刚体定轴转动 大学物理习题答案
- 格式:pdf
- 大小:425.21 KB
- 文档页数:3
第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。
解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。
解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。
解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。
解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。
解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。
第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。
二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。
第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为 ()75.03.060/2300021⨯π⨯π⨯===r r t B A βωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt 22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t M A d = J A (J A +J B ) = -4.19×10 2N ·m ·s 负号表示与A ω方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ω相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()222220212121BRmJmgRJ v++=+ωωω②式中v B表示小球在B点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J0ω 0 / (J0 + mR2) 1分代入式②得2222Jm RRJgRB++=ωv当小球滑到C点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C的动能完全由重力势能转换而来.即:()RmgmC2212=v, gRC4=v四研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2、(本题3分)0165均匀细棒OA 可绕通过某一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的? [ A ](A )角速度从小到大,角加速度从大到小。
(B )角速度从小到大,角加速度从小到大。
(C )角速度从大到小,角加速度从大到小。
(D )角速度从大到小,角加速度从小到大。
3. (本题3分)5640一个物体正在绕固定的光滑轴自由转动,则 [ D ] (A ) 它受热或遇冷伸缩时,角速度不变. (B ) 它受热时角速度变大,遇冷时角速度变小. (C ) 它受热或遇冷伸缩时,角速度均变大. (D ) 它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ] (A )刚体不受外力矩的作用。
第2 章 刚 体 定 轴 转 动一、选择题1(B), 2(B), 3(A), 4(D), 5(C), 6(C), 7(C),8(C), 9(D), 10(C) 二、填空题(1). v ≈ 15.2 m /s , n 2= 500 rev /min(2). 62.5 1.67s(3). g / l g / (2 l )(4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg · m 2(7).1 Ma21mgl 参考解: M =l1 mgl(8).d M =gm / l r d r22(9).J mr 2 1JmR2( 10). 3g sin / l三、计算题1. 有一半径为 R 的圆形平板平放在水平桌面上, 平板与水平桌面的摩擦系数为 μ,若平板绕通过其中心且垂直板面的固定轴以角速度 ω0 开始旋转, 它将在旋转几圈后停止? (已知圆形平板的转动惯量 J1mR 2 ,其中 m 为圆形平板的质量)2解:在 r 处的宽度为 d r 的环带面积上摩擦力矩为R2mgR总摩擦力矩MdM3故平板角加速度 =M /J设停止前转数为 n ,则转角 = 2 n由 224 Mn / J可得nJ 02 3R2/16π g4 M2. 如图所示,一个质量为 m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与 定滑轮之间无滑动. 假设定滑轮质量为M 、半径为 ,其转动惯量为 12 ,滑轮轴光滑. 试 RMR2求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程 对物体:对滑轮:mg - TTR = J= ma ①②运动学关系:a = R ③将①、②、③式联立得a = mg / ( m + 1M )2∵ v 0= 0,∴v = at = mgt / ( m + 1M )23. 为求一半径 R = 50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量, 在飞轮上绕以细绳,绳末端悬一质量m 1= 8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间 t 1= 16 s .再用另一质量 m 2=4 kg 的重锤做同样测量,测得下落时间 t 2= 25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量.解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得- M f= / R①TRJamg -T = ma②h = 1at 2③2则将 m 1、 t 1 代入上述方程组,得22a 1= 2h / t 1 = 0.0156 m / s J = (T 1 R - M f )R / a 1④将 m 2、 t 2 代入①、②、③方程组,得a 2= 2h / t 22 = 6.4× 10- 3m / sT 2=m 2(g - a 2)= 39.2 NJ = (- ) /a 2 ⑤T 2 R M f R由④、⑤两式,得J =R 2(T 1- T 2 ) / ( a 1-a 2)= 1.06× 103 kg ·m 24. 一转动惯量为 J 的圆盘绕一固定轴转动,起初角速度为0 .设它所受阻力矩与转动角速度成正比,即 M =- k (k 为正的常数 ),求圆盘的角速度从0变为10 时所需的时间.J d / d t =2解:根据转动定律:- k∴dkd tJ0 / 2两边积分:1 dtk d t0 J得 ln2 = kt / J∴t =(J ln2) / k5. 某人站在水平转台的中央,与转台一起以恒定的转速n 1 转动,他的两手各拿一个质量为m 的砝码, 砝码彼此相距1(每一砝码离转轴1 l 1),当此人将砝码拉近到距离为2时 (每一砝码l2l离转轴为 1l 2 ),整个系统转速变为 n 2.求在此过程中人所作的功.(假定人在收臂过程中自2身对轴的转动惯量的变化可以忽略 )解: (1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量:W = E k = 1 ( J 01ml 22 )4 n 221(J 01ml 12 )4 2n 122 2 22这里的是没有砝码时系统的转动惯量.J(2) 过程中无外力矩作用,系统的动量矩守恒:2 (J 0+ 1 ml 12 ) n 1 = 2 (J 0+ 1ml 22 ) n 22 2∴J 0m l 12n 1 l 22 n 22 n 2 n 1(3) 将 J 0代入 W 式,得W2mn 1n 2 l 12 l 226. 一质量均匀分布的圆盘,质量为M ,半径为 R ,放在一粗糙水平面上 (圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心 O 的竖直固定光滑轴转动.开始时, 圆盘静止, 一质量为 m 的子弹以水平速度v 0 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动.(圆盘绕通过 O 的竖直轴的转动惯量为1 MR2 ,忽略子弹重力造成的摩擦阻力矩 )2O 的角动量守恒.解: (1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴m v 0R =( 1MR 2+ mR 2)2(2) 设 表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小R 为M fr g2 r d r = (2 / 3)gR 3= (2 / 3) MgR设经过 t 时间圆盘停止转动,则按角动量定理有- M f t = 0- J =- (1MR 2+ mR 2) = - m v 0R2∴mv 0 R mv 0 R 3mv 0t2 /3 MgR2 MgM f7. 一匀质细棒长为 2L ,质量为 m ,以与棒长方向相垂直的速度v 0 在光滑水平面内平动时, 与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧1L 处,如图2所示.求棒在碰撞后的瞬时绕O 点转动的角速度 .(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为 1ml 2 ,式中的 m 和 l 分别为棒的质量和长度. )3O 点的角动量为解:碰撞前瞬时,杆对式中 为杆的线密度.碰撞后瞬时,杆对 O 点的角动量为因碰撞前后角动量守恒,所以∴ = 6 v 0 / (7L)8. 长为 l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为 .若单摆从水平位置由静止m开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求:(1) 细杆的质量.(2) 细杆摆起的最大角度 .解: (1) 设摆球与细杆碰撞时速度为v 0 ,碰后细杆角速度为,系统角动量守恒得:J = m v 0l由于是弹性碰撞,所以单摆的动能变为细杆的转动动能1 mv 02 1 J 222代入 J = 1Ml 2 ,由上述两式可得M =3m3(2) 由机械能守恒式1 m2mgl 及1 J21M g lv 021 c o s221并利用 (1) 中所求得的关系可得a r c c o s3四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
大学物理习题集(上)专业班级 姓名_ 学号_第五章 刚体的定轴转动一.选择题1.关于刚体对轴的转动惯量,下列说法中正确的是[ C ](A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2. 均匀细棒 OA 可绕通过某一端 O 而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自 由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?[ A ](A )角速度从小到大,角加速度从大到小。
A(B )角速度从小到大,角加速度从小到大。
(C )角速度从大到小,角加速度从大到小。
(D )角速度从大到小,角加速度从小到大。
3. 如图所示,一圆盘绕水平轴 0 做匀速转动,如果同时相向地射来两个质量相同、速度大小相同,且沿同一直线运动的子弹。
子弹射入圆盘均留在盘内,则 子弹射入后的瞬间,圆盘的角速度将 [ B ](A )增大; (B )减小; (C )不变; (D )无法确定。
解答 以圆盘和两子弹为系统,外力矩为零,系统的角动量守恒。
按题意, 两个子弹的初始角动量(对 0 轴之和为零。
两子弹留在圆盘内,增大了圆盘的 转动惯量。
设圆盘的转动惯为 J ,转动的角速度为 ω0 ,则有J ω0 = ( J + ∆J )ωω0 > ω有速度减小,所以应选(B )4. 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂物体,物体的质量为 m ,此时滑轮的角加速度为 a 。
若将物体卸掉,而用大小等于 mg 、方向向下的力拉绳子,则滑轮的角加速度将[ A ](A)变大; (B )不变; (C )变小; (D )无法判断。
解答如图 5-4(a)所示,设滑轮半径为 R,转动惯量为 J。
当绳下滑挂一质量为m 的物体时,受绳的张力F T 和重力W=mg 作用,加速度a 铅直向下。