 2-2AD ꞏDC ꞏcos ∠ADC =1+4-2=3,所以b =3 .在△ABC 中,由余弦定理,得cos B =c 2+a 2-b 22ac =7+16-32×4×7=5714 ,所以sin B =1-cos 2B =2114 .(2)因为D 为BC 的中点,所以BD =DC .因为∠ADB +∠ADC =π,所以cos ∠ADB =-cos ∠ADC ,则在△ABD 与△ADC 中,由余弦定理,得AD 2+BD 2-c 22AD ꞏBD =-AD 2+DC 2-b 22AD ꞏDC , 得1+BD 2-c 2=-(1+BD 2-b 2),所以2BD 2=b 2+c 2-2=6,所以BD =3 ,所以a =23 .在△ABC 中,由余弦定理,得cos ∠BAC =b 2+c 2-a 22bc =8-122bc =-2bc ,所以S △ABC =12 bc sin ∠BAC =12 bc 1-cos 2∠BAC=12 bc 1-⎝⎛⎭⎫-2bc 2=12 b 2c 2-4 =3 ,解得bc =4.则由⎩⎪⎨⎪⎧bc =4b 2+c 2=8 ,解得b =c =2. 4.答案解析:(1)由已知条件,得sin 2B +sin A sin 2B =cos A +cos A cos 2B .所以sin 2B =cos A +cos A cos 2B -sin A sin 2B =cos A +cos (A +2B )=cos [π-(B +C )]+cos [π-(B +C )+2B ]=-cos (B +C )+cos [π+(B -C )]=-2cos B cos C ,所以2sin B cos B =-2cos B cos C , 即(sin B +cos C )cos B =0.由已知条件,得1+cos 2B ≠0,则B ≠π2 ,所以cos B ≠0,所以sin B =-cos C =12 .又0<B <π3 ,所以B =π6 .(2)由(1)知sin B =-cos C >0,则B =C -π2 ,所以sin A =sin (B +C )=sin (2C -π2 )=-cos 2C .由正弦定理,得a 2+b 2c 2 =sin 2A +sin 2B sin 2C =cos 22C +cos 2Csin 2C =(1-2sin 2C )2+(1-sin 2C )sin 2C =2+4sin 4C -5sin 2C sin 2C=2sin 2C +4sin 2C -5≥22sin 2C ꞏ4sin 2C -5=42 -5,当且仅当sin 2C =22 时,等号成立,所以a 2+b 2c 2 的最小值为42 -5. 5.答案解析:(1)如图,由余弦定理得BC 2=AB 2+AC 2-2AB ꞏAC ꞏcos ∠BAC =22+12+2×2×1×12 =7,得BC =7 .方法一 由正弦定理ACsin ∠ABC =BC sin ∠BAC ,得sin ∠ABC =1×327=2114 .方法二 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ꞏBC =4+7-12×2×7 =5714 , 所以sin ∠ABC =1-cos 2∠ABC =21 .(2)方法一 由sin ∠ABC =2114 ,得tan ∠ABC =35 ,又tan ∠ABC =DA AB =DA 2 ,所以DA =235 ,故△ADC 的面积为12 DA ꞏAC ꞏsin (120°-90°)=12 ×235 ×1×12 =3 .方法二 △ABC 的面积为12 AC ꞏAB ꞏsin ∠BAC =12 ×1×2×32 =32 ,S △ADC S △BAD=12AC ꞏAD ꞏsin ∠CAD12AB ꞏAD ꞏsin ∠BAD =sin 30°2×sin 90° =14 ,故△ADC 的面积为15 S △ABC =15 ×3 =3.6.答案解析:设AB =x ,在△ABD 中由余弦定理可得:49=x 2+25-2ꞏx ꞏ5ꞏcos π3 =x 2+25-5x , 即x 2-5x -24=0,解得x =8. 方案一 选条件①.由cos C =217 得sin C =277 , ∵A +B +C =π,∴sin A =sin (B +C )=32 ×217 +12 ×277 =5714 ,在△ABC 中由正弦定理可得:BC 5714 =8277,解得:BC =10,∴CD =BD =5. 方案二 选条件②.由正弦定理可得:a =2R sin A ,c =2R sin C ,代入条件a sin C =c cos ⎝⎛⎭⎫A -π6 得:sin A sin C =sin C ꞏ⎝⎛⎭⎫32cos A +12sin A =32 cos A sin C +12 sin A sin C ,∴12 sin A sin C =3cos A sin C ,因为A 为三角形内角,所以tan A =3 ,故A =π3 , 所以△ABC 为等边三角形,所以BC =8,∴CD =3,所以CD <BD .7.答案解析:(1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12 . 因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得2 sin A +sin (120°-C )=2sin C ,即62 +3 cos C +12 sin C =2sin C ,可得cos (C +60°)=-2.由于0°<C <120°,所以sin (C +60°)=22 ,故 sin C =sin (C +60°-60°)=sin (C +60°)cos 60°-cos (C +60°)sin 60°=6+2 .8.答案解析:(1)证明:∵sin C sin (A -B )=sin B sin (C -A ),∴sin C sin A cos B -sin C cos A sin B =sin B sin C cos A -sin B cos C sin A , ∴sin C sin A cos B =2sin B sin C cos A -sin B cos C sin A . 由正弦定理,得ac cos B =2bc cos A -ab cos C .由余弦定理,得a 2+c 2-b 22 =b 2+c 2-a 2-a 2+b 2-c 22. 整理,得2a 2=b 2+c 2.(2)由(1)知2a 2=b 2+c 2.又∵a =5,∴b 2+c 2=2a 2=50.由余弦定理,得a 2=b 2+c 2-2bc cos A ,即25=50-5031 bc ,∴bc =312 .∴b +c =b 2+c 2+2bc =50+31 =9, ∴a +b +c =14.故△ABC 的周长为14.。
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,则f(x)的图像与x轴的交点个数为()。
A. 1个B. 2个C. 3个D. 无法确定2. 在△ABC中,若∠A = 60°,∠B = 45°,则△ABC的内角和为()。
A. 120°B. 135°C. 150°D. 180°3. 下列函数中,是奇函数的是()。
A. y = x^2B. y = |x|C. y = x^3D. y = x^44. 若log2(3x - 1) = 3,则x的值为()。
A. 2B. 4C. 8D. 165. 已知数列{an}的前n项和为Sn,若a1 = 2,且an + 1 = 3an,则S5的值为()。
A. 62B. 63C. 64D. 656. 下列复数中,是纯虚数的是()。
A. 2 + 3iB. 4 - 5iC. 1 + 2iD. -1 - 2i7. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为()。
A. ±1B. ±2C. ±3D. ±48. 在等差数列{an}中,若a1 = 3,d = 2,则第10项an的值为()。
A. 21B. 23C. 25D. 279. 若不等式x^2 - 5x + 6 > 0的解集为()。
A. x < 2 或 x > 3B. x < 3 或 x > 2C. x < 2 或 x < 3D. x > 2 或 x > 310. 下列各式中,正确的是()。
A. sin(α + β) = sinαcosβ + cosαsinβB. cos(α + β) =cosαcosβ - sinαsinβC. tan(α + β) = tanα + tanβD. cot(α + β) = cotα - cotβ二、填空题(本大题共5小题,每小题10分,共50分)11. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项an的值为______。
1ABCDS EFNB高考数学试题(整理三大题)(一)17.已知0αβπ<<4,为()cos 2f x x π⎛⎫=+ ⎪8⎝⎭的最小正周期,1tan 14αβ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,,a (cos 2)α=,b ,且∙a b m =.求22cos sin 2()cos sin ααβαα++-的值.18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率.19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。
已知∠ABC =45°,AB =2,BC=22,SA =SB =3。
(Ⅰ)证明:SA ⊥BC ;(Ⅱ)求直线SD 与平面SAB 所成角的大小;(二)17.在ABC △中,1tan 4A =,3tan 5B =.(Ⅰ)求角C 的大小;(Ⅱ)若ABC △18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率;(II )连续抛掷2次,求向上的数之和为6的概率;(III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。
19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是AB 、SC 的中点。
求证:EF ∥平面SAD ;(三)17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ.(I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率;(2)甲、两人中至少有一人获二等奖的概率.19. 在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(I )求证:平面COD ⊥平面AOB ;(II )当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小;(III )求CD 与平面AOB 所成角的最大值(四)17.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求:(1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC的中点。
(Ⅰ)证明:直线MN OCD 平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
OCADBE21A A BC D E FP QH A ' B ' C 'D ' G (五)17.已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求: (I )函数()f x 的最小正周期; (II )函数()f x 的单调增区间.18. 某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。
设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。
(I )求取6件产品中有1件产品是二等品的概率。
(II )若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率。
19. 如图,在四棱锥中,侧面PAD ⊥底面ABCD,侧棱底面ABCD 为直角梯形,其中BC ∥AD,AB ⊥CD,AD=2AB=2BC=2,O 为AD 中点。
(1)求证:PO ⊥平面ABCD;(2)求异面直线PB 与CD 所成角的余弦值; (3)求点A 到平面PCD 的距离(六)17. 设函数f(x)=a ·b ,其中向量a =(2cos x ,1),b =(cos x , 3sin2x ),x ∈R. (Ⅰ)若f(x)=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y=2sin2x 的图象按向量c=(m ,n)(|m|<2π)平移后得到函数y=f(x)的图象,求实数m 、n 的值.18. 盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求:(Ⅰ)抽出的3张卡片上最大的数字是4的概率;(Ⅱ)抽出的3张中有2张卡片上的数字是3的概念; (Ⅲ)抽出的3张卡片上的数字互不相同的概率.19. 如图,已知点P 在正方体ABC D -A 1B 1C 1D 1的对角线BD 1上,∠PDA=60°。
(1)求DP 与CC 1所成角的大小;(2)求DP 与平面AA 1D 1D 所成角的大小。
(七)17.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.18. 甲、乙、丙3人投篮,投进的概率分别是25, 12, 13.现3人各投篮1次,求:(Ⅰ)3人都投进的概率;(Ⅱ)3人中恰有2人投进的概率. 19. 如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '. (Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值, 并求出这个值;(Ⅲ)若12b =,求D E '与平面PQEF 所成角的正弦值.(八)17.在ABC △中,已知内角A π=3,边BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.18.甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95.(Ⅰ)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答); (Ⅱ)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率.19. 如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.ABCD E A 1 B 1 C 1D 13A 1 A C 1B 1BDC (九)17.在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA ⋅=,且9a b +=,求c .18. 甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.两甲,乙两袋中各任取2个球. (Ⅰ)若n=3,求取到的4个球全是红球的概率; (Ⅱ)若取到的4个球中至少有2个红球的概率为43,求n. 19. 如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.证明:AE ⊥PD ;(十)17.设函数()f x =·a b ,其中向量(cos2)mx =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.18.甲、乙、丙三人在同一办公室工作。
办公室只有一部电话机,设经过该机打进的电话是打给甲、乙、丙的概率依次为16、13、12。
若在一段时间内打进三个电话,且各个电话相互独立。
求:(Ⅰ)这三个电话是打给同一个人的概率; (Ⅱ)这三个电话中恰有两个是打给甲的概率;19.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为111A B C ,90BAC ∠=,1A A ⊥平面ABC,1A A =AB =,2AC =,111AC =,12BD DC=. (Ⅰ)证明:平面1A AD ⊥平面11BCC B ;(十一)17. 在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S . 18. 已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;19. 如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,090,BAD FAB BC∠=∠=//=12AD ,BE //=12AF ,,G H 分别为,FA FD 的中点(Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ),,,C D F E 四点是否共面?为什么? (Ⅲ)设AB BE =,证明:平面ADE ⊥平面CDE(十二)17.已知0,1413)cos(,71cos 且=β-α=α<β<α<2π,(Ⅰ)求α2tan 的值. (Ⅱ)求β.18. 某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率.19. 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD AB AD ====== (I )求证:AO ⊥平面BCD ;(II )求异面直线AB 与CD 所成角的大小;(III )求点E 到平面ACD 的距离。