Copy of 2009-ch3
- 格式:ppt
- 大小:1.08 MB
- 文档页数:53
有机钙钛矿CH3NH3PbI3晶体的合成及表征观察1Synthesis and characterization of organic - inorganic perovskiteCH3NH3PbI3 crystalAbstractSince 2012, CH3NH3PbX3 perovskite as new photosensitive material for dye sensitized solar cells has become new research direction in the field of the solar cell materials in the world. Synthesis and characterization of CH3NH3PbI3 are studied in this paper.First of all, methyl amine and hydriodic acid solution were mixed and stirred at 0 ℃for 2h. CH3NH3I was obtained after drying the mixed solution. Then, the CH3NH3I and PbI2 were put in butyl lactone solution to form a yellow transparent solution, which was heated at 100 ℃for 15 minutes to get the desired perovskite CH3NH3PbI3. The thermogravimetric and heat change of yellow transparent solution were done by TG-DSC. The CH3NH3PbI3 crystal structure and surface morphology were characterized by X- ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that: perovskite CH3NH3PbI3 formed at temperatures less than 167 ℃and decomposed after the temperature over 167 ℃. PerovskiteCH3NH3PbI3 shows black color and the crystalline structure ofCH3NH3PbI3 at room temperature is tetragonal with unit cell parameters a=b=8.872A, c=12.637A. The perovskite CH3NH3PbI3 film has high density. Stability of perovskite CH3NH3PbI3 is poor. Black CH3NH3PbI3 in the air for a long time becomes into yellow. Instability of perovskite CH3NH3PbI3 is discussed, based on the thermodynamics关键词:P erovskite、CH3NH3PbI3、Crystalline structure、CH3NH3I目录第一章绪论 (1)§1.1钙钛矿的晶体结构 (1)§1.1.1原始钙钛矿 (1)§1.1.2有机/无机杂化晶体 (1)§1.1.3 有机/无机杂化CH3NH3PbI3的晶体结构 (2)§1.2 究背景及意义 (2)§1.2.1 CH3NH3PbX3钙钛矿电池 (2)§1.2.2 CH3NH3PbI3钙钛矿晶体 (4)§1.3 CH3NH3PbI3钙钛矿的合成 (4)§1.3.1 (4)§1.3.2 CH3NH3PbI3钙钛矿薄膜的合成方法 (5)§1.4实验的主要研究内容与目的 (5)第二章实验过程 (6)§2.1实验材料与设备 (6)§2.1.1实验材料及试剂 (6)§2.1.2实验设备 (6)§2.2 实验方法和流程 (7)§2.2.1试样准备 (8)§2.2.2 甲胺醇与氢碘酸的反应制备MAI (8)§2.2.3 MAI与碘化铅的反应制备CH3NH3PbI3 (8)§2.2.4 XRD试样制备 (8)§2.2.5 SEM试样的制备 (9)§2.2.6 TG-DSC试样的观察 (9)第三章实验结果和数据分析 (10)§3.1 TG-DSC曲线分析 (10)§3.2 XRD结果 (11)§3.3 SEM结果分析 (14)§3.4 MAPbI3稳定性观察 (15)第四章分析与讨论 (17)§4.1 MAPbI3稳定性分析 (17)§4.2 有效利用MAPbI3的几种建议 (18)结论 (19)致谢 (20)参考文献 (21)第一章绪论§1.1钙钛矿的晶体结构§1.1.1原始钙钛矿钙钛矿指CaTiO,化学式为CaTiO3、属立方晶系的氧化物。
CiclosporinGeneral Notices(Ph Eur monograph 0994)Comparison ciclosporin CRS.B. Examine the chromatograms obtained in the assay.Results The principal peak in the chromatogram obtained with the test solution is similar in retention time to the principal peak in the chromatogram obtained with reference solution (a). TESTSAppearance of solutionThe solution is clear (2.2.1) and not more intensely coloured than reference solution Y5, BY5or R7(2.2.2, Method II).Dissolve 1.5 g in anhydrous ethanol R and dilute to 15 ml with the same solvent.Specific optical rotation (2.2.7)- 185 to - 193 (dried substance).Dissolve 0.125 g in methanol R and dilute to 25.0 ml with the same solvent.Related substancesLiquid chromatography (2.2.29).Solvent mixture acetonitrile R, water R (50:50 V/V).Test solution Dissolve 30.0 mg of the substance to be examined in the solvent mixture and dilute to 25.0 ml with the solvent mixture.Reference solution (a)Dissolve 30.0 mg of ciclosporin CRS in the solvent mixture and dilute to 25.0 ml with the solvent mixture.Reference solution (b)Dilute 2.0 ml of reference solution (a) to 200.0 ml with the solvent mixture.Reference solution (c)Dissolve the contents of a vial of ciclosporin for system suitability CRS in 5.0 ml of the mobile phase.Column:— size: l = 0.25 m, Ø = 4 mm;— stationary phase: octadecylsilyl silica gel for chromatography R (3-5 µm);— temperature: 80 °C.The column is connected to the injection port by a steel capillary tube about 1 m long, having an internal diameter of 0.25 mm and maintained at 80 °C.Mobile phase phosphoric acid R, 1,1-dimethylethyl methyl ether R, acetonitrile R, water R (1:50:430:520 V/V/V/V).Flow rate 1.5 ml/min.Detection Spectrophotometer at 210 nm.Injection20 µl of the test solution and reference solutions (b) and (c).Run time 1.7 times the retention time of ciclosporin.System suitability Reference solution (c):— retention time : ciclosporin = 25 min to 30 min; if necessary, adjust the ratio of acetonitrile to water in the mobile phase; — peak-to-valley ratio : minimum 1.4, where H p = height above the baseline of the peak due to ciclosporin U and H v = height above the baseline of the lowest point of the curveseparating this peak from the peak due to ciclosporin; if necessary, adjust the ratio of 1,1-dimethylethyl methyl ether to acetonitrile in the mobile phase.Limits:— any impurity : for each impurity, not more than 0.7 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.7 per cent);— total : not more than 1.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (1.5 per cent); — disregard limit : 0.05 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.05 per cent).Heavy metals (2.4.8)Maximum 20 ppm.The residue obtained in the test for loss on drying complies with test C. Prepare the reference solution using 2 ml of lead standard solution (10 ppm Pb) R .Loss on drying (2.2.32)Maximum 2.0 per cent, determined on 1.000 g at 60 °C at a pressure not exceeding 15 Pa for 3 h.Bacterial endotoxins (2.6.14)Less than 0.84 IU/mg, if intended for use in the manufacture of parenteral dosage forms without a further appropriate procedure for the removal of bacterial endotoxins. Dissolve 50 mg of the substance to be examined in a mixture of 280 mg of ethanol (96 per cent) R and 650 mg of polyoxyethylated castor oil R and dilute to the required concentration using water for BET.ASSAYLiquid chromatography (2.2.29) as described in the test for related substances with the following modifications.Injection Test solution and reference solution (a).System suitability Reference solutions (a):— repeatability : maximum relative standard deviation of 1.0 per cent after 6 injections.Calculate the percentage content of C 62H 111N 11O 12 from the declared content of ciclosporin CRS.STORAGEIn an airtight container , protected from light. If the substance is sterile, store in a sterile, airtight, tamper-proof container.IMPURITIESA. different ciclosporins [difference with ciclosporin (R = CH3: ciclosporin A)]: ciclosporin B [7-L-Ala]; ciclosporin C [7-L-Thr]; ciclosporin D [7-L-Val]; ciclosporin E [5-L-Val]; ciclosporin G [7-(L-2-aminopentanoyl)]; ciclosporin H [5-D-MeVal]; ciclosporin L [R = H]; ciclosporin T [4-L-Leu]; ciclosporin U [11-L-Leu]; ciclosporin V [1-L-Abu],B. [6-[(2S,3R,4R)-3-hydroxy-4-methyl-2-(methylamino)octanoic acid]]ciclosporin A,C. isociclosporin A.。
、单项选择1、纸质信息源的载体是(纸张)2、逻辑“与”算符是用来组配(不同检索概念,用于缩小检索范围)。
3、关于搜索引擎的查询规则,正确的是:(D )A. 引号(“”)的作用是括在其中的多个词被当作一个固定短语来检索。
B. 标题检索是在网页标题中查找输入的检索词,其命令一般用“ title ”,其格式为title :检索式。
C. 站点检索是在网站地址域名中检索输入的词,其命令一般用“ host ”,其格式为host :检索式。
D. 以上都正确。
4、以作者本人取得的成果为依据而创作的论文、报告等,并经公开发表或出版的各种文献,称为(一次文献. )5、中国国家标准的代码是(GB )6、根据国家相关标准,文献的定义是指“记录有关(知识)的一切载体。
”7、利用文献后面所附的参考文献进行检索的方法称为(追溯法)。
8、如果检索结果过少,查全率很低,需要调整检索范围,此时调整检索策略的方法有(用逻辑“或” 或截词增加同族概念)等9、数据检索以特定的数值为检索对象, 它包括(数据、图表、公式)10、《中国学术期刊全文数据库》的词频控制应在(文摘、全文等字段检索所得的文献量过大)场合下使用11、如果打算了解最新即时的专业学术动态,一般可参考(专业学会网站)12、(雅虎)属于目录引擎。
13、搜索含有“ data bank ” 的PDF文件,正确的检索式为:("data bank" filetype:pdf )14、就课题“查找‘钱伟长论教育' 一文他人引用情况而言” ,选择(中国知网中的中国引文数据库),可以得到相关的结果。
15、要从事物名称角度全面地查找互联网上的信息,可使用(主题)搜索引擎。
16、(主题检索途径)是指通过文献信息资料的主题内容进行检索的途径。
17、《中国期刊网CNK》〉是(全文数据库)数据库。
18、要查找李平老师所发表的文章,首选途径为(著者途径)19、关于搜索引擎的一般查询规则,不恰当的是:(截词符通常用星号(*)表示,一般只用在词的前面。
13、经典的热爆炸理论(3. Thermal Theory of Classical Explosion )(12h 左右)3.1 概况[回顾一下第二章的内容: ● 能量守恒方程的一般形式:tTc q T v∂∂='''+∇σλ2 ● 温度梯度的散度22222222zTy T x T T ∂∂+∂∂+∂∂=∇(直角坐标)三维坐标: 2222222211zTT r r T r r T T ∂∂+∂∂+∂∂+∂∂=∇ϕ(柱坐标) 222222222221tan 1sin 12ψψψϕψ∂∂+∂∂+∂∂+∂∂+∂∂=∇Tr T r T r r T r r T T (球坐标) 一维坐标的通式: )(12r Tr r r T j j ∂∂∂∂=∇ ● 能量守恒方程通式: tTc q r T r r r v j j ∂∂='''+∂∂∂∂σλ)(1—非稳定态(ign t ,T -t )● 热平衡方程0)(1='''+∂∂∂∂q r Tr rr j j λ—稳定态(临界性参数)]经典热爆炸理论 Semenov Sys. 1928Frank-Kamenetskii Sys. 1939 Thomas Sys. 1958A类形状:一维简单规则形状(one dimensional, simple, regular shape)无限大平板无限长柱球j)2j j为几何因子(=(=j)1)0(=三大经典系统的特点:343.2 均温系统热爆炸(Semenov Sys.) 3.2.1 基本方程 ● 基本方程 tTc q r T r r r j j ∂∂='''+∂∂∂∂v)(1σλ(单位体积) ● 体系的热产生速率G q(T ): RT E m n e AT VQc q V T q/G )(-='''= (3.2.1) G q 与T 成指数关系 ● 通过界面交换的热量即系统散消于环境中的热量服从Newton 冷却定律:)()(L a T T S T q-=χ (3.2.2) L q 与T 成线性关系 把式(3.2.1)和(3.2.2)代入基本方程中有tTc V T T S e AT VQc va RT E m n ∂∂=---σχ)(/ (3.2.3)50)(/=---a RT E m n T T S e AT VQc χ将G q(T )和L q (T )作在一张图中,此图称热图图3.1 热图crT a,cr6散热与放热分析—热图(1) 热平衡(热守恒):散热速率=放热速率(A,B,C 点均满足热平衡条件;A 稳定平衡点、B 不稳定平衡点(不存在)、C 点临界点;(2) 当G q(T )大于L q (T ), 放热曲线总在散热直线上方,热失衡(热积累(↑T )—自燃, 即结果朝着图中的右上方两个箭头方向发展,最终导致爆炸发生;(3) 当G q(T )小于L q (T ), 在A,B 之间,热散失在放热曲线上方,由于散热快而↓T —)最终与放热速率相等,达到新的热平衡点A 点,不发生爆炸,称A 点为稳定平衡点(解释原因); (4) 当放热曲线与散热直线相切时,此系统处于临界热平衡状态(临界状态):热平衡点存在与不存在的界限, 称临界点(相切),相应的状态称为临界状态;(5) 临界条件: 当G q(T )等于L q (T ), 且热产生与热散失速率曲线相切时, 切点满足的条件,即临界条件7⎪⎩⎪⎨⎧==⋅⋅⋅⋅dT q d dT q d q q //L G LG (3.2.4) (6)临界环境温度:cr ,a T 即系统处于临界状态时对应的环境温度。
第52卷第11期2023年11月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.52㊀No.11November,2023Sn 基CH 3NH 3SnI 3钙钛矿太阳能电池性能计算与优化王传坤,陆成伟,欧阳雨洁,张胜军,郝艳玲(兴义民族师范学院物理与工程技术学院,兴义㊀562400)摘要:Sn 基钙钛矿材料因其无毒㊁较宽带隙和热稳定性成为太阳能电池研究领域的热点㊂本文利用SCAPS-1D 软件构建了结构为FTO /TiO 2/CH 3NH 3SnI 3/Spiro-OMeTAD /Ag 钙钛矿太阳能电池并对其相关性能进行了数值计算㊂研究了钙钛矿光吸收层厚度㊁空穴传输层厚度㊁空穴传输层和钙钛矿光吸收层间面缺陷,以及工作温度对器件性能的影响,然后对器件性能进行优化㊂经优化后,钙钛矿太阳能电池的光电转换效率为30.955%㊂通过理论分析进一步为提高钙钛矿太阳能电池的光电转换效率提供了新的思路㊂关键词:钙钛矿太阳能电池;吸收层;界面层缺陷密度;光电转换效率;数值模拟;CH 3NH 3SnI 3中图分类号:TM914.4㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2023)11-2076-09Optimization and Numerical Simulation of Sn-Based CH 3NH 3SnI 3Perovskite Solar CellWANG Chuankun ,LU Chengwei ,OUYANG Yujie ,ZHANG Shengjun ,HAO Yanling (School of Physics and Engineering Technology,Minzu Normal University of Xingyi,Xingyi 562400,China)Abstract :With non-toxic nature,wide bandgap,and thermal stability,Sn-based perovskite materials have become a hot topic in the field of perovskite solar cell research.In this paper,the SCAPS-1D software was used to construct the FTO /TiO 2/CH 3NH 3SnI 3/Spiro-OMeTAD /Ag perovskite solar cells and the performances of the constructed cells were calculated.The effects of the thickness of absorption and hole buffer layer,the surface defects between hole buffer layer andabsorption layer,and the operating temperature on the device performance were studied,then the device performance was optimized.The photoelectric conversion efficiency of the optimized perovskite solar cell is 30.955%.The theoretical analysis suggests a new approach for enhancing the photoelectric conversion efficiency of perovskite solar cells.Key words :perovskite solar cell;absorption layer;interfacial defect density;photoelectric conversion efficiency;numerical simulation;CH 3NH 3SnI 3㊀㊀收稿日期:2023-05-11㊀㊀基金项目:兴义民族师范学院科研项目(21XYZD09,21XYZJ05,19XYJS05);黔西南州科技局科技计划(2021-2-37);贵州省教育厅拔尖人才项目(黔科教[2022]094);大学生创新创业训练课题(202210666116);兴义民族师范学院博士科研基金(23XYBS17)㊀㊀作者简介:王传坤(1985 ),男,安徽省人,博士,教授㊂E-mail:kunwang_xy@ 0㊀引㊀㊀言太阳能是取之不尽㊁用之不竭的清洁能源㊂太阳能电池利用太阳能辐射进行发电,是化石能源的理想替代者[1-3]㊂钙钛矿材料带隙易于调节㊁载流子迁移率较高,同时具有较宽的光谱吸收范围和较小的载流子复合率等特点[4-6],使得钙钛矿太阳能电池成为研究的热点㊂钙钛矿材料的化学通式可以用ABX 3表示,其中A 一般是CH 3NH 3离子,B 是Pb㊁Sn 或Ge 等离子,X 是Cl㊁Br 或I 离子等㊂2009年,Kojima 等[7]首次采用钙钛矿材料CH 3NH 3PbI 3作为光吸收层制备了钙钛矿太阳能电池,其光电转换效率为3.8%㊂随着制备工艺和新材料的不断出现,钙钛矿太阳能电池的光电转换效率得到大幅提升㊂目前,钙钛矿太阳能电池的光电转换效率已经超过了25%[8],但与无机太阳能电池相比,钙钛矿太阳能电池的光电转换效率依然具有提升空间㊂㊀第11期王传坤等:Sn 基CH 3NH 3SnI 3钙钛矿太阳能电池性能计算与优化2077㊀钙钛矿太阳能电池典型的结构是p-i-n 异质结构,其结构主要包括空穴传输层㊁钙钛矿光吸收层和电子传输层㊂空穴传输层和电子传输层在钙钛矿太阳能电池中具有重要的作用㊂钙钛矿光吸收层吸收光子并产生电子-空穴对,在内建电场的作用下,空穴和电子通过相应的渠道传输到电极并形成电流㊂因此,载流子运输通道对钙钛矿太阳能电池的光电转换效率起到重要的作用㊂空穴传输层材料包括有机空穴传输层材料如Spiro-OMeTAD㊁PEDOTʒPSS 及P3HT 等[9-11],无机空穴传输层材料包括CuSCN㊁Cu 2O㊁CuO㊁CuI㊁SrCu 2O 2㊁CulnSe 2㊁NiO [12-13]等㊂Spiro-OMeTAD 是最常用的空穴传输层材料,该材料具有较小的分子量,同时具有较好的导电性㊂利用其制备的钙钛矿太阳能电池具有较高的光电转换效率[9]㊂电子传输层材料包括TiO 2㊁ZnO 和PCBM 等[14-16]㊂TiO 2是一种重要的电子传输层材料,该材料具有较高的电子迁移率㊁带隙较小㊁化学性质稳定㊁合成成本较低,以及对环境友好等特点[17]㊂同时,TiO 2的带隙比CH 3NH 3PbI 3带隙低0.3eV㊂因此,TiO 2材料更有利于电子从钙钛矿光吸收层进入电子传输层,进而提高钙钛矿太阳能电池的光电转换效率㊂钙钛矿材料CH 3NH 3PbI 3含有毒的Pb 离子,该材料阻碍了钙钛矿太阳能电池的商业化发展,为了克服钙钛矿太阳能电池的毒性并使得钙钛矿太阳能电池具有较好的商业利用价值,必须寻找一种合适的离子替代Pb 离子㊂锡(Sn)和Pb 元素在同一主族,具有类似的化学性质㊂因此,可以用Sn 代替钙钛矿层中的Pb㊂CH 3NH 3SnI 3材料的带隙约为1.3eV,该材料的带隙明显小于CH 3NH 3Pb 3材料的带隙(~1.6eV)[18-19]㊂因此,CH 3NH 3SnI 3材料能在可见光范围内吸收更多的光子,进而提高钙钛矿太阳能电池的光电转换效率㊂Patel 等[20]利用SCAPS-1D 软件计算了CH 3NH 3SnI 3作为钙钛矿光吸收层时的钙钛矿电池的性能㊂该器件的短路电流密度(J sc )为40.14mA/cm 2,开路电压(V oc )为0.93V,填充因子(FF)㊁光电转换效率(PCE)分别为75.78%㊁28.39%㊂Mottakin 等[21]利用SCAPS-1D 软件设计了FTO /PCBM /CH 3NH 3SnI 3/CuO 结构的钙钛矿太阳能电池㊂经优化,该器件的光电转换效率为25.45%㊂Imani 等[12]研究了不同无机Cu 基空穴传输层的Sn 基钙钛矿太阳能电池,结果表明CuI 作为空穴传输层的钙钛矿太阳能电池的光电转换效率最高为32.13%㊂Kanoun 等[22]利用Spiro-OMeTAD 作为空穴传输层,研究表明钙钛矿太阳能电池器件的光电转换效率为18.28%㊂Hunde 等[23]研究了TiO 2作为电子传输层㊁CH 3NH 3Pb 3作为光吸收层和Spiro-OMeTAD 作为空穴传输层的钙钛矿太阳能电池的性能,计算结果表明,该器件最大的光电转换效率为20.42%㊂因此,钙钛矿太阳能电池的理论计算是一种优化太阳电池的参数和提高太阳能电池效率的合理方法㊂许多研究者利用SCAPS-1D 软件研究太阳能电池的开路电压㊁短路电流密度㊁填充因子和光电转换效率㊂本文利用SCAPS-1D 软件设计了基于无铅光吸收层FTO /TiO 2/CH 3NH 3SnI 3/Spiro-OMeTAD /Ag 钙钛矿太阳能电池结构并对该器件性能进行计算㊂研究钙钛矿光吸收层厚度㊁空穴传输层厚度㊁空穴传输层和钙钛矿光吸收层间缺陷及工作温度对FF㊁J sc ㊁PCE㊁V oc 和量子效率(QE)影响㊂优化后FTO /TiO 2/CH 3NH 3SnI 3/Spiro-OMeTAD /Ag 结构的钙钛矿太阳能电池的光电转换效率为30.955%㊂1㊀物理模型和材料参数研究表明,SCAPS-1D 软件设计的太阳能电池结构可以含有7层不同材料层㊂该软件通过基本半导体方程如泊松方程㊁空穴和电子方程得到太阳能电池的电流-电压特性曲线,光电转化曲线㊁光谱响应曲线,以及开路电压㊁短路电流密度㊁填充因子等参数㊂通过理论计算为进一步分析太阳能电池的各项性能提供理论参考㊂三个基本半导体方程如公式(1)~(3)所示㊂-∂∂x ε(x )∂V ∂x ()=q [p (x )n (x )+N +D (x )-N -A (x )+P t (x )-N t (x )](1)式中:V 是静电势,q 是电荷量,N D 和N A 分别为供体和受体密度,P t 和N t 分别为空穴和电子浓度㊂∂p ∂t =1q ∂J p ∂x +G p -R p (2)式中:J p 是空穴电流密度,G p 是空穴产生率,R p 是空穴复合率㊂∂n ∂t =1q ∂J n ∂x+G n -R n (3)2078㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷式中:J n是电子电流密度,G n是电子产生率,R n是电子复合率㊂电子传输方程可以利用式(4)表示㊂L n,p=㊀KB T q()μnpτnp(4)式中:L n,p是载流子的扩散长度,K B是玻尔兹曼常量,μnp是载流子迁移率,τnp是载流子寿命㊂开路电压可以用式(5)表示㊂V oc=ηK B T q ln I L I0+1()[](5)式中:V oc是开路电压,η是理想因子,I L是光照产生的电流,I0是反向饱和电流㊂在研究过程中,钙钛矿太阳能电池结构设定为FTO/TiO2/CH3NH3SnI3/Spiro-OMeTAD/Ag,如图1(a)所示㊂FTO是光透射率较高导电玻璃(FʒSnO2),同时该材料也作为阳电极,TiO2和Spiro-OMeTAD分别是电子传输层和空穴传输层㊂CH3NH3SnI3是钙钛矿材料光吸收层材料㊂TiO2㊁CH3NH3SnI3和Spiro-OMeTAD材料的能级如图1(b)所示,各层材料的计算参数如表1所示㊂其中,E g为材料带隙,χ为电子亲和势,εr为相对介电常数,N c和N v分别是有效导带密度和有效价带密度,μe和μp是电子迁移率和空穴迁移率㊂除表1中给出的相关参数外,材料各层所有缺陷态均为高斯,空穴传输层和电子传输层与钙钛矿材料之间的界面缺陷选择选择中间间隙,特征能量为0.6eV㊂图1㊀钙钛矿太阳能电池结构(a)和能级示意图(b)Fig.1㊀Structure of perovskite solar cell(a)and schematic illustration of energy level(b)表1㊀模拟器件中输入的参数Table1㊀Input parameters in the simulating devicesParameter Spiro-OMeTAD[24-25]CH3NH3SnI3[10-12]TiO2[25]FTO[26]d/μm0.10.50.20.1E g/eV3 1.3 3.2 3.5χ/eV 2.2 4.1744εr 3.08.299N c/cm-32ˑ10182ˑ1018 2.2ˑ1018 2.2ˑ1018N v/cm-3 1.8ˑ10191ˑ10191ˑ1019 1.9ˑ1019μe/(cm2㊃V-1㊃s-1)1ˑ1071ˑ1071ˑ1071ˑ107μn/(cm2㊃V-1㊃s-1)2ˑ10-4 1.6220μp/(cm2㊃V-1㊃s-1)2ˑ10-4 1.6180 N D/cm-3001ˑ10181ˑ1018N A/cm-32ˑ1019 1.3ˑ101700N t/cm-31ˑ10151ˑ10141ˑ10151ˑ1015㊀第11期王传坤等:Sn 基CH 3NH 3SnI 3钙钛矿太阳能电池性能计算与优化2079㊀2㊀结果与讨论根据表1给出的各层材料的参数如空穴传输层厚度为0.1μm,CH 3NH 3SnI 3厚度为0.5μm,温度T =300K时,利用SCAPS-1D 软件计算了未优化时钙钛矿太阳能电池光伏曲线和量子效率如图2所示㊂光照AM1.5时,钙钛矿太阳能电池的光伏曲线如图2(a)所示㊂从图2(a)可以看出钙钛矿太阳能电池具有良好的光伏特性㊂钙钛矿太阳能电池的开电路电压V oc 为1.025V,短路电流密度J sc 为32.782mA /cm 2,填充因子FF 为86.430%,光电转换效率PCE 为29.040%㊂图2(b)给出的是钙钛矿太阳能电池的量子效率QE 随波长变化曲线㊂从图2(b)可以看出,当波长为300nm 时,量子效率QE 约为60%,波长在300~430nm 处,量子效率QE 随着波长的增加而增加,最大量子效率QE 接近100%;波长在430~650nm 的量子效率QE 随着波长的增加而逐渐减小,但均在80%以上;当波长为650~960nm 时,钙钛矿太阳能电池的量子效率QE 随着波长的增加而降低㊂因此,钙钛矿太阳能电池在可见光区域具有较强的吸收率㊂图2㊀未优化的钙钛矿太阳能电池光伏曲线(a)和量子效率(b)Fig.2㊀I -V curve (a)and quantum efficiency (b)of unoptimized perovskite solar cells 研究表明,钙钛矿光吸收层厚度对钙钛矿太阳能电池的性能具有较大的影响㊂较厚钙钛矿光吸收层能够吸收更多的光子进而转化成电子和空穴㊂但随着钙钛矿光吸收层厚度的增加,电子和空穴传输路径也进一步地增加,从而会引起钙钛矿太阳能电池电子和空穴复合率的增加[14,27]㊂因此,优化钙钛矿光吸收层厚度对提高钙钛矿太阳能电池的光电转换效率具有重要的影响㊂本文进一步研究了在0.1~1.5μm 时,钙钛矿光吸收层材料CH 3NH 3SnI 3厚度对钙钛矿太阳能电池的性能的影响,如图3所示㊂从图3可以看出,钙钛矿光吸收层厚度对钙钛矿太阳能电池的开路电压影响较小,但对短路电流影响较大㊂开路电压㊁短路电流密度㊁填充因子和光转换效率随钙钛矿光吸收层厚度的变化关系如图4所示㊂从图4(a)可以看出,随着钙钛矿光吸图3㊀钙钛矿太阳能电池光伏曲线随光吸收层材料厚度变化曲线Fig.3㊀I -V curves of perovskite solar cells with absorber thickness 收层厚度的增加,开路电压逐渐减小㊂从公式(5)可以看出,开路电压的减小可能与饱和电流的增加(增加了电子-空穴对的复合)及光产生电流和暗饱和电流有关㊂随着钙钛矿光吸收层CH 3NH 3SnI 3厚度的增加,钙钛矿光吸收层能够吸收更多的光子,引起短路电流的增加,但是随着钙钛矿光吸收层厚度的增加,电子和空穴的扩散长度也随之增加,从而会在钙钛矿太阳能电池内部引起较大的复合率,进而导致短路电流减小㊂从图4(b)~(d)可以看出,当钙钛矿光吸收层为0.1~0.8μm 时,短路电流密度㊁填充因子和光电转换效率随着钙钛矿光吸收层厚度的增加而增加㊂当钙钛矿光吸收层为0.8~1.5μm 时,短路电流密度㊁填充因子和光电转换效率几乎趋近于饱和㊂2080㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷图4㊀钙钛矿太阳能电池性能参数随光吸收层厚度变化曲线Fig.4㊀Variation curves of the perovskite solar cells performance parameters with absorber thickness 空穴传输层位于钙钛矿光吸收层和金属电极之间,能有效减小电子和空穴的复合率,在钙钛矿太阳能电池中起到重要作用㊂同时,空穴传输层有利于收集钙钛矿材料中的空穴并将其转移到金属电极上[12]㊂计算过程中采用Spiro-OMeTAD 作为空穴传输层材料,该材料的相关参数如表1所示㊂钙钛矿太阳能电池性能随空穴传输层厚度的变化关系如图5所示㊂从图5(a)可以看出,当Spiro-OMeTAD 厚度小于0.1μm 时,随着空穴传输层材料Spiro-OMeTAD 厚度的增加,钙钛矿太阳能电池的开路电压具有减小的趋势,当Spiro-OMeTAD 厚度为1~1.5μm 时,开路电压先增加,然后趋于平稳,最后呈现减小的趋势㊂短路电流密度㊁填充因子和光电转换效率随着空穴传输层Spiro-OMeTAD 厚度的增加而线性减小㊂这是由于空穴传输层厚度增加时,电子和空穴的移动距离会增加,进一步增加了电子和空穴对的复合率㊂若空穴传输层厚度太薄,也会引起空穴和电子的复合率增加㊂因此,通过理论计算可知,该器件空穴传输层最佳厚度为0.1μm㊂光吸收层和空穴传输层界面间缺陷对钙钛矿太阳能电池的性能具有重要影响㊂因此,选择光吸收层和空穴传输层界面间缺陷变化范围为1ˑ106~1ˑ1013cm -2,研究了光吸收层和空穴传输层界面间缺陷对器件性能的影响㊂开路电压㊁电流密度㊁填充因子和转换效率随光吸收层和空穴传输层界面间缺陷的变化关系如图6所示㊂从图6可以看出,当光吸收层和空穴传输层界面间缺陷变化范围为1ˑ106~1ˑ1010cm -2时,开路电压㊁电流密度㊁填充因子和光电转换效率几乎不变㊂当光吸收层和空穴传输层界面间缺陷大于1ˑ1010cm -2时,开路电压㊁电流密度㊁填充因子及转换效率随界面缺陷的增加而降低,且降低趋势逐渐增大㊂根据公式τnp =1σnp νth N t 和l =㊀Dτ,其中σnp 是捕获电子空穴能力,νth 是电子-空穴热速度,D 是扩散系数,l 是扩散长度㊂从以上公式可以看出,随着界面缺陷的增加,电子和空穴复合率进一步增加,载流子扩散长度减小,从而减少了载流子的数量并增大反向饱和电流[28-29]㊂因此,钙钛矿太阳能电池的光电性能受光吸收层和空穴传输层界面间缺陷的影响㊂㊀第11期王传坤等:Sn基CH3NH3SnI3钙钛矿太阳能电池性能计算与优化2081㊀图5㊀钙钛矿太阳能电池性能参数随空穴传输层厚度变化曲线Fig.5㊀Variation curves of the perovskite solar cells performance parameters with hole transport thickness图6㊀钙钛矿太阳能电池性能参数随界面缺陷的变化Fig.6㊀Variation curves of the perovskite solar cells performance parameters with interface defect density2082㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷㊀㊀进一步探究了工作温度对钙钛矿太阳能电池的开路电压㊁电流密度㊁填充因子和转换效率的影响,如图7所示㊂在实际应用中钙钛矿太阳能电池的工作温度一般在300K左右㊂一般情况下,工作温度过高或过低都会影响太阳能电池的性能,温度过高会导致材料界面的缺陷产生更大的应力,以及引起钙钛矿材料发生畸变,从而造成钙钛矿太阳能的光电转换效率降低㊂研究发现,随着界面缺陷的增加也会导致材料中空穴和电子的复合率的增加,但电子和空穴的扩散长度减小,进而导致光电转换效率和开路电压随着温度的增加而降低[12]㊂通过计算发现,当温度T=280K时,该器件的填充因子最大㊂但短路电流密度随着温度的增加略微增加㊂由于材料的带隙㊁载流子迁移率等受到温度的影响,随着温度的增加,在材料的界面层之间可能会产生更多的载流子进而减少载流子的复合,从而增加了短路电流密度㊂通过计算发现该器件在温度T=260K 时获得最大的光电转换效率㊂图7㊀钙钛矿太阳能电池性能参数随温度变化曲线Fig.7㊀Variation curves of the perovskite solar cells performance parameters with temperature图8㊀优化的钙钛矿太阳电池光伏曲线(a)和量子效率(b)Fig.8㊀I-V curve(a)and quantum efficiency(b)of optimized perovskite solar cells㊀第11期王传坤等:Sn基CH3NH3SnI3钙钛矿太阳能电池性能计算与优化2083㊀由以上讨论可知,当钙钛矿光吸收层厚度为0.8μm,空穴传输层厚度为0.1μm,空穴传输层和钙钛矿光学吸收层之间的面缺陷为1ˑ1010cm-2,温度为260K,其他计算参数不变时,钙钛矿太阳能电池获得最佳的性能㊂经优化的钙钛矿太阳能电池的光伏曲线如图8(a)所示㊂优化后钙钛矿太阳能电池的开路电压略有提高,短路电流密度提高了约为3.2%,但填充因子和未优化器件相比则变小㊂开路电压和短路电流密度的增加,导致器件的光电转换效率增加㊂然而,与未优化器件的量子效率相比,优化后器件的量子效率在可见光范围内明显提高,从而导致器件能够吸收更多的光子并转变成电子,进一步提高了钙钛矿太阳能电池的性能㊂3㊀结㊀㊀论利用SCAPS-1D软件构建了TCO/TiO2/CH3NH3SnI3/Spiro-OMeTAD/Ag钙钛矿太阳能电池并研究其光电性能㊂分析了钙钛矿光吸收层厚度㊁空穴传输层厚度㊁空穴传输层和钙钛矿光学吸收层之间的面缺陷以及温度对器件性能的影响,最后对器件进行优化㊂研究表明,当钙钛矿光吸收层厚度为0.8μm㊁空穴传输层厚度为0.1μm㊁空穴传输层和钙钛矿光学吸收层之间的面缺陷为1ˑ1010cm-2㊁温度T=260K时,钙钛矿太阳能电池的性能最佳,其开路电压㊁短路电流密度㊁填充因子和光电转换效率为1.063V㊁33.900mA/cm2㊁85.893%和30.955%㊂通过本文的研究进一步为实验提供了理论参考㊂参考文献[1]㊀RONG Y G,HU Y,MEI A Y,et al.Challenges for commercializing perovskite solar cells[J].Science,2018,361(6408):eaat8235.[2]㊀JUNG H S,PARK N G.Perovskite solar cells:from materials to devices[J].Small,2015,11(1):10-25.[3]㊀WU T H,QIN Z Z,WANG Y B,et al.The main progress of perovskite solar cells in2020-2021[J].Nano-Micro Letters,2021,13(1):152.[4]㊀ALLA M,MANJUNATH V,CHAWKI N,et al.Optimized CH3NH3PbI3X Cl X based perovskite solar cell with theoretical efficiency exceeding30%[J].Optical Materials,2022,124:112044.[5]㊀JAISWAL R,RANJAN R,SRIVASTAVA N,et al.Numerical study of eco-friendly Sn-based perovskite solar cell with25.48%efficiency usingSCAPS-1D[J].Journal of Materials Science:Materials in Electronics,2023,34(8):753.[6]㊀LUO W,XU J X,LIU S Y.Optimization of all-inorganic CsPbI3-based inverted perovskite solar cells by numerical simulation[J].Journal ofElectronic Materials,2023,52(3):2216-2226.[7]㊀KOJIMA A,TESHIMA K,SHIRAI Y,et anometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of theAmerican Chemical Society,2009,131(17):6050-6051.[8]㊀GREEN M A,DUNLOP E D,HOHL-EBINGER J,et al.Solar cell efficiency tables(Version58)[J].Progress in Photovoltaics:Research andApplications,2021,29(7):657-667.[9]㊀NAKKA L,CHENG Y H,ABERLE A G,et al.Analytical review of spiro-OMeTAD hole transport materials:paths toward stable and efficientperovskite solar cells[J].Advanced Energy and Sustainability Research,2022,3(8):2200045.[10]㊀MEHRABIAN M,AFSHAR E N,AKHAVAN O.TiO2and C60transport nanolayers in optimized Pb-free CH3NH3SnI3-based perovskite solarcells[J].Materials Science and Engineering:B,2023,287:116146.[11]㊀ZHOU P,BU T L,SHI S W,et al.Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer[J].Journal ofMaterials Chemistry C,2018,6(21):5733-5737.[12]㊀IMANI S,SEYED-TALEBI S M,BEHESHTIAN J,et al.Simulation and characterization of CH3NH3SnI3-based perovskite solar cells withdifferent Cu-based hole transporting layers[J].Applied Physics A,2023,129(2):1-13.[13]㊀ISLAM M B,YANAGIDA M,SHIRAI Y,et al.NiO x hole transport layer for perovskite solar cells with improved stability and reproducibility[J].ACS Omega,2017,2(5):2291-2299.[14]㊀ALLA M,BIMLI S,MANJUNATH V,et al.Towards lead-free all-inorganic perovskite solar cell with theoretical efficiency approaching23%[J].Materials Technology,2022,37(14):2963-2969.[15]㊀BOUAZIZI S,TLILI W,BOUICH A,et al.Design and efficiency enhancement of FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au perovskitesolar cell utilizing SCAPS-1D Simulator[J].Materials Research Express,2022,9(9):096402.[16]㊀ZHANG P,WU J A,ZHANG T,et al.Perovskite solar cells with ZnO electron-transporting materials[J].Advanced Materials,2018,30(3):1703737.[17]㊀LU H,TIAN W,GU B K,et al.TiO2electron transport bilayer for highly efficient planar perovskite solar cell[J].Small,2017,13(38):1701535.[18]㊀SINGH A K,SRIVASTAVA S,MAHAPATRA A,et al.Performance optimization of lead free-MASnI3based solar cell with27%efficiency by2084㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷numerical simulation[J].Optical Materials,2021,117:111193.[19]㊀HAO F,STOUMPOS C C,CAO D H,et al.Lead-free solid-state organic-inorganic halide perovskite solar cells[J].Nature Photonics,2014,8(6):489-494.[20]㊀PATEL P K.Device simulation of highly efficient eco-friendly CH3NH3SnI3perovskite solar cell[J].Scientific Reports,2021,11:3082.[21]㊀MOTTAKIN M,SOBAYEL K,SARKAR D,et al.Design and modelling of eco-friendly CH3NH3SnI-3based perovskite solar cells with suitabletransport layers[J].Energies,2021,14(21):7200.[22]㊀KANOUN A A,KANOUN M B,MERAD A E,et al.Toward development of high-performance perovskite solar cells based on CH3NH3GeI3using computational approach[J].Solar Energy,2019,182:237-244.[23]㊀HUNDE B R,WOLDEYOHANNES A D.Performance analysis and optimization of perovskite solar cell using SCAPS-1D and genetic algorithm[J].Materials Today Communications,2023,34:105420.[24]㊀BHATTARAI S,DAS T D.Optimization of carrier transport materials for the performance enhancement of the MAGeI3based perovskite solar cell[J].Solar Energy,2021,217:200-207.[25]㊀KUMAR M,RAJ A,KUMAR A,et putational analysis of bandgap tuning,admittance and impedance spectroscopy measurements inlead-free MASnI3perovskite solar cell device[J].International Journal of Energy Research,2022,46(8):11456-11469.[26]㊀SLAMI A,BOUCHAOUR M,MERAD L.Numerical study of based perovskite solar cells by SCAPS-1D[J].International Journal of Energy andEnvironment,2019,3:17-21.[27]㊀ALIAGHAYEE M.Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response usingSCAPS-1D[J].Journal of Electronic Materials,2023,52(4):2475-2491.[28]㊀MOHANTY I,MANGAL S,SINGH U P.Defect optimization of CZTS/MASnI3heterojunction solar cell yielding30.8%efficiency[J].Journalof Electronic Materials,2023,52(4):2587-2595.[29]㊀MUSHTAQ S,TAHIR S,ASHFAQ A,et al.Performance optimization of lead-free MASnBr3based perovskite solar cells by SCAPS-1D devicesimulation[J].Solar Energy,2023,249:401-413.。