方差分析的三种变异
方差分析的三种变异
三种变异之间的关系
方差分析的基本思想
• 明确观测变量和控制变量 • 剖析观测变量的方差 • 比较观测变量总离差平方和各部分的比例
方差分析的应用条件
各样本是相互独立的随机样本; 各样本来自正态总体; 各处理组总体方差相等,即方差齐性或齐同。
二、单因素方差分析
练习
• 完成上例,并利用得到的数据进行分 析
方差分析
提纲
1 方差分析概述 2 单因素方差分析 3 多因素方差分析
协方差分析
4
一、方差分析概述
在实际中常常要了解各种因素对产品的性能、产量等的 影响.例如在化工生产中,有原料成分、催化剂、反应温度、 压力、溶液浓度、反应时间等因素(factor). 有些因素是可以控制的,可控因素所处的不同状态称为 因素的水平(level)。 方差分析正是从观测变量的方差入手,研究诸多控制变 量中哪些变量是对观测变量有显著影响的变量。对观测 变量有显著影响的各个控制变量其不同水平以及各水平 的交互搭配是如何影响观测变量的。
步骤
• 1)分析→比较均值→单因素AVONA • 2因子”框
进一步:方差齐性检验
目的:对控制变量不同水平下各观测变量总体的 方差是否相等进行分析。 实现方法:同两独立样本t检验中的方差检验
进一步:多重比较检验
目的:进一步确定控制变量的不同水平对观测变 量的影响程度如何,其中哪个水平的作用明显区 别于其他水平,哪个水平的作用是不显著的,等 等。 原假设:相应两水平下观测变量总体的均值不存 在显著差异。
目的:用来研究一个控制变量的不同水平是否对 观测变量产生了显著影响。
应用举例
某企业在制定某商品的广告策略时,对不同 广告形式在不同地区的广告效果进行了评估 。 以商品销售额为观测变量,广告形式和地区 为控制变量,利用单因素方差分析分别对广 告形式、地区对销售额的影响进行分析。