高三物理课件高三物理磁场公式和磁场知识点总结
- 格式:pdf
- 大小:99.65 KB
- 文档页数:13
高三物理知识点磁场万能公式1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T,1T=1N/Am2.安培力F=BIL;(注:LB) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}3.洛仑兹力f=qVB(注VB);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下(a)F向=f洛=mV2/r=m2r=mr(2/T)2=qVB;r=mV/qB;T=2m/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
强调:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;(2)磁感线的特点及其常见磁场的磁感线分布要掌握;(3)其它相关内容:地磁场/磁电式电表原理、回旋加速器、磁性材料高中物理学习方法忠实于教材大部分物理学生盲目相信各种材料,大量练习课外习题,忽视对教材的理解。
其实很多题都是课本上一些习题的变形。
只要把课本上的习题理解透彻,其他的问题就迎刃而解了。
三个基本基本概念要清晰,基本规律要熟悉,基本方法要熟练。
关于基本概念,举一个例子,比如说速率,它有两个意思:一是表示速度的大小;二是表示路程与时间的比值(如在匀速圆周运动中),而速度是位移与时间的比值(指在匀速直线运动中)。
关于基本规律,比如说平均速度的计算公式有两个,经常用到V=和V=,前者是定义式,适用于任何情况,后者是导出式,只适用于做匀变速直线运动的情况。
至于基本方法,比如研究中学问题,经常会用到整体法和孤立法,这是典型的互补法。
高考磁场公式知识点总结在物理学中,磁场是一个重要的概念,涉及到电磁感应、电磁波、电动势等多个领域。
高考物理中,关于磁场公式的掌握是学生们备考的重点之一。
本文将对高考中常见的磁场公式进行总结和解析,帮助大家更好地理解和应用。
一、直导线产生的磁场最早引入磁场的概念是安培,他的实验表明,电流通过一条直导线时会产生一个磁场。
直导线产生的磁场的强度可以使用安培定理来计算。
安培定理指出,距离直导线r处点的磁场的强度B 与电流I和与该点距离r的关系为:B=μ₀I/2πr,其中μ₀为真空磁导率,其数值为4π×10⁻⁷Tm/A。
在高考中,经常会考察基于安培定理的一些应用题。
例如,当给出多条直导线的电流和距离时,可以先求出每条直导线产生的磁场的强度,然后将其叠加得到最终的磁场强度。
二、长直导线的磁场除了单条直导线,多个平行的长直导线也能产生磁场。
当直导线长度远远大于它们之间的距离时,可以使用长直导线的磁场公式来计算磁场的强度。
对于一对平行直导线,电流分别为I₁和I₂,距离为d,长直导线的磁场强度B满足公式:B=μ₀I₁I₂/2πd。
这个公式在解题中也十分常见。
如果给定了多对平行直导线的电流和距离,可以逐对求出它们的磁场强度,然后将其叠加得到最终的磁场强度。
三、无限长直螺线管的磁场无限长直螺线管是一种常见的导线组织形式,经常用于电磁铁等设备中。
在无限长直螺线管内部,磁场的强度沿着螺线管的轴线方向是均匀的,可以使用无限长直螺线管磁场公式来计算。
对于无限长直螺线管的磁场强度B和电流I、螺线管的匝数N和螺线管的长度l之间满足公式:B=μ₀IN/l。
这个公式在大范围内使用,例如如果给出了无限长直螺线管的电流、匝数和长度,可以使用该公式计算出其磁场的强度。
此外,如果将螺线管弯曲成环形,得到一个环形螺线管,也可以使用类似的方法计算其磁场的强度。
四、磁感应强度和磁通量的关系磁感应强度和磁通量是两个相关的概念,在高考中也常常被考查。
最全面高中物理磁场超详细知识点归纳磁场是具有定向性,包括空间和时间变化,能引起磁铁活动的物理场。
它是磁体能量的形式和载体,将磁体电能量转化为机械能量,并使运动电子排斥或吸引,具有实用的技术价值。
研究磁场的目的是为了获取磁体的数量、性质和应用,以及地震研究、宇宙物理以及其他领域的大自然科学研究。
一、磁场的定义磁场是正弦波的集合,它以矢量形式或张量形式表示为一个函数,在空间和时间上发生变化,能在不同地点和时刻诱发磁体。
它代表磁体能量的数量、性质和形式。
二、磁场的特征(1)磁场有方向性。
磁矢之差表示强度方向,负责变化的函数表示磁场方向,比如在一定点上磁矢向x轴正方向指向,说明磁场方向为x轴正方向。
(2)磁场有梯度。
它指磁场力的梯度,使得磁矢在空间上的变化率越快,磁场的梯度越大。
(3)磁场有时间变化特性。
它指磁场在给定时间内的变化,磁场的时间变化通常由自身本身的产生原理决定。
三、磁场的质点理论磁场的质点理论认为磁场是由新创造的质点或“磁子”所组成的,它们是由偶极子(正极子和负极子)构成的,正极子与正电荷相关联,而负极子与负电荷相关联,质点之间通过磁场力相互作用,产生电流。
四、磁场的力学表达式磁力的大小决定于两个电流之间的距离,它是由电磁学发明者麦克斯韦提出的现象表达出来的,用力学方程式表示为:B=μI/2πr,其中,B是磁场强度,μ是真空磁导率,I是电流,r是电流线段之间的距离。
五、磁场的流动磁场的流动可概括为常规流动和衍射流动,常规流动指电流通过磁体,磁场形成一系列正弦流动,衍射流动是指磁场强度发生变化,在新的空间处产生新的正弦流动,其流动方向与磁场强度梯度的相反方向。
六、磁场的应用(1)地震研究:在地震学中,磁场可以用于测量地球内部的结构和活动,了解地壳构造以及地球核心的状态。
(2)磁导航:在航空航天科学领域,磁场是航空器定位、导航和控制的基础,只要探测到本地磁场,就可以确立航空器当时的位置。
(3)一般工程应用:磁场也是电力传输、无线电广播以及其他工程领域中物理现象、感应元件和线圈的载体。
高三磁场知识点总结磁场是物理学中的重要概念之一,它在我们日常生活中有着广泛的应用。
而在高三阶段学习物理的过程中,磁场知识是不可忽视的一部分。
下面将对高三磁场知识点进行总结,帮助同学们更好地掌握这部分内容。
一、磁场的概念和性质1. 磁场的概念:磁场是指磁力作用所产生的区域。
它是由磁物质以及电流所产生的。
2. 磁场的性质:磁场具有磁力线、磁场强度、磁通量等性质。
磁力线是用来表示磁场方向和强度的曲线,沿磁力线方向磁场强度增大。
磁通量是磁场穿过给定面积的量度。
二、磁场的产生和表示1. 磁场的产生:磁场可以由磁物质或电流所产生。
磁物质产生的磁场被称为永磁场,而电流则产生的磁场被称为电磁场。
2. 磁场的表示:磁场可以通过磁力线、磁场强度和磁通量来表示。
磁力线是用来表示磁场方向和强度的曲线,磁场强度是磁场对单位面积所产生的力的大小,磁通量是磁场穿过给定面积的量度。
三、磁场与磁感应强度1. 磁感应强度:磁感应强度B是描述磁场强度的物理量,它的单位是特斯拉(T)。
磁感应强度的方向与磁场线方向相同。
2. 磁感应强度的计算方法:磁感应强度可以通过洛伦兹力的方向和大小来计算。
洛伦兹力的方向垂直于磁场和运动方向,大小由磁感应强度、电流和导线长度决定。
四、磁场中带电粒子的运动1. 磁场中带电粒子的受力:带电粒子在磁场中会受到洛伦兹力的作用,洛伦兹力的方向垂直于磁场和速度方向,大小由磁感应强度、电荷和速度决定。
2. 磁场中带电粒子的轨迹:带电粒子在磁场中运动的轨迹是圆形或螺旋形,这取决于粒子的速度和磁场方向。
五、电磁感应和法拉第电磁感应定律1. 电磁感应现象:当导体中的磁通量发生变化时,会在导体中产生感应电动势,从而产生感应电流。
2. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁通量变化与感应电动势之间的关系。
它表明,感应电动势的大小等于磁通量变化速率的负值。
六、电磁感应应用1. 电磁感应在发电中的应用:电磁感应的原理被应用于各种发电机和变压器中,将机械能转化为电能。
高三物理磁场图文结合知识点总结磁场是物理学中一个重要的概念。
在高中物理学中,学生们需要掌握有关磁场的基本知识,并且能够运用这些知识解决相关问题。
本文将通过图文结合的方式,总结高三物理磁场知识点,以便帮助同学们更好地理解和记忆这一内容。
一、磁场的基本概念磁场是由磁力所表现的空间。
它是由磁体产生的,并且对周围物体有吸引或排斥的作用。
磁场可以用磁力线来表示,磁力线的方向是磁力的方向。
下图是一个简单的磁场示意图:[插入磁场示意图]二、磁场的特性磁场有一些重要的特性,这些特性对于我们理解磁场的性质和应用非常重要。
1. 磁场的起源:磁场是由磁体产生的,磁体包括磁铁和电流。
磁铁的磁场是由磁性物质中的微观磁偶极子所形成的,而电流会产生环绕导线的磁场。
2. 磁场的方向:磁场是由北极指向南极,这是磁力线的基本方向规律。
根据安培右手定则,环绕电流的磁场方向可以用右手握紧导线的方法确定。
3. 磁场的强度:磁场的强度用磁场强度B来表示,单位是特斯拉(T)。
磁场强度与磁体的性质和形状、电流的大小和位置等因素有关。
三、磁场的应用磁场在现实生活中有许多重要的应用。
下面我们将介绍几个常见的应用场景:1. 电磁感应:磁场与电流之间存在着密切关系。
当导线在磁场中运动或磁场发生变化时,会在导线上产生感应电动势和感应电流。
这是电磁感应的一种现象,也是发电机和变压器等设备的基本原理。
2. 电磁铁:电磁铁是通过通电线圈产生强磁场,从而实现吸附或排斥物体的装置。
电磁铁被广泛应用于各种工业和科研领域,如电磁起重机和磁共振成像。
3. 磁体的制作与利用:磁体是能够产生磁场的器件。
常见的磁体有永磁体和电磁体。
永磁体由永久磁性物质制成,能够持续产生磁场;电磁体则需要通过通电来产生磁场,其磁性可以随电流大小的改变而改变。
四、磁场中的电荷和力在磁场中,电荷会受到磁力的作用。
当电荷以一定速度运动时,它会受到洛伦兹力的作用。
洛伦兹力的大小和方向可以用右手螺旋定则来确定。
高三物理磁场知识点总结磁场是物理学中重要的概念之一,它与电磁学密切相关。
在高三物理学习中,磁场知识点是一个重要的内容,本文将对高三物理磁场知识进行总结。
一、磁场的基本概念1. 磁场是指物质的某种性质,产生磁力作用。
2. 磁场的单位是特斯拉 (T),常用的是高斯 (G)。
3. 磁场有方向性,以箭头表示,指向磁场线的南极。
二、磁场的特征和性质1. 磁场可以通过磁铁或者电流来产生。
2. 磁场具有磁极性,有北极和南极之分,同性相斥,异性相吸。
3. 磁感应强度表示磁场的强弱,与电流和距离相关。
三、磁场的表示方式1. 磁力线是用来表示磁场的方向的曲线。
2. 磁力线的性质包括连续性、无交叉性、指示磁场方向和磁场强弱。
3. 磁力线可通过磁针在磁场中的取向来观察。
四、磁场的运动规律1. 磁场中的运动电荷受到洛伦兹力作用。
2. 洛伦兹力的方向垂直于电荷的速度和磁场方向。
3. 洛伦兹力的大小与电荷的大小、速度、磁感应强度之间有关。
五、磁场中的工程应用1. 电磁铁:利用电流在线圈中产生磁场,实现磁场的控制和调节。
2. 电动机:利用磁场相互作用,实现电能转化为机械能。
3. 磁共振成像:利用磁场对人体内部进行成像。
六、磁场与电磁感应1. 磁感应线圈法:用安培环计测量磁感应线圈在磁场中电流变化的大小。
2. 法拉第电磁感应定律:当磁通量通过线圈发生变化时,线圈两端会产生感应电动势。
3. 楞次定律:感应电动势的方向总是使产生它的因素相反。
七、磁场的数学表达1. 磁场的磁感应强度和磁通量之间的关系:磁感应强度 = 磁通量 / 面积。
2. 磁力和磁感应强度之间的关系:磁力 = 磁感应强度 ×电荷 ×速度 ×正弦θ。
3. 磁场的叠加:当有多个磁场同时存在时,它们的矢量和决定了最终的磁场。
总结:磁场是物理学中一门重要的学科,涉及到电磁学和电动力学等多个领域。
掌握磁场的基本概念、特征和性质,能够了解磁场的表示方式和运动规律,还能够应用磁场进行工程设计和研究。
高三物理复习《磁场公式和磁场》知识点总结一、磁场的定义磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。
小磁针的指南指北表明地球是一个大磁体。
磁体周围空间存在磁场;电流周围空间也存在磁场。
电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。
静止电荷周围空间没有磁场。
磁场存在于磁体、电流、运动电荷周围的空间。
磁场是物质存在的一种形式。
磁场对磁体、电流都有磁力作用。
与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。
1.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。
2.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。
3.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。
4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。
说明:①地球上不同点的磁偏角的数值是不同的。
②地磁轴和地球自转轴的夹角约为 11°。
③磁偏角随地球磁极缓慢移动而缓慢变化。
二、磁场的方向在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。
规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。
确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N 极的指向即为该点的磁场方向。
磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。
电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。
三、磁感线在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。
1)磁感线上每一点切线方向跟该点磁场方向相同。
2)磁感线特点①磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。
最新整理高三物理高中物理选修3-1——磁场知识点总结高中物理选修3-1——磁场知识点总结一、磁场及其磁感线1、磁场(1)磁场是存在于磁极或电流周围空间里的一种特殊的物质,磁场和电场一样,都是“场形态物质”。
(2)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点磁场的方向。
(3)磁场的基本性质:磁场对处在它里面的磁极或电流有磁场力的作用。
磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。
2、磁感线(1)磁感线:是形象地描述磁场而引入的有方向的曲线。
在曲线上,每一点切线方向都在该点的磁场方向上,曲线的疏密反映磁场的强弱。
(2)磁感线的特点:a.磁感线是闭合的曲线,磁体的磁感线在磁体外部由N极到S极,内部由S 极到N极。
b.任意两条磁感线不能相交。
3、几种常见磁场的磁感线的分布(1)条形磁铁和碲形磁铁的磁感线条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。
(2)通电直导线磁场的磁感线通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。
需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。
电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。
用右手握住直导线,伸直的大拇指与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
(3)环形电流磁场的磁感线环形电流磁场的磁感线是一些围绕环形导线的闭合曲线,在环形的中心轴上,由对称性可知,磁感线是与环形导线的平面垂直的一条直线。
如图甲所示,环形电流方向与磁感线方向的关系也可以用右手定则来判断,如图乙所示,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是圆环轴线上磁感线的方向;如图丙所示,让右手握住部分环形导线,伸直的大拇指与电流方向一致,则四指所指的方向就是围绕环形导线的磁感线的方向。
物理高考磁场知识点总结一、磁场的基本概念1、磁场的产生磁场是由运动的电荷或者电流所产生的,当电荷或者电流运动时,就会产生磁场。
在物质层面上,电子自身就带有磁性,因此,当电子在运动时就会产生磁场。
2、磁场的性质磁场具有一些特殊的性质,其中包括以下几点:(1)磁场有方向,是有向量性质的;(2)磁场对磁性物质有作用;(3)磁场有磁感应强度和磁通量的概念。
3、磁场的表示磁场可以用磁力线和磁力线图来表示。
磁力线是磁感应强度矢量的轨迹线,它是一个由磁铁两极所组成的曲线。
在磁力线图中,磁力线的密集程度表示了磁感应强度的大小。
4、磁场的单位磁场的单位是特斯拉(T),国际单位制中磁感应强度的单位是特斯拉(T),1T=1N/A·m。
二、磁场的作用1、磁场对电荷的力当电荷在磁场中运动时,就会受到磁场的作用力,这个力叫做洛伦兹力。
洛伦兹力的大小和方向与电荷的速度、磁感应强度和磁场与速度夹角有关。
2、磁场对电流的力磁场也对电流有作用,当电流在磁场中流动时,就会受到磁场的作用力。
根据安培力的法则,电流的方向与所受磁场的作用力垂直,大小与电流强度、磁感应强度和电流方向夹角有关。
3、磁场对磁性物质的作用磁场对磁性物质也有作用,当磁性物质放在磁场中时,就会受到力的作用,这个力叫做磁力。
磁力的大小取决于磁性物质的特性和磁场的性质。
4、磁场对导体的作用当导体在磁场中运动时,也会受到磁场的作用力。
这个力叫做洛伦兹力,洛伦兹力会使导体中的自由电子受到受力而移动,导致导体中产生感应电动势,这就是电磁感应现象。
5、磁场中的运动电荷当电荷在磁场中做匀速圆周运动时,它所受的洛伦兹力提供了向心力,使电荷在磁场中继续做匀速圆周运动。
三、磁场的应用磁场在生活中有着广泛的应用,以下是一些常见的磁场应用:1、磁铁磁铁是最常见的应用磁场的物品,它可以用于吸附与吸引磁性物质。
2、电动机电动机利用磁场和电场之间的相互作用,将电能转化为机械能。
3、电磁感应电磁感应是磁场的重要应用之一,用于发电、变压器等装置中。
高中物理磁场知识点总结磁场是高中物理中一个重要的概念,它描述了磁体或电流周围存在的一种特殊物质。
以下是对高中物理中磁场知识点的总结:磁场的基本概念- 磁场是一种无形的物质,存在于磁体周围或电流通过的导体周围。
- 磁场的基本性质是它对置于其中的磁体或电流产生作用力。
磁场的描述- 磁场用磁感线来描述,磁感线从磁体的北极出发,指向南极,形成闭合的曲线。
- 磁感线的密度可以表示磁场的强度,密度越大,磁场越强。
磁场的测量- 磁场的强度用磁感应强度(B)来表示,单位是特斯拉(T)。
- 磁场的方向可以用右手定则来确定,即让右手的四指指向电流方向,大拇指指向磁场方向。
磁场对电流的作用- 当电流通过导体时,导体周围会产生磁场,这个磁场会对其他电流产生作用力。
- 根据安培力公式 \( F = BIL \sin(\theta) \),其中 \( F \) 是作用力,\( B \) 是磁感应强度,\( I \) 是电流,\( L \) 是导体长度,\( \theta \) 是导体与磁场方向的夹角。
磁场对运动电荷的作用- 运动电荷在磁场中会受到洛伦兹力,其方向由左手定则确定。
- 洛伦兹力的大小为 \( F = qvB \sin(\theta) \),其中 \( q \)是电荷量,\( v \) 是速度,\( \theta \) 是速度与磁场方向的夹角。
磁场的产生- 永久磁体和电流都能产生磁场。
- 电流产生的磁场可以通过安培环路定理来计算。
磁场的应用- 磁场在日常生活中有广泛的应用,如电动机、发电机、磁悬浮列车等。
- 地球本身也是一个巨大的磁体,其磁场对导航和地球物理研究都有重要意义。
磁场的防护与利用- 在设计电子设备时,需要考虑磁场的屏蔽,以防止磁场干扰。
- 利用磁场的特性,可以开发出各种传感器和测量工具。
通过上述知识点的总结,我们可以看到磁场在物理学中的重要性以及它在现代科技中的应用。
了解和掌握这些概念对于深入理解物理现象和解决相关问题至关重要。
高三物理课件:高三物理磁场公式和磁场知识点总结【摘要】精品学习小编编辑整理了高三物理课件:高三物理磁场公式和磁场知识点总结,供广大同学们在暑假期间,复习本门课程,希望能帮助同学们加深记忆,巩固学过的知识!一、磁场磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。
小磁针的指南指北表明地球是一个大磁体。
磁体周围空间存在磁场;电流周围空间也存在磁场。
电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。
静止电荷周围空间没有磁场。
磁场存在于磁体、电流、运动电荷周围的空间。
磁场是物质存在的一种形式。
磁场对磁体、电流都有磁力作用。
与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。
如图所示为证明通电导线周围有磁场存在??奥斯特实验,以及磁场对电流有力的作用实验。
1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。
2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。
3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。
4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。
说明:①地球上不同点的磁偏角的数值是不同的。
②磁偏角随地球磁极缓慢移动而缓慢变化。
③地磁轴和地球自转轴的夹角约为11°。
二、磁场的方向在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。
规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。
确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向。
磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。
电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。
三、磁感线在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。
1)磁感线上每一点切线方向跟该点磁场方向相同。
2)磁感线特点1)磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。
2)磁感线上每一点的切线方向就是该点的磁场方向。
3)磁场中的任何一条磁感线都是闭合曲线,在磁体外部由N极到S极,在磁体内部由S极到N极。
以下各图分别为条形磁体、蹄形磁体、直线电流、环行电流的磁场说明:①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实曲线。
②磁感线与电场线类似,在空间不能相交,不能相切,也不能中断。
四、几种常见磁场1通电直导线周围的磁场1)安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,这个规律也叫右手螺旋定则。
2)磁感线分布如图所示:说明:①通电直导线周围的磁感线是以导线上各点为圆心的同心圆,实际上电流磁场应为空间图形。
②直线电流的磁场无磁极。
③磁场的强弱与距导线的距离有关,离导线越近磁场越强,离导线越远磁场越弱。
④图中的“×”号表示磁场方向垂直进入纸面,”表示磁场方向垂直离开纸面。
“?2.环形电流的磁场1)安培定则:让右手弯曲的四指与环形电流的方向一致,伸直的拇指的方向就是环形导线轴线上磁感线的方向。
2)磁感线分布如图所示:3)几种常用的磁感线不同画法。
说明:①环形电流的磁场类似于条形磁铁的磁场,其两侧分别是N极和S极。
②由于磁感线均为闭合曲线,所以环内、外磁感线条数相等,故环内磁场强,环外磁场弱。
③环形电流的磁场在微观上可看成无数根很短的直线电流的磁场的叠加。
3.通电螺线管的磁场1)安培定则:用右手握住螺线管,让弯曲时四指的方向跟电流方向一致,大拇指所指的方向就是螺线管中心轴线上的磁感线方向。
2)磁感线分布:如图所示。
3)几种常用的磁感线不同的画法。
说明:①通电螺线管的磁场分布:外部与条形磁铁外部的磁场分布情况相同,两端分别为N极和S极。
管内(边缘除外)是匀强磁场,磁场分布由S极指向N极。
②环形电流宏观上其实就是只有一匝的通电螺线管,通电螺线管则是由许多匝环形电流串联而成的。
因此,通电螺线管的磁场也就是这些环形电流磁场的叠加。
③不管是磁体的磁场还是电流的磁场,其分布都是在立体空间的,要熟练掌握其立体图、纵截面图、横横面图的画法及转换。
四.匀强磁场1)定义:在磁场的某个区域内,如果各点的磁感应强度大小和方向都相同,这个区域内的磁场叫做匀强磁场。
2)磁感线分布特点:间距相同的平行直线。
3)产生:距离很近的两个异名磁极之间的磁场除边缘部分外可以认为是匀强磁场;相隔一定距离的两个平行放置的线圈通电时,其中间区域的磁场也是匀强磁场,如图所示:五、磁感应强度1、磁感应强度为了表征磁场的强弱和方向,我们引入一个新的物理量:磁感应强度。
描述磁场强弱和方向的物理量,用符号“B”表示。
通过精确的实验可以知道,当通电直导线在匀强磁场中与磁场方向垂直时,受到磁场对它的力的作用。
对于同一磁场,当电流加倍时,通电导线受到的磁场力也加倍,这说明通电导线受到的磁场力与通过它的电流强度成正比。
而当通电导线长度加倍时,它受到的磁场力也加倍,这说明通电导线受到的磁场力与导线长也成正比。
对于磁场中某处来说,通电导线在该处受的磁场力F与通电电流强度I与导线长度L乘积的比值是一个恒量,它与电流强度和导线长度的大小均无关。
在磁场中不同位置,这个比值可能各不相同,因此,这个比值反映了磁场的强弱。
1)磁感应强度的定义电流元①定义:物理学中把很短一段通电导线中的电流I与导线长度L的乘积IL叫做电流元。
②理解:孤立的电流元是不存在的,因为要使导线中有电流,就必须把它连到电源上。
2)磁场对通电导线的作用力①内容:通电导线与磁场方向垂直时,它受力的大小与I和L的乘积成正比。
②公式:。
说明:①B为比例系数,与导线的长度和电流的大小都无关。
②不同的磁场中,B的值是不同的。
③B应为与电流垂直的值,即式子成立条件为:B与I垂直。
磁感应强度定义:在磁场中垂直于磁场方向的通电直导线,受到的安培力的作用F,跟电流I和导线长度L的乘积IL的比值,叫做通电直导线所在处的磁场的磁感应强度。
公式:B=F/IL。
2)磁感应强度的单位在国际单位制中,B的单位是特斯拉(T),由B的定义式可知:1特(T)=3)磁感应强度的方向磁感应强度是矢量,不仅有大小,而且有方向,其方向即为该处磁场方向。
小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,简称为磁场的方向。
B是矢量,其方向就是磁场方向,即小磁针静止时N极所指的方向。
2、磁通量磁感线和电场线一样也是一种形象描述磁场强度大小和方向分布的假想的线,磁感线上各点的切线方向即该点的磁感应强度方向,磁感线的密疏,反映磁感应强度的大小。
为了定量地确定磁感线的条数跟磁感应强度大小的关系,规定:在垂直磁场方向每平方米面积的磁感线的条数与该处的磁感应强度大小(单位是特)数值相同。
这里应注意的是一般画磁感线可以按上述规定的任意数来画图,这种画法只能帮助我们了解磁感应强度大小;方向的分布,不能通过每平方米的磁感线数来得出磁感应强度的数值。
1)磁通量的定义穿过某一面积的磁感线的条数,叫做穿过这个面积的磁通量,用符号φ表示。
物理意义:穿过某一面的磁感线条数。
2)磁通量与磁感应强度的关系按前面的规定,穿过垂直磁场方向单位面积的磁感线条数,等于磁感应强度B,所以在匀强磁场中,垂直于磁场方向的面积S上的磁通量φ=BS。
若平面S不跟磁场方向垂直,则应把S平面投影到垂直磁场方向上。
当平面S与磁场方向平行时,φ=0。
公式1)公式:Φ=BS。
2)公式运用的条件: a.匀强磁场;b.磁感线与平面垂直。
3)在匀强磁场B中,若磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积。
此时,式中即为面积S在垂直于磁感线方向的投影,我们称为“有效面积”。
3)磁通量的单位在国际单位中,磁通量的单位是韦伯(Wb),简称韦。
磁通量是标量,只有大小没有方向。
4)磁通密度磁感线越密的地方,穿过垂直单位面积的磁感线条数越多,反之越少,因此穿过单位面积的磁通量磁通密度,它反映了磁感应强度的大小,在数值上等于磁感应强度的大小,B=Φ/S。
六、磁场对电流的作用1.安培分子电流假说的内容安培认为,在原子、分子等物质微粒的内部存在着一种环形电流分子电流,分子电流使每个物质微粒都成为微小的磁体,分子的两侧相当于两个磁极。
2.安培假说对有关磁现象的解释1)磁化现象:一根软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场互相抵消,对外不显磁性;当软磁棒受到外界磁场的作用时,各分子电流取向变得大致相同时,两端显示较强的磁性作用,形成磁极,软铁棒就被磁化了。
2)磁体的消磁:磁体的高温或猛烈敲击,即在激烈的热运动或机械运动影响下,分子电流取向又变得杂乱无章,磁体磁性消失。
磁现象的电本质磁铁的磁场和电流的磁场一样,都是由运动的电荷产生的。
说明:①根据物质的微观结构理论,原子由原子核和核外电子组成,原子核带正电,核外电子带负电,核外电子在库仑引力作用下绕核高速旋转,形成分子电流。
在安培生活的时代,由于人们对物质的微观结构尚不清楚,所以称为“假说”。
但是现在,“假设”已成为真理。
②分子电流假说揭示了电和磁的本质联系,指出了磁性的起源:一切磁现象都是由运动的电荷产生的。
安培力通电导线在磁场中受到的力称为安培力。
3.安培力的方向左手定则1)左手定则伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把手放入磁场,让磁感线穿过手心,让伸开的四指指向电流方向,那么大拇指所指方向即为安培力方向。
2)安培力F、磁感应强度B、电流I三者的方向关系:①,,即安培力垂直于电流和磁感线所在的平面,但B与I不一定垂直。
②判断通电导线在磁场中所受安培力时,注意一定要用左手,并注意各方向间的关系。
③若已知B、I方向,则方向确定;但若已知B(或I)和方向,则I(或B)方向不确定。
4.电流间的作用规律同向电流相互吸引,异向电流相互排斥。
安培力大小的公式表述1)当B与I垂直时,F=BIL。
2)当B与I成角时,,是B与I的夹角。
和沿电流方向的。
,B对I的作用可用B1、推导过程:如图所示,将B分解为垂直电流的B2对电流的作用等效替代,5.几点说明1)通电导线与磁场方向垂直时,F=BIL最大;平行时最小,F=0。
2)B对放入的通电导线来说是外磁场的磁感应强度。
3)导线L所处的磁场应为匀强磁场;在非匀强磁场中,公式仅适用于很短的通电导线(我们可以把这样的直线电流称为直线电流元)。