SRIM
- 格式:ppt
- 大小:1.23 MB
- 文档页数:29
实验五 SRIM计算重离子在材料中的剂量分布一、实习目的和要求(一)实习目的:1、熟悉SRIM程序的基本使用方法,以及在辐射剂量和防护计算中的应用。
2、通过此程序仿真模拟重带电粒子入核的过程,获得离子在材料中的剂量分布。
3、通过进一步自学,利用SRIM程序解决实际工作中的碰到的一些实际问题。
(二)实习要求:1、掌握SRIM软件的基本组成、操作方法;2、利用SRIM对离子在不同物质中的射程进行计算分析;3、对质子在不同固体靶中的径迹及剂量分布进行简单的计算,并对计算结果进行分析并绘图,得出结论。
二、SRIM程序简介1、SRIM软件介绍SRIM是模拟计算离子在靶材中能量损失和分布的程序组。
它采用Monte Carlo方法,利用计算机模拟跟踪一大批入射粒子的运动。
粒子的位置、能量损失以及次级粒子的各种参数都在整个跟踪过程中存储下来,最后得到各种所需物理量的期望值和相应的统计误差。
该软件可以选择特定的入射离子及靶材种类,并可设置合适的加速电压。
可以算不同粒子,以不同的能量,从不同的位置,以不同的角度入射到靶中的情况。
SRIM中包含一个TRIM运算软件。
TRIM(Transport of Ions in Matter)是一个非常复杂的程序。
它不仅可以描述离子在物质中的射程,还可以详细计算注入离子在慢化过程中对靶产生损伤等其他信息。
它可以使用动画让你看到离子注入到靶中的全过程,并给你展示级联反冲粒子和靶原子混合在一起的情形。
为了精确估计每个离子和靶原子间相遇时的物理情形,程序只能一次对一个粒子进行计算。
这样的话,计算可能消耗可观的时间——计算每个离子花费的时间从一秒到几分钟不等。
而精确度由模拟采用的离子数来决定。
典型的情况是,应用1000个离子进行计算将得到好于10%的精确度。
软件特点:一、灵活的几何处理能力蒙特卡罗方法较其它数值方法的最大优点之一,是处理复杂的几何问题方便、灵活,并且不因几何维数的增多而增加更多的计算时间,因此,在SRIM软件中尽可能提高和完善几何处理能力,以适应各种复杂几何条件下的计算。
一、多组分注塑成型:使用两个或两个以上注射系统的注射机,将不同品种或不同色泽的塑料同时或先后注射入模具内的成型方法优点:提高制品的外观美感;提高制品质量;提高生产率;降低劳动强度;降低中间管理费用;精简组装工序。
成型双色塑件两种方法:一:用两副模具在两台普通注射机上分别注射成型。
第一次注射成型嵌件,再注射另一种颜色的塑料将嵌件进行包封,完成双色注射。
这种方法劳动强度大,生产效率低。
二:用一付模具,在专用双色注射机上一次注射成型。
由于双色注射机有两个相互垂直或平行的独立注射装置。
因此生产效率高,劳动强度低。
在成型过程中,对相对独立的两个注塑循环而言,由于从合模注塑到开模的时间相同,要注意两个型腔注塑循环的注射时间、冷却时间及保压时间彼此协调,这是双色注塑工艺控制的重点双组分注塑:采用两种原料来生产一个产品,使产品表里或不同部位由不同塑料组成。
材质颜色主要特点:单一的原料在性能上往往有一些缺陷,利用双组分注塑可以达到两种原料之间的优点互补,得到性能更加优良的产品。
注塑工艺与普通的注塑基本相同,同样分为:注射-保压-冷却;不同之处在于在短时间内先后实现了两次注塑成型过程。
两种原料能有效黏合在一起。
二、GAIM气体控制方式,气体辅助注射成型的影响因素,气体吹穿,薄壁穿透○1方式:气体压力自动化优化控制:这是一个理想的压力变化,通过控制气体的注入使熔体充满型腔的前沿。
体积控制法:有高压气动活塞和汽缸产生预定压力和体积的气体,在气体推动熔体的过程中,始终保持气体体积恒定,随着气体冲模过程的进行,气体压力不断降低,该方法在熔体掏空体积较大时压力降较大,有很大的局限性。
压力控制法:是在气体推动聚合物熔体过程中始终保持压力恒定或分阶段保持气体压力恒定⑴熔体注射⑵填充阶段气体注射⑶保压阶段气体注射○2影响因素:材料的性质与材料选择1熔体黏度对所需要的气体压力和气体注射后的残余壁厚有着很大的影响。
熔体黏度越高,把树脂注进模具需要的气体压力越高,并使残余壁厚变厚。
教程#3——创建复合靶混合气体/固体靶——气体电离室前面的教程已经涵盖了如何设置TRIM 、如何确定一个n 型半导体井的注入离子种类和能量以及如何估算在半导体注入过程中的损伤。
这个教程将介绍如何创建一个复合靶:一个气体和固体复合结构的的载能离子气体电离探测器。
这个装置由一个长的圆柱体构成。
在它左边有一个非常狭窄的入射窗口,它由一种名为Paralene “C ”的聚合物制成。
这层薄膜只有1微米厚,它能够让束流进入探测器时损失最少的能量。
这个探测器内部充有一种名为P-10的特殊气体,其成分为10%甲烷(CH 4)和90%氩气(Ar )。
氩气原子被粒子电离,然后放出的电子被电场(未画出)清除出去。
有一种可能是电离气体流会导致击穿,并且10%的甲烷气体会“猝息”过多的电荷堆积。
最后在末端有一个“束流截止”靶。
束流需要全部被截止在P-10气体中,但是通常会使用一个足够厚的尾部平板以确保安全。
我们希望在SRIM 中创建这个探测器,这样的话我们可以估计当一个束流进入探测器时会发生什么。
这是一个创建复合靶中的练习,我们只是使用探测器作为一个例子。
通过点击图标启动SRIM 程序●选择 ●在左上角点击 ● 在第二列底部选择靶TRIM Calculation TRIM Demo He (5MeV )into Gas Ionization Detector● 点击你可能得到一个关于靶密度的提醒。
点击来保持建议值 ● TRIM 会启动这个模型的计算这样的设置可以提供给你气体电离探测器的靶细节信息。
以下几点需要注意:所有离子在到达底部的黄铜束流截止靶前停止下来。
这个图像只展示了靶的一部分。
注意到横坐标显示了从40mm 到50mm 处的深度。
也就是说你将靶在这个深度的部分进行了放大,这使得你可以更详细地看到离子最终的径迹。
狭窄的入射窗口没有画出。
它确实存在,但是当我们将所选择的区域放大时,它所在的第一层就不再显示在图像中了。
教程#4——靶损伤的计算SRIM 的教程一已经说明了如何在硅片上建立一个掺杂剂量峰深度为250纳米分布约为每平方厘米5×1018个原子的互补金属氧化物(CMOS )n 型井。
现在的问题是选择正确的掺杂物,并确定合适的注入能量和剂量(离子每平方厘米)来获得这个n 型井。
这个教程得出的结论是选择能量为190keV 的磷离子,注入剂量约为每平方厘米1014个离子。
本教程将会详细阐述离子对靶的损伤这一复杂的课题,并会继续使用教程一中的靶来进行这一论述。
通常,在室温300K 下的注入产生的绝大部分损伤将由于“自退火”而复合。
在室温下,晶格原子具有足够的能量使得简单的靶损伤重新形成晶体而使靶损伤消失。
一般情况下,相比半导体硅的自退火,金属的要快,而绝缘体的要慢,因而一个硅靶是一个不错的例子。
然而SRIM 没有考虑热效应,因而我们计算的注入损伤发生在温度为0K 的情况下。
忽略热效应会改变最终损伤的大小,但我们要讨论的基本损伤种类仍会产生。
首先,按照在第一课中使用的方式在SRIM 中设置相同的计算: ● 点击桌面上的SRIM 图标。
● 在打开的窗口中点击 ● 选择ION DATA (离子数据)并点击 按键。
选择磷元素。
● 在相同的ION DATA (离子数据)线上,在选项框“Energy (keV )”中输入190。
● 向下移到TARGET DATA (靶数据)。
找到靶的 按键。
选择硅元素(Silicon )。
● 移到这条线的左边,并在“Width ”(深度)中键入3500Ang (埃)。
● 移到这条线的左边,并在“Layer name ”(层名)中键入“Silicon ” (硅)来代替“Layer 1”● 移到右上角的“DAMAGE ”(损伤)选项。
向下滚动后选择“Detailed Calculation with Full Damage Cascades ”(利用完整的级联损伤详细计算)选项卡。
真空导入工艺的介绍在目前的材料中,复合材料因其质轻高强而被广泛应用。
针对复合材料的制造工艺也在不断的提高和创新。
由起初的手糊,发展到机械化的喷射,拉挤,模压等工艺,都现在兴起的真空导入工艺,与真空导入相关的工艺还有树脂传递模塑(RTM),真空辅助RTM (VARTM),真空袋压,SCRIMP,SRIM(Structural Reaction Molding),RTI(resin film infusion).但都有一些差别,很多文章中都介绍过,这里就不赘述了。
1.真空导入工艺(Vacuum infusion process,VIP)真空导入工艺(Vacuum infusion process),简称VIP,在模具上铺“干”增强材料(玻璃纤维,碳纤维,夹心材料等,有别于真空袋工艺),然后铺真空袋,并抽出体系中的真空,在模具型腔中形成一个负压,利用真空产生的压力吧不饱和树脂通过预铺的管路压入纤维层中,让树脂浸润增强材料最后充满整个模具,制品固化后,揭去真空袋材料,从模具上得到所需的制品。
VIP采用单面模具(就象通常的手糊和喷射模具)建立一个闭合系统。
真空导入工艺公诸于世很久了,这个工艺在1950年出现了专利记录。
然而,直到近几年才得到了发展。
由于这种工艺是从国外引入,所以在命名上有多种称呼,真空导入,真空灌注,真空注射。
2.理论真空导入工艺能被广泛的应用,有其理论基础的,这就是达西定律(Darcy’s Law)t =ℓ 2h/(2 kDP )t 是导入时间,由四个参数来决定。
h-树脂粘度,从公式上可以看出所用树脂的粘度低,则所需导入时间就短,因此真空导入所用的树脂粘度一般不能太高。
这样可以使树脂能够快速的充满整个模具。
ℓ-注射长度,指的树脂进料口与到达出料口的之间的距离,距离长当然所需的时间亦长。
DP-压力差, 体系内与体系外压力差值越大,对树脂的驱动力也越大,树脂流速越快,当然所需导入时间也越短。
教程#4——靶损伤的计算SRIM 的教程一已经说明了如何在硅片上建立一个掺杂剂量峰深度为250纳米分布约为每平方厘米5×1018个原子的互补金属氧化物(CMOS )n 型井。
现在的问题是选择正确的掺杂物,并确定合适的注入能量和剂量(离子每平方厘米)来获得这个n 型井。
这个教程得出的结论是选择能量为190keV 的磷离子,注入剂量约为每平方厘米1014个离子。
本教程将会详细阐述离子对靶的损伤这一复杂的课题,并会继续使用教程一中的靶来进行这一论述。
通常,在室温300K 下的注入产生的绝大部分损伤将由于“自退火”而复合。
在室温下,晶格原子具有足够的能量使得简单的靶损伤重新形成晶体而使靶损伤消失。
一般情况下,相比半导体硅的自退火,金属的要快,而绝缘体的要慢,因而一个硅靶是一个不错的例子。
然而SRIM 没有考虑热效应,因而我们计算的注入损伤发生在温度为0K 的情况下。
忽略热效应会改变最终损伤的大小,但我们要讨论的基本损伤种类仍会产生。
首先,按照在第一课中使用的方式在SRIM 中设置相同的计算: ● 点击桌面上的SRIM 图标。
● 在打开的窗口中点击 ● 选择ION DATA (离子数据)并点击 按键。
选择磷元素。
● 在相同的ION DATA (离子数据)线上,在选项框“Energy (keV )”中输入190。
● 向下移到TARGET DATA (靶数据)。
找到靶的 按键。
选择硅元素(Silicon )。
● 移到这条线的左边,并在“Width ”(深度)中键入3500Ang (埃)。
● 移到这条线的左边,并在“Layer name ”(层名)中键入“Silicon ” (硅)来代替“Layer 1”● 移到右上角的“DAMAGE ”(损伤)选项。
向下滚动后选择“Detailed Calculation with Full Damage Cascades ”(利用完整的级联损伤详细计算)选项卡。
SRIM程序介绍SRIM 程序介绍SRIM 是⼀组程序,计算制⽌和各种离⼦进⼊问题。
⽅法:采⽤全量⼦⼒学治疗离⼦原⼦碰撞。
(SRIM 总是referes 的运动原⼦的“离⼦”,和所有⽬标原⼦作为“原⼦”)SRIM 包括两个主要项⽬,和⼀些特殊⽤途的程序。
SR (表制⽌和范围离⼦在简单的⽬标)。
快速创建表停车和各种离⼦的问题在很宽的频带离⼦能量。
TRIM (运输的离⼦的物质)是蒙特卡罗计算如下离⼦纳⼊⽬标,使详细的计算的能源转移到每⼀个⽬标原⼦碰撞。
(多层次的复杂⽬标)蒙特卡罗模拟⽅法(M-C ⽅法) 通过计算机模拟跟踪⼀⼤批⼊射粒⼦的运动。
粒⼦的位置、能量损失以及次级粒⼦的各种参数都在整个跟踪过程中存储下来, 最后得到各种所需物理量的期望值和相应的统计误差。
在M-C ⽅法计算过程中采⽤连续慢化假设,即⼊射离⼦与材料靶原⼦核的碰撞采⽤两体碰撞描述, 这⼀部分主要导致⼊射离⼦运动轨迹的曲折, 能量损失来⾃于弹性能量损失部分, ⽽在两次两体碰撞之间认为⼊射离⼦与材料中的电⼦作⽤连续均匀地损失能量, 当⼊射为重离⼦时可认为在这期间⼊射离⼦作直线运动, 能量损失来⾃于⾮弹性能量损失部分。
两次两体碰撞之间的距离以及碰撞后的参数通过随机抽样得到。
TRIM (运输的离⼦的物质)是蒙特卡洛蒙特卡罗微调是⾮常灵活:它将处理离⼦能量从10 EV ⾄2 GEV ,靶材最多⾼达8层,由12个不同的元素组成。
它将计算出三维分布的离⼦和所有相关离⼦的能量损失的动⼒学现象的:⽬标损伤,溅射,电离,⽣产声⼦。
所有⽬标原⼦级联的⽬标是在遵循的细节。
这个程序是更准确地计算离⼦幅度超过运输计划中使⽤简项⽬以⽣产各种表格上⾯所述。
Stopping power:⼊射粒⼦在单位路程上损失的能量(-dE/dx).射程:⼊射粒⼦从进⼊靶起到停⽌点所通过的总的路程,称为射程. Projected Range 预测范围以Rp 表⽰射程在⼊射⽅向投影的长度,称作投影射程.t R 是粒⼦在靶物质中所⾛过的路程,p R 是与⼊射⽅向平⾏的射程, p R 是与⼊射⽅向垂直的射程,p R 与⼊射表⾯垂直的射程。
SRIM –The stopping and range of ions in matter (2010)James F.Ziegler a,*,M.D.Ziegler b ,J.P.Biersack caUnited States Naval Academy,Physics Dept.,Annapolis,MD 21402,USA bUniversity of California at Los Angeles,Los Angeles,CA 90066,USA cBerlin,Germanya r t i c l e i n f o Article history:Available online 26February 2010Keywords:SRIMIon stopping Stopping power Stopping force Ion rangea b s t r a c tSRIM is a software package concerning the S topping and R ange of I ons in M atter.Since its introduction in 1985,major upgrades are made about every six years.Currently,more than 700scientific citations are made to SRIM every year.For SRIM-2010,the following major improvements have been made:(1)About 2800new experimental stopping powers were added to the database,increasing it to over 28,000stop-ping values.(2)Improved corrections were made for the stopping of ions in compounds.(3)New heavy ion stopping calculations have led to significant improvements on SRIM stopping accuracy.(4)A self-con-tained SRIM module has been included to allow SRIM stopping and range values to be controlled and read by other software applications.(5)Individual interatomic potentials have been included for all ion/atom collisions,and these potentials are now included in the SRIM package.A full catalog of stopping power plots can be downloaded at .Over 500plots show the accuracy of the stopping and ranges produced by SRIM along with 27,000experimental data points.References to the citations which reported the experimental data are included.Published by Elsevier B.V.1.IntroductionSRIM is a software package concerning the S topping and R ange of I ons in M atter.It has been continuously upgraded since its intro-duction in 1985[1].A recent textbook ‘‘SRIM –The Stopping and Range of Ions in Matter ”describes in detail the fundamental phys-ics of the software [2].Since this time,corrections have been made based on new experimental data [3].Major changes occur in SRIM about every six years.The last major changes were in 1995and 1998and 2003.In 1995a complete overhaul was made of the stop-ping of relativistic light ions with energies above 1MeV/u.In 1998,special attention was made to the Barkas Effect and the theoretical stopping of Li ions.In 2010,significant changes were made to cor-rect the stopping of ions in compounds.All the figures in this paper are also available on the SRIM website,in considerably more detail.2.SRIM-2010stopping accuracyShown in Table 1are the statistical improvements in SRIM’s stopping power accuracy when compared to experimental data and also compared to SRIM-1998.The right two columns show the percentage of data points within 5%and within 10%of the SRIM calculation.The experimental stopping powers for heavy ions contain far more scatter than for light ions,hence there are larger errors for heavy ions,Be–U.The accuracy of SRIM-2010for individual ions or targets can be reviewed by viewing plots which compare experimental values and the equivalent SRIM calculations.Fig.1shows a typical com-parison for a light ion,He,in Ag.Fig.2shows a similar plot for all heavy ions,Be(4)–U(92)in Ag.Here,the various ion stopping powers have been normalized to the stopping of Al ions in Al,(nor-malization means that for any ion,the relative error of its experi-mental value to that calculated by SRIM is plotted with a similar displacement from the stopping of Al ions in Ag).Note that the scatter of data points is much higher than for the case of He ions in Ag,which increases the perceived error of SRIM.Higher resolu-tion figures for each heavy ion and all elemental targets are avail-able at .3.Stopping of ions in compoundsBragg and Kleeman,in 1903,conducted stopping experiments with a radium source in organic gases such as methyl bromide and methyl iodide to find how alpha stopping depended on the atomic weight of the target.They also calculated the stopping contribution of hydrogen and carbon atoms in hydrocarbon target gases by assuming a linear addition based on the chemical composition of H and C atoms in the targets.The concept that the stopping power of a compound may be estimated by the linear combination of the stopping powers of its individual elements has come to be known as Bragg’s Rule [4].This rule is reasonably accurate,and the measured stopping of ions in compounds usually deviates less than 20%from that0168-583X/$-see front matter Published by Elsevier B.V.doi:10.1016/j.nimb.2010.02.091*Corresponding author.E-mail address:Ziegler@ (J.F.Ziegler).Nuclear Instruments and Methods in Physics Research B 268(2010)1818–1823Contents lists available at ScienceDirectNuclear Instruments and Methods in Physics Research Bjournal homepage:www.els ev i e r.c o m /l o c a t e /n i mbpredicted by Bragg’s rule.The accuracy of Bragg’s rule is limited be-cause the energy loss to the electrons in any material depends on the detailed orbital and excitation structure of the matter,and any differences between bonding in elemental materials and in compounds will cause Bragg’s rule to become inaccurate.Further,bonding changes may also alter the charge state of the transitionTable 1Accuracy of SRIM stopping calculations.Approx.data pts.SRIM-1998(%)SRIM-2010(%)SRIM-2010(within 5%)SRIM-2010(within 10%)H ions 9000 4.5 3.968%85%He ions 6800 4.6 3.570%87%Li ions 1700 6.4 4.668%81%Be–U Ions10,6008.1 5.655%78%Overall accuracy28,1006.14.364%85%Notes to Table 1:The above table compares all 28,000data points to SRIM calculations.If wacko points are omitted (those differing from SRIM by more than 25%)then most of the above heavy ion accuracy numbers would be reduced by about 25%.The overall accuracy of SRIM-2010then reduces to 3.9%instead of 4.3%.Approx.data points :Current total data points used in SRIM plots.SRIM-1998:Comparison of SRIM-1998stopping to experimental data.SRIM-1998was the last major change in SRIM stopping powers.SRIM-2010:Current stopping power calculation.SRIM-2010(within 5%):Percentage of experimental data within 5%of the SRIM values.SRIM-2010(within 10%):Percentage of experimental data within 10%of the SRIMvalues.Fig.1.The stopping of He ions in Ag targets.The plot shows experimental values of He ion stopping in Ag targets.It shows the actual stopping,in units of eV/(1015atoms/cm 2).At the right is a listing of the original data citations.As noted,there is a total of 439data points taken from 44papers,and they vary from SRIM calculations by an average of 3.9%.Also noted is the mean ionization potential used for Al (<I >=488eV)and the Fermi velocity ratio for Ag,V /V F =1.254.The <I >value is only used for high energy stopping (>1MeV/u),while the Fermi velocity is important for lower velocities.A higher resolution plot is available at .Fig.2.The stopping of heavy ions in Ag targets.The plot shows experimental stopping values of heavy ions (atomic numbers 4–92)in Ag targets.The plot is organized similar to that of Fig.1.There are 930experimental data points taken from 131citations,and the mean error of SRIM is 4.5%.Ag targets are easy to make and these targets tend to have small grains without texture and contain few contaminants.So the accuracy of SRIM is better than normal when compared to experimental heavy ion data due to the consistency of the targets.A higher resolution plot is available at .J.F.Ziegler et al./Nuclear Instruments and Methods in Physics Research B 268(2010)1818–18231819ion,thus changing the strength of its interaction with the target medium.Detailed experimental studies of Bragg’s rule started in the 1960’s,and wide discrepancies were found from simple additivity of stopping powers.A classic example is shown in Fig.3for targets containing H and C atoms,which show non-additivity of stopping in simple hydrocarbons[5].In thisfigure,the stopping of He ions in various hydrocarbons was measured for pairs of compounds,and the relative contribution of H and C was extracted for each pair (solving two equations with two unknowns).It was found that the relative stopping contributions of H and C differ by almost 2Âover the range of compounds.Similar work studied more com-plex hydrocarbons but instead of adding H and C bonds,they added extra hydrocarbon molecules.In this study,it was found that by adding identical molecules to hydrocarbon strings, stopping linearity returned[6].Adding new molecules to a target just scaled the stopping by the extra number of atoms.These results showed that atomic bonding had large effects on stopping powers in simple molecular targets,while extra agglomeration of molecules to the target compounds had a small stopping effect.Since these early experiments,theorists have shown that extensive calculations can predict the stopping of light ions (usually protons)in hydrocarbon compounds.Much of this work has been based on a seminal paper by Peter Sigmund that devel-oped methods to account for detailed internal motion within a medium[7].This theory allows for arbitrary electronic configura-tions in the target.Sabin and collaborators used this approach to calculate stopping powers for protons in hydrocarbons with good success[8].Sabin’s calculation follows what is sometimes called the‘‘Köln Core and Bond”(CAB)approach which is discussed in detail below.The Core and Bond(CAB)approach suggested that stopping powers in compounds can be predicted using the superposition of stopping by atomic‘‘cores”and then adding the stopping corre-sponding to the bonding electrons[9].The core stopping would simply follow Bragg’s rule for the atoms of the compound,where we linearly add the stopping from each of the atoms in the com-pounds.The chemical bonds of the compound would then contain the necessary stopping correction.They would be evaluated depending on the simple chemical nature of the compound.For example,for hydrocarbons,carbon in C–C,C@C and C…C struc-tures would have different bonding contributions(C@C indicates a double-bond structure and C…C is a triple bond).SRIM uses this CAB approach to generate corrections between Bragg’s rule and compounds containing the common elements in compounds:H,C,N,O,F,S and Cl.These light atoms have the larg-est bonding effect on stopping powers.Heavier atoms are assumed not to contribute anomalously to stopping because of their bonds (discussed later in Stopping of High Energy Heavy Ions).When you use SRIM,you have the option to use the Compound Dictionary which contains the chemical bonding information for about150 common compounds.The compounds with available corrections are shown with a Star symbol,q,next to the name.When these compounds are selected,SRIM shows the chemical bonding dia-gram and calculates the best stopping correction.The correction is a variation from unity(1.0=no correction).Some corrections are quite big:carbon atoms have almost a4Âchange in stopping power from single bonds to triple bonds.This large change indi-cates the importance of making some sort of correction for the stopping of ions in compounds.The CAB corrections that SRIM uses have been extracted from the stopping of H,He and Li ions in more than100compounds, from162experiments.The details of applying this correction are described in Ref.[10].SRIM correctly predicts the stopping of H and He ions in compounds with an accuracy of better than2%at the peak of their stopping power curve,$125keV/u.An example of a large correction for compound targets is the9% correction necessary for a target of water,H2O,see Fig.4.The stop-ping of He ions in gaseous H2and O2is shown with the lower two dotted lines.The stopping in gaseous water vapor is essentially the Bragg’s Rule sum since its bonding correction is only1%,see the upper dotted line.However,for solid water(ice),the sum of stop-ping in H2O is shown as the upper solid line.With the H2O phase correction,which reduces the stopping by9%at the peak,SRIM shows good agreement between predicted stopping and the data from the ten experimental reports[11].The limitations of the CAB approach should be mentioned.A.The most important limitation might be that of the targetband-gap.Experiments on insulating targets dominate the experimental results that we use.For compounds which are conducting,there might be an error with thecalculatedFig.3.Accuracy of Bragg’s Rule in hydrocarbon compounds.In thisfigure,the stopping of He ions(at500keV)in various hydrocarbons is shown for pairs of compounds,with the relative contributions of stopping in H and C extracted assuming Bragg’s Rule and solving using two unknowns[5].This classic paper shows with clarity the errors associated with Bragg’s Rule.The units of the ordinate and abscissa are reduced stopping units,e[18].It is found that the various determinations of stopping by H and C atoms differ by almost2Âover the range of compounds.The result is a clear indication of the importance of including bonding corrections in stopping powers.(Figure from Ref.[5]). 1820J.F.Ziegler et al./Nuclear Instruments and Methods in Physics Research B268(2010)1818–1823stopping correction being too small.Theoretically,band-gap materials are expected to have lower stopping powers than equivalent conductors because the small energy transfers to target electrons are not available in insulators.It is not clear what the magnitude of this effect is,but about 50papers have discussed the stopping of ions in metals and their oxides,e.g.targets of Fe,Fe 2O 3and Fe 3O 4.These exper-iments evaluated similar materials with and without band-gaps.No significant differences were found that could be attributed to the band-gap.Measurements have also been made of the stopping of H and He ions into ice (solid water)with various dopings of salt (NaCl).No change of energy loss was observed for up to 6orders of magnitude change in resistivity of the ice [11].B.The scaling of ion stopping from H to He to Li ions is assumed to be independent of target material.This assump-tion has been evaluated with 27targets which have been measured for two of the three ions (at the same ion velocity)and 6of these targets have been measured for all three ions (see listings in Ref.[11]).In all cases,the stopping scaled identically within 4%.That is,for H (125keV)and He (500keV)and Li (875keV)the scaling of stopping powers was 1:2.7:4.7for the 27targets (average error was <4%).(For those unfamiliar with stopping theory,the primary parameter for the scaling of stopping powers is the ion velocity,which reduces to scaling in units of keV/a.).C.The light elements of He and Ne are missing from the above list of target bonding atoms.No comparative experiments have been done on the stopping into elemental He in solid/gas phases.However studies of stopping into targets of Ne and Ar have been conducted in both gas and solid form.These papers show no significant difference between the stopping in gas and solid phases.It appears that the Van der Waals forces,which hold noble gases together in frozen form,are too weak to effect the energy loss of ions.Of particular note is the extensive work done in a PhD paper by Besenbacher.[12].D.The light target atoms of Li,Be and B are missing from the list of bonding atoms with corrections.This is a serious defect.The number of papers that have looked at com-pounds which contain significant amounts of these three elements is too limited to allow their evaluation.Target atoms of these three elements are considered by SRIM to have no bonding correction,which is clearly not true.But without experimental data,there is no reliable way to eval-uate the contribution of their bonds in compounds.E.Bragg’s Rule and Heavy Target Elements.We have concen-trated on the analysis of the stopping of ions in compounds made up of light elements.For compounds with heavier atoms,many experiments have shown that deviations from Bragg’s rule disappear.In Table 2are shown representative examples of ion stopping in various compounds containing heavy elements.None show measurable deviations from Bragg’s rule.These and other similar results were reviewed in the 1980s [13,14].4.Stopping of high energy heavy ionsThe stopping powers of high energy (E >1MeV/u)heavy ions (Z >3)have two separate components.First is the charge state of these ions,which is traditionally addressed by using the Brandt–Kitagawa approximation,and then the many high velocity effects are combined into modern Bethe–Bloch theory.The Brandt–Kitagawa (BK)theory [15]is easiest to understand relative to the Bohr theory of the average charge state of heavy ions [16].Bohr suggested the simple picture that the energetic heavy ion would lose any of its electrons whose classical velocity was slower than the ion’s velocity.This concept lasted for more than 30years,with remarkable success.The concept was then improved by the suggestion of BK that one should consider instead the loss of any electrons whose velocity was slower than the relative velocity of the ion to the target medium.This lowered the charge state of heavy ions since the relative velocity of the ion was always lower than its absolute velocity.BK then presented a simple method of calculating this relative velocity based on considering the target to be a perfect Fermi conductor.This significantly improved the calculation of stopping powers [1].Modern approaches to Bethe–Bloch stopping equation have been reviewed in detail in Ref.[17].In Bethe–Bloch,twolargeFig.4.Corrections for stopping in compounds:He ions in water.The effects on stopping of target phase are illustrated in the figure for the stopping of He ions in water (solid and gaseous).Data from 14citations are shown.The special bonding of H–O in water is approximately the same for H–H and O–O bonds,so the stopping in the gaseous H 2O is almost the same as found using Bragg’s Rule.However,a large 9%phase correction must be applied to calculate the stopping of H 2O in solid forms,ice and water (see text).A higher resolution plot is available at .J.F.Ziegler et al./Nuclear Instruments and Methods in Physics Research B 268(2010)1818–18231821components are not well described by pure theoretical consider-ations:(1)the mean ionization energy of the target,commonly symbolized using<I>,and(2)the shell corrections for the target, called C/Z2.The<I>value for a target corrects for the quantized en-ergy levels of the target electrons and also any band-gap and target phase correction.The C/Z2term corrects for the Bethe–Bloch assumption that the ion velocity is much larger than the target electron velocities.This term is usually calculated by detailed accounting of the particle’s interaction with each electronic orbit in various elements.Since both of these terms are only dependent on the target,they are assumed to be the same for heavy ions and lighter ions.An example of SRIM’s stopping accuracy for heavy ions is shown in Fig.5.It shows the ratio of experimental stopping values to SRIM calculation for heavy ions in Al targets.(Al targets seem to be the most reliable target to make,since the data scatter about an aver-age value is the least of that for any solid).The data shown are from 135papers,and represents720data points for ion energies over 1MeV/u.There are several heavy ion data points at about 100MeV/u which show about5%higher experimental values than SRIM values.This is of the order of the estimated nuclear reaction losses,and is always a problem with very high energy ions (>10MeV/u).5.Anomalous heavy Ion stopping valuesSRIM uses several different stopping theories to evaluate the accuracy of experimental stopping powers.Specifically,calcula-tions are made for all ions in individual targets(which eliminates common difficulties with target dependent quantities such as shell corrections and mean ionization potentials,discussed above).Cal-culations are also made of one heavy ion in all solids,which elim-inates some of the difficulties with ion dependent quantities such as the degree of ion stripping.Also,calculations are made from fun-damental theories like the Brandt–Kitagawa theory and LSS theory [18].If the experimental values are within reasonable agreement with this set of theoretical calculations,then the experimental val-ues are weighted with the theoretical values to obtainfinal values. However,at times,significant errors occur in experimental stop-ping values and they deviate so far from theoretical values that they are totally ignored.Table2Bragg’s rule accuracy in heavy compounds.Compound Deviation from Bragg’s rule(%)Compound Deviation from Bragg’s rule(%)Compound Deviation from Bragg’s rule(%)Al2O3<1HfSi2<2Si3N4<2Au–Ag alloys<1NbC<2Ta2O5<1Au–Cu alloys<2NbN<2TiO2<1BaCl2<2Nb2O5<1W2N3<2BaF2<2RhSi<2WO3<2Fe2O3<1SiC<2ZnO<1Fe3O4<1Note:For compounds which contain elements with atomic numbers greater than12,it is possible to combine the CAB approach with Bragg’s rule.The CAB approach can beused for the small atomic number cores and bonds,and these can be combined with the normal stopping contribution of the other components of thecompound.Fig.5.Stopping of high energy heavy ions in aluminum.Thefigure shows the ratio of experimental stopping to SRIM calculation for high energy(>1MeV/u)ions in aluminum.The data shown is from135papers,and represents720data points over1MeV/u.The mean error is2.7%.There are several heavy ion data points at about 100MeV/u which show about5%higher experimental values than SRIM values.This is of the order of estimated nuclear reaction losses,and is always a problem with very high energy ions(>10MeV/u).A higher resolution plot is available at .1822J.F.Ziegler et al./Nuclear Instruments and Methods in Physics Research B268(2010)1818–1823Shown in Fig.6is the stopping of Mg ions in all solids.Note the large number of experimental data points below 100keV/u,which diverge from the SRIM stopping by up to 200%.For Mg ions,SRIM has an average accuracy of about 9%,the worst for any ion.Almost lost by the large number of data points which disagree with SRIM are those from seven citations which showed values almost identi-cal to SRIM.All of the deviant experimental stopping values were deter-mined by a technique called ‘‘Inverted Doppler Shift Attenuation ”,IDSA [19].This technique relies on the knowledge of the life-time of an excited nuclear state and is fraught with potential errors.The technique requires a nuclear reaction to occur in the target,result-ing in an emitted gamma ray.The gamma ray energy may be shifted due to motion of the recoiling particle.A particular source of error occurs if the differential of the particle energy loss with ion velocity changes much while the particle is slowing down.Note that in the energy range of 10–100keV/u,the energy loss is chang-ing rapidly with ion velocity,and this is where the maximum devi-ation occurs between IDSA stopping values and SRIM.As also shown,SRIM agrees well with 7papers which measured stopping using other methods.The advantage of the IDSA technique is that it can be used to determine stopping in difficult targets such as liquids and also to evaluate bonding effects in compounds.However,it is often used without full consideration of its sensitivity to non-linear effects.6.SRIM sub-routine moduleA ‘‘module”has been made so that the stopping and ranges of SRIM may be run as a batch sub-program for other applications [20].This allows the user to use SRIM as a sub-routine of another application that needs stopping powers and ranges.The user cre-ates a control file and executes the file ‘‘SRModule.exe”which will generate an output table similar to those normally made by SRIM.The user can generate the standard file (with stopping and ranges)or can generate a file which contains stopping powers for a specific list of energies.AcknowledgementsThe author is particularly indebted to the many users of SRIM who helped debug the first twenty five years of SRIM,leading to SRIM-2010.Without your significant help and enthusiasm,SRIM would not be the robust and versatile program that it is.References[1]J.F.Ziegler,J.Biersack,U.Littmark,‘‘The Stopping and Range of Ions in Matter”,Pergamon Press,1985.[2]J.F.Ziegler,J.P.Biersack,M.D.Ziegler,SRIM –The Stopping and Range of Ions inMatter”,Ion Implantation Press,2008./content/1524197.[3]See .More than 500plots are included showing more than28,000experimental data points as compared to SRIM calculations.[4]W.H.Bragg,R.Kleeman,Phil.Mag.10(1905)318.[5]A.S.Lodhi,D.Powers,Phys.Rev.A10(1974)2131.[6]D.Powers,Acc.Chem.Res.13(1980)433.[7]P.Sigmund,Phys.Rev.A26(1982)2497.[8]J.R.Sabin,J.Oddershede,Nucl.Instrum.Methods B27(1987)280.[9]G.Both,R.Krotz,K.Lohman,W.Neuwirth,Phys.Rev.A28(1983)3212.[10]The most recent core and bond values used in SRIM are shown at: n SRIM n CompoundsCABTheory.htm .The modeling technique used to extract these values was originally described in:J.F.Ziegler,J.M.Manoyan,Nucl.Instrum.Methods,B35(1988)215.[11]The data plotted in Fig.4are from papers listed at: n SRIM n Compounds.htm .This website also describes in detail how corrections are made for target phase changes (solid or gas phases)and for target compound binding.Also,citations are listed for compounds containing heavy atoms,and also the effects of variations of the target band-gap on stopping powers.[12]F.Besenbacher,J.Bottiger,O.Graversen,J.Hanse,H.Sorensen,Nucl.Instrum.Methods 188(1981)657–667.[13]D.I.Thwaites,Nucl.Instrum.Methods B12(1985)84.[14]D.I.Thwaites,Nucl.Instrum.Methods B27(1987)293.[15]W.Brandt,M.Kitagawa,Phys.Rev.25B (1982)5631.[16]N.Bohr,Mat.-Fys.Medd.K.Dan.Selse 18(1948)1.[17]J.F.Ziegler,Applied physics reviews,J.Appl.Phys.85(1999)1249–1272.[18]J.Lindhard,M.Scharff,H.E.Schiott,Kgl.Danske Vid.Sels.Mat.-Fys.Medd.33(1963)1.[19]P.Petkova, A.Dewaldb,P.von Brentano,‘‘A new procedure for lifetimedetermination using the Doppler-shift attenuation method”,Nucl.Instrum.Methods A-560(2006)564–570.[20]Details of using the Stopping and Range module are included in the SRIM-2010package.See the SRIM directory,.../SR Module/HELP SRModule.rtf.Fig.6.The stopping of Mg ions in all solids.The plot shows experimental stopping values for Mg ions in all solids.This plot shows a considerable number of data points which differ from SRIM calculations,especially for low energy ions (<100keV/u).The variation arises from the use of ‘‘Inverted Doppler Shift Attenuation”,IDSA,as a method to measure stopping powers.This technique is quite complex and relies on the knowledge of the life-time of an excited nuclear state (see text)and is fraught with potential errors.As shown,SRIM calculations are in serious disagreement with the lower energy Mg values of which were determined by IDSA,however it agrees with 7papers which measured stopping at the same energies,using other methods.A higher resolution plot is available at .J.F.Ziegler et al./Nuclear Instruments and Methods in Physics Research B 268(2010)1818–18231823。
教程#1——离子在固体中的射程、剂量及辐照损伤简述该教程将介绍如何确定离子的能量和剂量,使其注入靶后能达到我们所要求的浓度和深度。
为了说明这一点,我们以在CMOS 半导体器件中注入n 型井为例。
注入硅中的离子(即注入原子)应为n 型元素,并在表面以下约为250 nm(2500Ǻ)深处达到浓度峰值(以投影射程计)。
掺杂原子的浓度峰值为每平方厘米5×1018个离子。
尽管这看起来有些复杂(特别是如果你不是一个电气工程师的话),但它只要求磷(P )或砷(As )或锑(Sb )元素的离子被直接注入到样品的一定深度并形成一定的浓度(磷、砷和锑原子都是硅中的n 型掺杂剂)。
作为一个附加条件,我们假定注入离子(即加速器加速的粒子)的能量不超过200keV 。
【注意:TRIM 很多情况下使用Ǻ(埃)作为单位是因为其大约是固体中单层原子的厚度。
这常用于估计靶的微观损伤。
】这一系列问题将是该教程的主旨。
在阅读完本教程之后,你将能够回答将任意离子注入到任意靶材料情况下的这些问题。
确定入射离子的种类和能量● 点击桌面上的SRIM 图标● 点击Stopping and Range Tables (S&R Tables ) 首先输入离子。
开始可以点击在“ION ”旁边上的帮助按钮。
阅读后点击键关闭窗口。
为了在硅中注入形成一个n 型井,你需要从元素周期表的第五列中选择一种元素来作为杂质元素注入。
典型的掺杂元素是磷(P )、砷(As )或锑(Sb )。
我们选项居中的砷(As )开始。
要键入一种离子,点击窗口中Ion 边上的键打开元素周期表并选择As 作为入射离子。
程序将会自动填充描述入射离子性质的各种选项框。
注意到其使用的离子质量并不是砷问题: ●注入何种元素? ●需要注入多大的剂量(ions/cm 2)? ●靶在注入后是否会产生非晶化? CLOSEPT的平均原子质量,而是丰度最大的同位素(MAI )的质量。
发泡剂规格型号发泡剂是一种常见的化学品,广泛应用于建筑、汽车、家具、电器等行业。
发泡剂的规格型号是指该化学品的物理性质、化学成分、用途等方面的分类标准。
下面,我们将详细介绍发泡剂规格型号的相关知识。
一、发泡剂的物理性质发泡剂的物理性质是指该化学品的外观、密度、熔点、沸点、溶解度等方面的特征。
不同规格型号的发泡剂在这些方面会有所不同。
例如,聚氨酯发泡剂的密度通常在 1.1-1.3g/cm³之间,熔点在80-120℃之间,溶解度在水中不溶,但可在有机溶剂中溶解。
而聚苯乙烯发泡剂的密度通常在0.05-0.1g/cm³之间,熔点在100-120℃之间,溶解度在苯中可溶。
二、发泡剂的化学成分发泡剂的化学成分是指该化学品所含有的主要化学物质。
不同规格型号的发泡剂所含化学物质也会有所不同。
例如,聚氨酯发泡剂的主要成分是聚醚多元醇和异氰酸酯,而聚苯乙烯发泡剂的主要成分是聚苯乙烯。
三、发泡剂的用途发泡剂的用途是指该化学品在不同行业中所起到的作用。
不同规格型号的发泡剂适用于不同的领域和产品。
例如,聚氨酯发泡剂广泛应用于建筑保温材料、汽车座椅、家具填充材料等领域,而聚苯乙烯发泡剂则主要用于制造保温材料、包装材料等产品。
四、发泡剂规格型号的分类根据发泡剂的物理性质、化学成分和用途等方面的不同,可以将其分为多种规格型号。
以下是一些常见的发泡剂规格型号:1. 聚氨酯发泡剂:MDI型、TDI型、水性型、弹性体型、高反应型等。
2. 聚苯乙烯发泡剂:EPS型、XPS型、GPS型等。
3. 聚酯发泡剂:RIM型、SRIM型、PUF型等。
4. 聚醚醇发泡剂:PPG型、PO型等。
五、如何选择适合自己的发泡剂在选择适合自己的发泡剂时,需要考虑以下几个因素:1. 产品用途:不同产品需要使用不同的发泡剂。
2. 产品要求:不同产品对发泡剂的物理性质和化学成分有不同的要求。
3. 生产工艺:不同生产工艺对发泡剂有不同的要求。
4. 安全环保:选择符合国家环保标准和安全标准的发泡剂。
复合材料几种闭模成型工艺比较介绍及区别当前,许多国家都对生产环境苯乙烯含量的法定标准,作了严格的规定,例如,英国100ppm;法国50ppm;德国20ppm;瑞典20ppm;挪威25ppm;荷兰50ppm。
为此,积极寻找降低苯乙烯挥发量的方法,已成为玻璃钢业界的一个重要课题。
闭模工艺技术,是降低苯乙烯挥发量的一种有效手段。
本文将专门评述几种闭模工艺技术的有关方面。
玻璃钢闭模工艺技术,是指将树脂注射至闭合模内,在不暴露于外界空气情况下,完成固化过程的工艺方法。
闭模工艺技术有以下几种:真空注射,树脂传递模塑(RTM),结构反应注射模塑(SRIM),注射工艺,增强反应注射模塑(RRIM)等。
对于真空注射、RTM、SRIM等三种闭模工艺而言,设备投资以SRIM最高,其次RTM,真空注射最低。
这些工艺方法,在加工周期、自动化水平、批量大小等方面,也有一定规律性。
例如,加工周期以SRIM为最短(约8分钟左右),RTM次之(10~80分钟左右),真空注射成型最长(1个多小时至10多个小时)。
自动化水平,以SRIM为最高,它的年生产能力也最高,生产成本中所含劳动力费用最低。
上述这些工艺均采用树脂注射的方法,一个重要的区别,在于增强材料,是在闭合模具以前,还是在树脂浸渍以前,放进模具之中。
这对于控制增强材料的含量和定向排列,无疑是一个十分重要的因素RTM、SRIM 工艺,由于采用对模技术,因而对玻璃纤维含量的控制较为有利。
必须指出,当采用闭模工艺技术时,所用的树脂也是至关重要的。
通常采用真空注射专用树脂,低收缩RTM 树脂,以及混合型树脂等。
(1)真空注射模塑工艺该工艺采用树脂注射技术,并辅以真空,以有助于注射过程。
通常,有一个可变形的膜,以作为模具的另一面。
模具的一半,一般可利用手糊模具或喷射成型模具,只需稍加修改即可使用。
这种工艺不需要大量的模具或设备投资,生产批量较大产品质量较高。
真空注射模塑工艺所用的增强材料,可以是短切玻纤毡,也可以是芳纶纤维或碳纤维织物。
LCM常见工艺类型介绍LCM (Liquid Composite Molding)是指液体复合成型工艺,是一种常见的复合材料加工工艺。
在LCM中,树脂被注入到预先放置的增强材料中,并通过压力来充实并固化复合材料。
LCM具有如下几种常见的工艺类型:1. RTM(Resin Transfer Molding):RTM是LCM的一种常见工艺类型。
在RTM中,纤维增强材料事先放置在模具中,然后树脂通过压力被注入增强材料中。
RTM适用于密集纤维结构的复材制品,具有高强度和低重量的特点。
2. SRIM(Structural Reaction Injection Molding):SRIM也是LCM的一种类型。
在SRIM中,树脂与增强材料的混合物通过喷射成型进入模具中,然后在模具中发生反应,形成强化的复材产品。
SRIM适用于制造复材构件,如汽车车身等。
3. VARTM(Vacuum Assisted Resin Transfer Molding):VARTM是一种通过负压实施树脂注入的LCM工艺。
在VARTM中,纤维增强材料被放置在模具中,以后面覆盖塑料薄膜封闭并制造真空。
树脂通过负压被注入增强材料中。
VARTM是一种较为经济的工艺,适用于大型构件的生产。
4. LRI(Liquid Resin Infusion):LRI是一种注液法的LCM工艺。
在LRI中,纤维增强材料被放置在模具中,并通过真空吸出对其进行预处理。
然后,树脂通过注液法被注入增强材料中。
LRI工艺对于制造大型构件和复杂形状的产品非常适用。
这些仅是LCM工艺的一些常见类型,每种工艺都具有其独特的特点和适用范围。
通过选择合适的LCM工艺类型,可以实现高效、精确和经济的复合材料制造。
继续介绍LCM常见工艺类型:5. HP-RTM(High-Pressure Resin Transfer Molding):HP-RTM是一种高压树脂注塑成型工艺。
通过在模具中施加高压,树脂可以快速充实和固化,从而实现高强度、高精度的复合材料制品。
教程#1——离子在固体中的射程、剂量及辐照损伤简述该教程将介绍如何确定离子的能量和剂量,使其注入靶后能达到我们所要求的浓度和深度。
为了说明这一点,我们以在CMOS 半导体器件中注入n 型井为例。
注入硅中的离子(即注入原子)应为n 型元素,并在表面以下约为250 nm(2500Ǻ)深处达到浓度峰值(以投影射程计)。
掺杂原子的浓度峰值为每平方厘米5×1018个离子。
尽管这看起来有些复杂(特别是如果你不是一个电气工程师的话),但它只要求磷(P )或砷(As )或锑(Sb )元素的离子被直接注入到样品的一定深度并形成一定的浓度(磷、砷和锑原子都是硅中的n 型掺杂剂)。
作为一个附加条件,我们假定注入离子(即加速器加速的粒子)的能量不超过200keV 。
【注意:TRIM 很多情况下使用Ǻ(埃)作为单位是因为其大约是固体中单层原子的厚度。
这常用于估计靶的微观损伤。
】这一系列问题将是该教程的主旨。
在阅读完本教程之后,你将能够回答将任意离子注入到任意靶材料情况下的这些问题。
确定入射离子的种类和能量● 点击桌面上的SRIM 图标● 点击Stopping and Range Tables (S&R Tables ) 首先输入离子。
开始可以点击在“ION ”旁边上的帮助按钮。
阅读后点击键关闭窗口。
为了在硅中注入形成一个n 型井,你需要从元素周期表的第五列中选择一种元素来作为杂质元素注入。
典型的掺杂元素是磷(P )、砷(As )或锑(Sb )。
我们选项居中的砷(As )开始。
要键入一种离子,点击窗口中Ion 边上的键打开元素周期表并选择As 作为入射离子。
程序将会自动填充描述入射离子性质的各种选项框。
注意到其使用的离子质量并不是砷问题: ●注入何种元素? ●需要注入多大的剂量(ions/cm 2)? ●靶在注入后是否会产生非晶化? ? CLOSEPT的平均原子质量,而是丰度最大的同位素(MAI )的质量。