第九章 线性回归和相关分析
- 格式:doc
- 大小:71.50 KB
- 文档页数:2
相关关系从单变量从发,在一个样本数据中想知道某一指标在样本中的离散程度用方差(样本偏离均值的平均距离的平方数,也叫总变差)或者标准差(样本偏离均值的平均距离)表示。
两个变量的时候,这两个变量在样本中的离散程度用协方差(类比于方差)表示。
协方差表示的是总变差,描述的是两个变量的总体误差(总体误差的期望)。
协方差:协方差:cov(X,Y)=E[(X−E[X])(Y−E[Y])]数据点的协方差:2数据点的协方差:(x1−ux)(y1−uy)+(x2−ux)(y2−uy)2如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值(用上图公式表示的是每一个点与均值的误差值都是正数);如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值(用上图公式表示的是每一个点与均值的误差值都是负数)。
协方差为正值,表示两个变量正相关;协方差为负值,表示两个变量负相关;协方差为0则表示不相关(每一个点与均值的误差值有正有负)。
相关系数协方差的数值可以衡量两个变量的关系,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。
(举个向量的栗子,两个向量的夹角大小表示相关关系,但是两向量的长度不影响夹角的大小,协方差的计算类似于计算向量的距离,向量的距离也可以表示向量之间的关系,但是会受到向量长度的影响)。
因此,相关关系需要去掉量纲的影响,使用协方差同时除以X 和Y的标准差,这就是相关系数(皮尔逊相关系数)相关系数:相关系数r:cov(X,Y)σxσy相关系数r的取值范围是[-1,1],正值表示正相关,负值表示负相关。
当相关系r>0.6时,可以认为两个变量之前强相关,0.3<=r<=0.6时,可以认为是中等相关,当r<0.3时认为弱相关,r=0时表示不相关。
线性回归与相关分析一、引言线性回归和相关分析是统计学中常用的两种数据分析方法。
线性回归用于建立两个或多个变量之间的线性关系,而相关分析则用于衡量变量之间的相关性。
本文将介绍线性回归和相关分析的基本原理、应用场景和计算方法。
二、线性回归线性回归是一种建立自变量和因变量之间线性关系的统计模型。
它的基本思想是通过找到最佳拟合直线来描述自变量与因变量之间的关系。
线性回归模型可以表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1分别表示截距和斜率,ε表示误差项。
线性回归的目标是最小化观测值与模型预测值之间的差异,常用的优化方法是最小二乘法。
线性回归的应用场景非常广泛。
例如,我们可以利用线性回归来分析广告费用和销售额之间的关系,或者分析学生学习时间和考试成绩之间的关系。
线性回归还可以用于预测未来趋势。
通过建立一个合适的线性回归模型,我们可以根据历史数据来预测未来的销售额或者股票价格。
在计算线性回归模型时,我们首先需要收集相关的数据。
然后,可以使用统计软件或者编程语言如Python、R等来计算最佳拟合直线的参数。
通过计算截距和斜率,我们可以得到一个最佳拟合线,用于描述自变量和因变量之间的关系。
此外,我们还可以借助评价指标如R 平方来衡量模型的拟合程度。
三、相关分析相关分析是一种用于衡量两个变量之间相关性的统计方法。
它可以帮助我们判断变量之间的线性关系的强度和方向。
相关系数是表示相关性的一个指标,常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于测量两个连续变量之间的线性关系,其取值范围在-1到1之间。
当相关系数接近1时,表示两个变量呈正相关,即随着一个变量增加,另一个变量也增加。
当相关系数接近-1时,表示两个变量呈负相关,即随着一个变量增加,另一个变量减小。
当相关系数接近0时,表示两个变量之间没有线性关系。
斯皮尔曼相关系数适用于测量两个有序变量之间的单调关系,其取值范围也在-1到1之间。
回归分析与相关分析导言回归分析与相关分析是统计学中常用的两种分析方法,用于研究变量之间的关系。
在本文中,我们将对回归分析和相关分析进行详细探讨,并介绍它们的原理、应用和实例。
一、回归分析回归分析是通过建立一个数学模型来描述一个或多个自变量与因变量之间的关系。
它可以帮助我们预测因变量的取值,并理解自变量对因变量的影响程度。
1.1 简单线性回归简单线性回归是回归分析中最常见的一种方法,它假设自变量和因变量之间存在线性关系。
通过最小二乘法,我们可以得到最佳拟合直线,从而预测因变量的取值。
1.2 多元线性回归多元线性回归是对简单线性回归的拓展,它可以同时考虑多个自变量对因变量的影响。
通过最小二乘法,我们可以得到最佳的多元回归方程,从而预测因变量的取值。
1.3 逻辑回归逻辑回归是回归分析在分类问题上的一种应用。
它能够根据自变量的取值,预测因变量的类别。
逻辑回归常用于预测二分类问题,如预测一个学生是否会被大学录取。
二、相关分析相关分析是研究两个或多个变量之间相关关系的一种方法。
它可以帮助我们了解变量之间的关联程度,以及一个变量是否能够作为另一个变量的预测因子。
2.1 皮尔逊相关系数皮尔逊相关系数是一种衡量两个连续变量之间线性相关程度的统计量。
它的取值范围在-1到1之间,当相关系数接近1时,表示两个变量正相关;当相关系数接近-1时,表示两个变量负相关;当相关系数接近0时,表示两个变量无相关关系。
2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种衡量两个变量之间的非线性相关程度的统计量。
它的取值范围也在-1到1之间,但它适用于衡量非线性关系和顺序关系。
斯皮尔曼相关系数广泛应用于心理学和社会科学领域。
应用实例为了更好地理解回归分析与相关分析的应用,让我们通过一个实际案例来说明。
假设我们想研究某个国家的人均GDP与教育水平之间的关系。
我们收集了10个州的数据,包括每个州的人均GDP和受教育程度指数。
我们可以利用回归分析来建立一个数学模型,从而预测人均GDP与受教育水平之间的关系。
回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。
本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。
【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。
【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。
第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。
这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。
相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。
例如,商品销售额与流通费用率之间的关系就是一种相关关系。
(二)相关关系的特点1、相关关系表现为数量相互依存关系。
2、相关关系在数量上表现为非确定性的相互依存关系。
二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。
其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。
相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。
第九章相关与简单线性回归分析第一节相关与回归的基本概念一、变量间的相互关系现象之间存在的依存关系包括两种:确定性的函数关系和不确定性的统计关系,即相关关系。
二、相关关系的类型1、从相关关系涉及的变量数量来看:简单相关关系;多重相关或复相关。
2、从变量相关关系变化的方向看:正相关;负相关。
3、从变量相关的程度看:完全相关;不相关;不完全相关。
二、相关分析与回归分析概述相关分析就是用一个指标(相关系数)来表明现象间相互依存关系的性质和密切程度;回归分析是在相关关系的基础上进一步说明变量间相关关系的具体形式,可以从一个变量的变化去推测另一个变量的变化。
相关分析与回归分析的区别:目的不同:相关分析是用一定的数量指标度量变量间相互联系的方向和程度;回归分析是要寻求变量间联系的具体数学形式,要根据自变量的固定值去估计和预测因变量的值。
对变量的处理不同:相关分析不区分自变量和因变量,变量均视为随机变量;回归区分自变量和因变量,只有因变量是随机变量。
注意:相关和回归分析都是就现象的宏观规律/平均水平而言的。
第二节简单线性回归一、基本概念如果要研究两个数值型/定距变量之间的关系,以收入x与存款额y为例,对n个人进行独立观测得到散点图,如果可以拟合一条穿过这一散点图的直线来描述收入如何影响存款,即简单线形回归。
二、回归方程在散点图中,对于每一个确定的x值,y的值不是唯一的,而是符合一定概率分布的随机变量。
如何判断两个变量之间存在相关关系?要看对应不同的x,y的概率分布是否相同/y的总体均值是否相等。
在x=xi的条件下,yi的均值记作E(yi),如果它是x的函数,E(yi) =f(xi),即回归方程,就表示y和x之间存在相关关系,回归方程就是研究自变量不同取值时,因变量y的平均值的变化。
当y的平均值和x呈现线性关系时,称作线性回归方程,只有一个自变量就是一元线性回归方程。
一元线性回归方程表达式:E(yi )= α+βxi,其中α称为常数,β称为回归系数。
第九章 线性回归和相关分析9.1 什么叫做回归分析?直线回归方程和回归截距、回归系数的统计意义是什么,如何计算?如何对直线回归进行假设测验和区间估计?9.2 a s 、b s 、x y s /、y s 、y s ˆ各具什么意义?如何计算(思考各计算式的异同)? 9.3 什么叫做相关分析?相关系数、决定系数各有什么具体意义?如何计算?如何对相关系数作假设测验?9.4 什么叫做协方差分析?为什么要进行协方差分析?如何进行协方差分析(分几个步骤)?为什么有时要将i y 矫正到x 相同时的值?如何矫正?9.5 测得不同浓度的葡萄糖溶液(x ,mg /l )在某光电比色计上的消光度(y )如下表,试计算:(1)直线回归方程yˆ=a +bx ,并作图;(2)对该回归方程作假设测验;(3)测得某样品的消光度为0.60,试估算该样品的葡萄糖浓度。
x 0 5 10 15 20 25 30 y0.000.110.230.340.460.570.71[答案:(1)y ˆ=-0.005727+0.023429x ,(2)H0被否定,(3)25.85mg/l]9.6 测得广东阳江≤25oC 的始日(x)与粘虫幼虫暴食高峰期(y)的关系如下表(x 和y 皆以8月31日为0)。
试分析:(1)≤25oC 的始日可否用于预测粘虫幼虫的暴食期;(2)回归方程及其估计标准误;(3)若某年9月5日是≤25oC 的始日,则有95%可靠度的粘虫暴食期在何期间?年份 54 55 56 57 58 59 60 x 13 25 27 23 26 1 15 y50555047512948[答案:(1)r=0.8424;(2)y ˆ=33.2960+0.7456x ,x y s /=4.96;(3)9月22日~10月23日]9.7 研究水稻每一单茎蘖的饱粒重(y ,g)和单茎蘖重(包括谷粒)(x ,g)的关系,测定52个早熟桂花黄单茎蘖,得:SSx=234.4183,SSy=65.8386,SP=123.1724,b=0.5254,r=0.99;测定49个金林引单茎蘖,得SSx=65.7950,SSy=18.6334,SP=33.5905,b=0.5105,r=0.96。
第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
统计学中的线性回归与相关系数统计学是一门研究数据收集、分析和解释的学科,而线性回归和相关系数则是统计学中两个重要的概念与方法。
线性回归和相关系数可以帮助我们理解和解释数据之间的关系,从而作出准确的预测和结论。
本文将详细介绍统计学中的线性回归和相关系数,并讨论它们的应用和限制。
一、线性回归分析线性回归是一种用来建立两个变量之间关系的统计模型。
其中一个变量被称为“自变量”,另一个变量被称为“因变量”。
线性回归假设自变量和因变量之间存在着线性关系,通过拟合一条直线来描述这种关系。
线性回归模型可以用公式表示为:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差。
利用线性回归模型,我们可以估计回归系数的值,并通过回归系数来解释自变量对因变量的影响程度。
回归系数β1表示自变量对因变量的平均改变量,β0表示当自变量为0时,因变量的平均值。
线性回归模型的拟合程度可以通过R方值来衡量,R方值越接近1,表明模型拟合程度越好。
线性回归的应用广泛,例如经济学中的GDP与人口增长率之间的关系,医学研究中的药物剂量与治疗效果之间的关系等等。
通过线性回归,我们可以从大量的数据中提取有用的信息,并利用这些信息做出合理的预测和决策。
二、相关系数分析相关系数是衡量两个变量之间相关关系强度的指标。
相关系数的取值范围为-1到1,-1表示完全负相关,1表示完全正相关,0表示无相关关系。
相关系数可以用来描述变量之间的线性关系,并判断这种关系的强度和方向。
常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于连续变量且呈线性分布的情况,而斯皮尔曼相关系数适用于顺序变量或非线性关系的情况。
相关系数的计算方法涉及到协方差和标准差的概念,具体计算方法可以参考统计学教材或统计学软件。
相关系数的应用广泛,可以用来进行变量筛选、研究变量之间的关系、评估模型拟合程度等。
在金融领域,相关系数可以用来衡量股票之间的关联性,帮助投资者进行风险控制和资产配置。
回归分析与相关分析回归分析是一种通过建立数学模型来预测或解释因变量与自变量之间关系的方法。
它的核心思想是通过对已有数据建立一个函数,通过这个函数可以推断其他未知数据的值。
常见的回归模型包括线性回归、多项式回归、逻辑回归等。
线性回归是最为常见的回归模型之一,其基本原理是通过拟合一条直线来描述自变量与因变量之间的关系。
在线性回归中,常常使用最小二乘法来确定最佳拟合直线。
最小二乘法通过使得残差平方和最小来确定回归系数。
回归系数表示了自变量与因变量之间的关系强度和方向。
除了线性回归,还有多项式回归可以拟合非线性关系。
逻辑回归则适用于因变量为二元分类变量的情况。
相关分析是一种用来研究变量之间相关性的方法。
它可以帮助我们判断两个变量之间是否存在其中一种关系,并且能够量化这种关系的强度和方向。
常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数是一种用来测量两个连续变量之间线性相关程度的指标。
它的取值范围为-1到+1之间,-1表示完全负相关,0表示无相关,+1表示完全正相关。
斯皮尔曼相关系数则是一种非参数的相关系数,适用于两个变量之间的关系非线性的情况。
回归分析和相关分析可以相互配合使用,用来探索和解释变量之间的关系。
首先,通过相关分析,可以初步判断两个变量之间是否存在相关性。
然后,如果判断出存在相关性,可以使用回归分析来建立一个数学模型,以解释自变量对因变量的影响。
总之,回归分析和相关分析是统计学中常用的两种数据分析方法。
它们可以帮助我们研究和解释变量之间的关系,并用于预测和控制因变量的变化。
了解和掌握这两种方法,对于研究者和决策者来说都是非常重要的。
第九章 线性回归和相关分析
9.1 什么叫做回归分析?直线回归方程和回归截距、回归系数的统计意义是什么,如何计算?如何对直线回归进行假设测验和区间估计?
9.2 a s 、b s 、x y s /、y s 、y s ˆ各具什么意义?如何计算(思考各计算式的异同)? 9.3 什么叫做相关分析?相关系数、决定系数各有什么具体意义?如何计算?如何对相关系数作假设测验?
9.4 什么叫做协方差分析?为什么要进行协方差分析?如何进行协方差分析(分几个步骤)?为什么有时要将i y 矫正到x 相同时的值?如何矫正?
9.5 测得不同浓度的葡萄糖溶液(x ,mg /l )在某光电比色计上的消光度(y )如下表,试计算:(1)直线回归方程y
ˆ=a +bx ,并作图;(2)对该回归方程作假设测验;(3)测得某样品的消光度为0.60,试估算该样品的葡萄糖浓度。
x 0 5 10 15 20 25 30 y
0.00
0.11
0.23
0.34
0.46
0.57
0.71
[答案:(1)y ˆ
=-0.005727+0.023429x ,(2)H0被否定,(3)25.85mg/l]
9.6 测得广东阳江≤25oC 的始日(x)与粘虫幼虫暴食高峰期(y)的关系如下表(x 和y 皆以8月31日为0)。
试分析:(1)≤25oC 的始日可否用于预测粘虫幼虫的暴食期;(2)回归方程及其估计标准误;(3)若某年9月5日是≤25oC 的始日,则有95%可靠度的粘虫暴食期在何期间?
年份 54 55 56 57 58 59 60 x 13 25 27 23 26 1 15 y
50
55
50
47
51
29
48
[答案:(1)r=0.8424;(2)y ˆ
=33.2960+0.7456x ,x y s /=4.96;(3)9月22日~10月23日]
9.7 研究水稻每一单茎蘖的饱粒重(y ,g)和单茎蘖重(包括谷粒)(x ,g)的关系,测定52个早熟桂花黄单茎蘖,得:SSx=234.4183,SSy=65.8386,SP=123.1724,b=0.5254,r=0.99;测定49个金林引单茎蘖,得SSx=65.7950,SSy=18.6334,SP=33.5905,b=0.5105,r=0.96。
试对两回归系数和相关系数的差异作假设测验,并解释所得结果的意义。
[答案:
2
1b b s -=0.0229,t <1;
2
1z z s -=0.2053,t=3.413]
9.8 下表为1963、1964、1965三年越冬代棉红铃虫在江苏东台的化蛹进度的部分资料,试作协方差分析。
x 日 期
(以6月10日为0)
y 化 蛹 进 度(%) 1963年
1964年
1965年
5 8 11 14 17 20 23 2
6 1
7 24 35 4
8 58 65 72 75 24 35 41 52 61 70 7
9 82 22 32 42 53 59 66 75 82
[答案:化蛹进度依日期的直线回归极显著,b=2.88(%/天);化蛹进度平均数间差异极显著,F=13.31,其中1963年显著落后]
9.9 下表为玉米品比试验的每区株数(x)和产量(y)的资料,试作协方差分析,并计算各品种在小区株数相同时的矫正平均产量。
品
种
区 组
总 和 平 均 I
Ⅱ Ⅲ IV
x
y
x
y
x
y
x y
x
y
x
y
A B C D E
10 12 17 14 12
18
36 40 21
42 8
13 15
14
10
17
38 36 23
36 6
8 13
17
10
14
28 35 24
38 8
11 11
15
16
15
30 29 20
52 32
44 56
60
48
64 132 140 88 168
8
11 14 15
12
16 33 35 22 42
总 和 65
157 60
150 54
139 61
146 240
592 总平均12 29.6
[答案:误差项回归的F=50.89,矫正平均数间F=90.15,各品种的矫正平均数依次为:)
(x x A y ==23.7,
)
(x x B y ==34.9,
)
(x x C y ==31.2,
)
(x x D y ==16.2,
)
(x x E y ==42.0]。