2019年中考数学专题一选择填空压轴题.ppt
- 格式:pdf
- 大小:6.82 MB
- 文档页数:50
2019中考数学压轴题一、选择题1.(2017四川省乐山市,第9题,3分)已知二次函数mx x y 22-=(m 为常数),当﹣1≤x ≤2时,函数值y 的最小值为﹣2,则m 的值是( )A .23B .2C .23 或2D .23-或22.(2017四川省泸州市,第10题,3分)已知m ,n 是关于x 的一元二次方程222240x tx t t -+-+=的两实数根,则(2)(2)m n ++的最小值是( )A .7B .11C .12D .163.(2017天津,第11题,3分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP+EP 最小值的是( )A .BCB .CEC .AD D .AC4.(2017临沂,第14题,3分)如图,在平面直角坐标系中,反比例函数k y x =(x >0)的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,△OMN 的面积为10.若动点P 在x 轴上,则PM+PN 的最小值是( )A .B .10C .D .5.(2017枣庄,第11题,3分)如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为( )A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)6.(2017山东省菏泽市,第7题,3分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,53)C.(0,2)D.(0,103)7.(2017广西贵港市,第12题,3分)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是12,其中正确结论的个数是()A.2 B.3 C.4 D.58.(2017新疆乌鲁木齐市,第10题,4分)如图,点A(a,3),B(b,1)都在双曲线3yx=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.9.(2017湖北省十堰市,第9题,3分)如图,10个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如123aa a,表示123a a a=+,则1a的最小值为()A.32 B.36 C.38 D.4010.(2017甘肃省兰州市,第15题,4分)如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6 D.25411.(2016内蒙古包头市)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)12.(2016内蒙古呼和浩特市)已知a≥2,2220m am -+=,2220n an -+=,则22(1)(1)m n -+-的最小值是( )A .6B .3C .﹣3D .013.(2016天津市)已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或﹣5B .﹣1或5C .1或﹣3D .1或314.(2016安徽)如图,Rt△ABC 中,AB⊥BC,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC,则线段CP 长的最小值为( )A .23B .2C .13138D .13131215.(2016四川省乐山市)若t 为实数,关于x 的方程2420x x t -+-=的两个非负实数根为a 、b ,则代数式22(1)(1)a b --的最小值是( ) A .﹣15 B .﹣16 C .15 D .1616.(2016四川省雅安市)如图,在矩形ABCD 中,AD=6,AE ⊥BD ,垂足为E ,ED=3BE ,点P 、Q 分别在BD ,AD 上,则AP+PQ 的最小值为( )A .BC .D .17.(2016浙江省舟山市)二次函数2(1)5y x =--+,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( )A .52B .2C .32D .1218.(2016湖北省咸宁市)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A.(0,0)B.(1,12)C.(65,35)D.(107,57)19.(2016湖北省鄂州市)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.13 220.(2015南宁,第11题,3分)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4 B.5 C.6 D.721.(2015乐山,第10题,3分)如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8 B.12 C.212 D.17222.(2015武汉,第10题,3分)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.21 C1二、填空题23.(2017四川省内江市,第25题,6分)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ= .24.(2017四川省绵阳市,第17题,3分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AB=1:3,则MD+12MA DN的最小值为.25.(2017山东省东营市,第15题,4分)如图,已知菱形ABCD的周长为16,面积为E为AB 的中点,若P为对角线BD上一动点,则EP+AP的最小值为.26.(2017山东省威海市,第18题,3分)如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.27.(2017浙江省台州市,第16题,5分)如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是.28.(2017衢州,第15题,4分)如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线343+-=xy上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是.29.(2017金华,第16题,4分)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2)(1)如图1,若BC=4m,则S= m2.(2)如图2,现考虑在(1)中矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为 m.30.(2017湖北省随州市,第15题,3分)如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P 的坐标为.31.(2017怀化,第16题,4分)如图,在菱形ABCD 中,∠ABC=120°,AB=10cm ,点P 是这个菱形内部或边上的一点.若以P ,B ,C 为顶点的三角形是等腰三角形,则P ,A (P ,A 两点不重合)两点间的最短距离为 cm .32.(2017贵州省贵阳市,第15题,4分)如图,在矩形纸片ABCD 中,AB=2,AD=3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A′EF,则A′C 的长的最小值是 .33.(2016吉林省长春市)如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C的坐标为(4,3).D 是抛物线26y x x =-+上一点,且在x 轴上方.则△BCD 的最大值为 .34.(2016四川省内江市)如图所示,已知点C (1,0),直线y=﹣x+7与两坐标轴分别交于A ,B 两点,D ,E 分别是AB ,OA 上的动点,则△CDE 周长的最小值是 .35.(2016山东省日照市)如图,直线334y x =-+与x 轴、y 轴分别交于点A 、B ;点Q 是以C (0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是.36.(2016江苏省常州市)如图,△APB中,AB=2,∠AP B=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是.37.(2016河北省)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__ ___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___ ____°.[来源:学38.(2016湖北省咸宁市)如图,边长为4的正方形ABCD内接于点O,点E是AB上的一动点(不与A、B重合),点F是BC上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:=;①AE BF②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4其中正确的是(把你认为正确结论的序号都填上).39.(2016福建省南平市)如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.40.(2016湖北省随州市)如图,直线y=x+4与双曲线kyx(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为.41.(2015玉林防城港,第18题,3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ 的面积是.42.(2015攀枝花,第15题,4分)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.43.(2015孝感,第16题,3分)如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD 与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是.44.(2015鄂州,第16题,3分)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为.45.(2015黄石,第15题,3分)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为元.三、解答题46.(2017云南省,第18题,6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.47.(2017内蒙古呼和浩特市,第25题,10分)在平面直角坐标系xOy中,抛物线2y ax bx c =++与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.(1)求该抛物线的解析式;(2)设2y ax bx c=++对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(72-,0),试比较锐角∠PCO与∠ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围.(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.48.(2017内蒙古赤峰市,第26题,14分)如图,二次函数2y ax bx c =++(a ≠0)的图象交x 轴于A 、B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B 、D 的点Q ,使△BDQ 中BD边上的高为Q 的坐标;若不存在请说明理由.49.(2017内蒙古通辽市,第26题,12分)在平面直角坐标系xOy 中,抛物线22++=bx ax y 过点A (﹣2,0),B (2,2),与y 轴交于点C .(1)求抛物线22++=bx ax y 的函数表达式; (2)若点D 在抛物线22++=bx ax y 的对称轴上,求△ACD 的周长的最小值; (3)在抛物线22++=bx ax y 的对称轴上是否存在点P ,使△ACP 是直角三角形?若存在直接写出点P 的坐标,若不存在,请说明理由.50.(2017吉林省长春市,第24题,12分)定义:对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x ﹣1,它的相关函数为()()1010x x y x x -+<⎧⎪=⎨-≥⎪⎩. (1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数2142y x x =-+-.①当点B (m ,32)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数2142y x x =-+-的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1}),连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图象有两个公共点时n 的取值范围. 51.(2017四川省乐山市,第26题,13分)如图1,抛物线1C :ax x y +=2与2C :bx x y +-=2相交于点O 、C ,1C 与2C 分别交x 轴于点B 、A ,且B 为线段AO 的中点.(1)求b a的值;(2)若OC ⊥AC ,求△OAC 的面积;(3)抛物线C2的对称轴为l ,顶点为M ,在(2)的条件下:①点P 为抛物线C2对称轴l 上一动点,当△PAC 的周长最小时,求点P 的坐标;②如图2,点E 在抛物线C2上点O 与点M 之间运动,四边形OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点E 的坐标;若不存在,请说明理由.52.(2017四川省内江市,第27题,12分)如图,在⊙O 中,直径CD 垂直于不过圆心O 的弦AB ,垂足为点N ,连接AC ,点E 在AB 上,且AE=CE . (1)求证:AC2=AE•AB;(2)过点B 作⊙O 的切线交EC 的延长线于点P ,试判断PB 与PE 是否相等,并说明理由; (3)设⊙O 半径为4,点N 为OC 中点,点Q 在⊙O 上,求线段PQ 的最小值.53.(2017四川省内江市,第28题,12分)如图,在平面直角坐标系中,抛物线2y ax bx c =++(a ≠0)与y 轴交与点C (0,3),与x 轴交于A 、B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.54.(2017四川省凉山州,第24题,8分)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个? (2)设商店所获利润为y (单位:元),购进篮球的个数为x (单位:个),请写出y 与x 之间的函数关系式(不要求写出x 的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?55.(2017四川省凉山州,第28题,12分)如图,在平面直角坐标系中,抛物线2y ax bx c =++(a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OB=8,OC=6.(1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时,点N 从B 出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN 存在时,求运动多少秒使△MBN 的面积最大,最大面积是多少?(3)在(2)的条件下,△MBN 面积最大时,在BC 上方的抛物线上是否存在点P ,使△BPC 的面积是△MBN 面积的9倍?若存在,求点P 的坐标;若不存在,请说明理由.56.(2017四川省南充市,第24题,10分)如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF=14AB .(1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OAB S S ∆∆=,求△PAB 周长的最小值.57.(2017四川省成都市,第26题,8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x 的一次函数,其关系如下表:(1)求y1关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.58.(2017四川省泸州市,第25题,12分)如图,已知二次函数2y ax bx c =++(a ≠0)的图象经过A (﹣1,0)、B (4,0)、C (0,2)三点.(1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA=∠CAO (O 是坐标原点),求点D 的坐标;(3)点P 是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC ,y 轴与点E 、F ,若△PEB 、△CEF 的面积分别为S1、S2,求S1﹣S2的最大值.59.(2017四川省绵阳市,第25题,14分)如图,已知△ABC 中,∠C=90°,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC=45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC=8cm ,BC=4cm ,设点M 运动时间为t (s ),△ENF 与△ANF 重叠部分的面积为y (cm2). (1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)当y 取最大值时,求sin ∠NEF 的值.60.(2017四川省达州市,第22题,8分)宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系:()()7.504510414x x y x x ⎧≤≤⎪=⎨+<≤⎪⎩.(1)工人甲第几天生产的产品数量为70件?(2)设第x 天生产的产品成本为P 元/件,P 与x 的函数图象如图.工人甲第x 天创造的利润为W 元,求W 与x 的函数关系式,并求出第几天时,利润最大,最大利润是多少?61.(2017山东省东营市,第25题,12分)如图,直线y x =+x 轴、y 轴交于B 、C两点,点A在x轴上,∠ACB=90°,抛物线2y ax bx=+A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.62.(2017山东省日照市,第21题,12分)阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d=35.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线3544y x=-+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线34y x b=-+相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.63.(2017滨州,第24题,14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x 的函数解析式,并求d取最小值时点P的坐标;(3)若点E 在抛物线y=﹣x2+2x+1的对称轴上移动,点F 在直线AB 上移动,求CE+EF 的最小值.64.(2017山东省潍坊市,第25题,13分)如图1,抛物线c bx ax y ++=2经过平行四边形ABCD 的顶点A (0,3)、B (﹣1,0)、D (2,3),抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等两部分,与抛物线交于另一点F .点P 在直线l 上方抛物线上一动点,设点P 的横坐标为t .(1)求抛物线的解析式;(2)当t 何值时,△PFE 的面积最大?并求最大值的立方根;(3)是否存在点P 使△PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.65.(2017山东省烟台市,第25题,13分)如图1,抛物线22y ax bx =++与x 轴交于A ,B 两点,与y 轴交于点C ,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E .(1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.66.(2017山东省聊城市,第25题,12分)如图,已知抛物线22y ax x c =++与y 轴交于点A (0,6),与x 轴交于点B (6,0),点P 是线段AB 上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?67.(2016广西贵港市)如图,已知一次函数y=12x+b的图象与反比例函数kyx=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当12kx bx+<时,请直接写出x的取值范围.68.(2016广西贺州市)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线2y ax bx c=++经过O、A、E三点.(1)求此抛物线的解析式;(2)求A D的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.69.(2016广西钦州市)如图1,在平面直径坐标系中,抛物线22y ax bx =+-与x 轴交于点A (﹣3,0).B (1,0),与y 轴交于点C .(1)直接写出抛物线的函数解析式;(2)以OC 为半径的⊙O 与y 轴的正半轴交于点E ,若弦CD 过AB 的中点M ,试求出DC 的长;(3)将抛物线向上平移32个单位长度(如图2)若动点P (x ,y )在平移后的抛物线上,且点P 在第三象限,请求出△PDE 的面积关于x 的函数关系式,并写出△PDE 面积的最大值.70.(2016云南省昆明市)如图1,对称轴为直线x=12的抛物线经过B (2,0)、C (0,4)两点,抛物线与x 轴的另一交点为A . (1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设四边形COBP 的面积为S ,求S 的最大值;(3)如图2,若M 是线段BC 上一动点,在x 轴是否存在这样的点Q ,使△MQC 为等腰三角形且△MQB 为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.71.(2016云南省曲靖市)如图,在平面直角坐标系中,抛物线22y ax ax c =++交x 轴于A ,B 两点,交y 轴于点C (0,3),tan ∠OAC=34.(1)求抛物线的解析式;(2)点H 是线段AC 上任意一点,过H 作直线HN ⊥x 轴于点N ,交抛物线于点P ,求线段PH 的最大值; (3)点M 是抛物线上任意一点,连接CM ,以CM 为边作正方形CMEF ,是否存在点M 使点E 恰好落在对称轴上?若存在,请求出点M 的坐标;若不存在,请说明理由.72.(2016内蒙古呼和浩特市)已知二次函数22y ax ax c =-+(a <0)的最大值为4,且抛物线过点(72,94-),点P (t ,0)是x 轴上的动点,抛物线与y 轴交点为C ,顶点为D .(1)求该二次函数的解析式,及顶点D 的坐标;(2)求|PC ﹣PD|的最大值及对应的点P 的坐标;(3)设Q (0,2t )是y 轴上的动点,若线段PQ 与函数22y a x a x c =-+的图象只有一个公共点,求t 的取值.73.(2016内蒙古巴彦淖尔市)如图所示,抛物线232y ax x c =-+经过原点O 与点A (6,0)两点,过点A 作AC ⊥x 轴,交直线y=2x ﹣2于点C ,且直线y=2x ﹣2与x 轴交于点D .(1)求抛物线的解析式,并求出点C 和点D 的坐标;(2)求点A 关于直线y=2x ﹣2的对称点A′的坐标,并判断点A′是否在抛物线上,并说明理由;(3)点P (x ,y )是抛物线上一动点,过点P 作y 轴的平行线,交线段CA′于点Q ,设线段PQ 的长为l ,求l 与x 的函数关系式及l 的最大值.74.(2016四川省乐山市)在直角坐标系xOy 中,A (0,2)、B (﹣1,0),将△ABO 经过旋转、平移变化后得到如图1所示的△BCD.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将△ABC 的面积分成1:3两部分,求此时点P 的坐标;(3)现将△ABO、△BCD 分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO 与△BCD 重叠部分面积的最大值.75.(2016江苏省盐城市)如图1,已知一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++过A 、B 两点,且与x 轴交于另一点C . (1)求b 、c 的值;(2)如图1,点D 为AC 的中点,点E 在线段BD 上,且BE=2ED ,连接CE 并延长交抛物线于点M ,求点M 的坐标;(3)将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,如图2,P 为△ACG 内以点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在他们的左侧作等边△APR ,等边△AGQ ,连接QR ①求证:PG=RQ ;②求PA+PC+PG 的最小值,并求出当PA+PC+PG 取得最小值时点P 的坐标.76.(2016陕西省)问题提出(1)如图①,已知△ABC ,请画出△ABC 关于直线AC 对称的三角形.问题探究(2)如图②,在矩形ABCD 中,AB=4,AD=6,AE=4,AF=2,是否在边BC 、CD 上分别存在点G 、H ,使得四边形EFGH 的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD ,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH 部件,使∠EFG=90°,∠EHG=45°,经研究,只有当点E 、F 、G 分别在边AD .AB 、BC 上,且AF <BF ,并满足点H 在矩形ABCD 内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH 部件?若能,求出裁得的四边形EFGH 部件的面积;若不能,请说明理由.77.(2015南宁,第24题,10分)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积.(2)如果通道所占面积是整个长方形空地面积的83,求出此时通道的宽.(3)已知某园林公司修建通道、花圃的造价1y (元)、2y (元)与修建面积x (m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?78.(2015崇左,第25题,10分)一块材料的形状是锐角三角形ABC ,边BC=120mm ,高AD=80mm ,把它加工成正方形零件如图1,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上.(1)求证:△AEF ∽△ABC ;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?79.(2015柳州,第26题,12分)如图,已知抛物线21(76)2y x x =--+的顶点坐标为M ,与x 轴相交于A ,B 两点(点B 在点A 的右侧),与y 轴相交于点C .(1)用配方法将抛物线的解析式化为顶点式:2()y a x h k =-+(0a ≠),并指出顶点M 的坐标;(2)在抛物线的对称轴上找点R ,使得CR+AR 的值最小,并求出其最小值和点R 的坐标;(3)以AB 为直径作⊙N 交抛物线于点P (点P 在对称轴的左侧),求证:直线MP 是⊙N 的切线.。
2019年全国各地中考数学压轴题汇编(山东专版)选择、填空(一)参考答案与试题解析一.选择题(共12小题)1.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.2.(2019•淄博)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019•青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.4.(2019•枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.解:∵S△ABC=16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE=S△A′EF=,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=3或A′D=﹣(舍),故选:B.5.(2019•潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.6.(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.16解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.7.(2019•枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1B.C.D.2解:∵等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1,故选:A.8.(2019•济宁)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.18解:作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(﹣2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数y=的图象经过点D,∴k=15.故选:C.9.(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.10.(2019•德州)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x+1(x<0)解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.11.(2019•济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.12.(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.二.填空题(共13小题)13.(2019•青岛)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠F AD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.14.(2019•枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=36度.解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.15.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块.解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:1616.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.17.(2019•枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.(2019•济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是x<﹣3或x>1.解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方,∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.故答案为:x<﹣3或x>1.19.(2019•潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.20.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.21.(2019•德州)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为.解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r﹣1,OA=r,在Rt△OAE中,32+(r﹣1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5﹣OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.22.(2019•枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为2018.解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.23.(2019•潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为(n,).(n为正整数)解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,24.(2019•德州)如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为(﹣1)n+1().(用含n的式子表示)解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=﹣,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,﹣),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1﹣(舍),x2=1+,∴EF====2(﹣1)=2﹣2,A2D2===,即A2的纵坐标为﹣;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△F A3D3中,∠F A3D3=30°,∴FD3=,∵OD3=2+2﹣2+=x,解得:x1=(舍),x2=+;∴GF===2(﹣)=2﹣2,A3D3===(﹣),即A3的纵坐标为(﹣);…∴A n(n为正整数)的纵坐标为:(﹣1)n+1();故答案为:(﹣1)n+1();25.(2019•淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn ==.故答案为:.。
2019年全国各地中考数学压轴题汇编几何综合(含答案)一.选择题(共10小题)1.(2019•上海)已知⊙A与⊙B外切,⊙C与⊙A、⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是()A.11B.10C.9D.8选:C.2.(2019•安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E 在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()A.3.6B.4C.4.8D.5解:作DH∥EG交AB于点H,则△AEG∽△ADH,∴,∵EF⊥AC,∠C=90°,∴∠EF A=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴,∴,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12﹣x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴,即,解得,x=4,∴CD=4,故选:B.3.(2019•台湾)如图表示A、B、C、D四点在O上的位置,其中=180°,且=,=.若阿超在上取一点P,在上取一点Q,使得∠APQ=130°,则下列叙述何者正确?()A.Q点在上,且>B.Q点在上,且<C.Q点在上,且>D.Q点在上,且<解:连接AD,OB,OC,∵=180°,且=,=,∴∠BOC=∠DOC=45°,在圆周上取一点E连接AE,CE,∴∠E=AOC=67.5°,∴∠ABC=122.5°<130°,取的中点F,连接OF,则∠AOF=67.5°,∴∠ABF=123.25°<130°,∴Q点在上,且<,故选:B.4.(2019•安徽)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.8解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴EM==4则在线段BC存在点H到点E和点F的距离之和最小为4<9在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,4<PE+PF≤12在点H左侧,当点P与点B重合时,BF==2∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴BE=BF=2∴PE+PF=4∴点P在BH上时,4<PE+PF<4∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.5.(2019•台湾)如图的△ABC中,AB>AC>BC,且D为BC上一点.今打算在AB上找一点P,在AC上找一点Q,使得△APQ与△PDQ全等,以下是甲、乙两人的作法:(甲)连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求(乙)过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q 两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确解:如图1,∵PQ垂直平分AD,∴P A=PD,QA=QD,而PQ=PQ,∴△APQ≌△DPQ(SSS),所以甲正确;如图2,∵PD∥AQ,DQ∥AP,∴四边形APDQ为平行四边形,∴P A=DQ,PD=AQ,而PQ=QP,∴△APQ≌△DQP(SSS),所以乙正确.故选:A.6.(2019•福建)如图,P A、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°解:连接OA,OB,∵P A,PB是⊙O的切线,∴P A⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.7.(2019•台湾)如图,将一长方形纸片沿着虚线剪成两个全等的梯形纸片.根据图中标示长度与角度,求梯形纸片中较短的底边长度为何?()A.4B.5C.6D.7解:过F作FQ⊥AD于Q,则∠FQE=90°,∵四边形ABCD是长方形,∴∠A=∠B=90°,AB=DC=8,AD∥BC,∴四边形ABFQ是矩形,∴AB=FQ=DC=8,∵AD∥BC,∴∠QEF=∠BFE=45°,∴EQ=FQ=8,∴AE=CF=×(20﹣8)=6,故选:C.8.(2019•台湾)如图,将一张面积为14的大三角形纸片沿着虚线剪成三张小三角形纸片与一张平行四边形纸片.根据图中标示的长度,求平行四边形纸片的面积为何?()A.B.C.D.解:如图,设△ADE,△BDF,△CEG,平行四边形DEGF的面积分别为S1,S2,S3和S,过点D作DH∥EC,则由DFGE为平行四边形,易得四边形DHCE也为平行四边形,从而△DFH ≌△EGC,∴S△DFH=S3,∵DE∥BC,∴△ADE∽△ABC,DE=3,BC=7,∴=,∵S△ABC=14,∴S1=×14,故选:D.9.(2019•台湾)如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.B.C.D.解:设AD=x,∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,∴BD=BE=1,∴AB=x+1,AC=AD+CE=x+4,在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,即AD的长度为.故选:D.10.(2019•台湾)如图,有一三角形ABC的顶点B、C皆在直线L上,且其内心为I.今固定C点,将此三角形依顺时针方向旋转,使得新三角形A'B'C的顶点A′落在L上,且其内心为I′.若∠A<∠B<∠C,则下列叙述何者正确?()A.IC和I′A′平行,II′和L平行B.IC和I′A′平行,II′和L不平行C.IC和I′A′不平行,II′和L平行D.IC和I′A′不平行,II′和L不平行解:作ID⊥BA'于D,IE⊥AC于E,I'F⊥BA'于F,如图所示:则ID∥I'F,∵△ABC的内心为I,△A'B'C的内心为I′,∴ID=IE=IF,∠ICD﹣∠ACB,∠I'A'C=∠B'A'C,∴四边形IDFI'是矩形,∴II'∥L,∵∠A<∠B<∠C,∴∠A'<∠B'<∠C,∴∠ICD>∠I'A'C,∴IC和I'A'不平行,故选:C.二.填空题(共6小题)11.(2019•上海)如图,在正边形ABCDEF中,设=,=,那么向量用向量、表示为2+.解:连接CF.∵多边形ABCDEF是正六边形,AB∥CF,CF=2BA,∴=2,∵=+,∴=2+,故答案为2+.12.(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=20°.解:∵∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,∴∠ADC=40°+40°=80°,∠ADE=∠ADB=180°﹣40°﹣40°=100°,∴∠CDE=100°﹣80°=20°,故答案为:2013.(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A 落在点F处,联结DF,那么∠EDF的正切值是2.解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=AD=AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB==2.故答案为:2.14.(2019•安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为.解:连接CO并延长交⊙O于E,连接BE,则∠E=∠A=30°,∠EBC=90°,∵⊙O的半径为2,∴CE=4,∴BC=CE=2,∵CD⊥AB,∠CBA=45°,∴CD=BC=,故答案为:.15.(2019•上海)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.解:如图,∵在△ABC和△A1B1C1中,∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,∴AB==5,设AD=x,则BD=5﹣x,∵△ACD≌△C1A1D1,∴C1D1=AD=x,∠A1C1D1=∠A,∠A1D1C1=∠CDA,∴∠C1D1B1=∠BDC,∵∠B=90°﹣∠A,∠B1C1D1=90°﹣∠A1C1D1,∴∠B1C1D1=∠B,∴△C1B1D∽△BCD,∴=,即=2,解得x=,∴AD的长为,故答案为.16.(2019•福建)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是π﹣1.(结果保留π)三.解答题(共14小题)17.(2019•上海)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.(1)求点D′到BC的距离;(2)求E、E′两点的距离.解:(1)过点D′作D′H⊥BC,垂足为点H,交AD于点F,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD是矩形,∴AD∥BC,∴∠AFD′=∠BHD′=90°.在Rt△AD′F中,D′F=AD′•sin∠DAD′=90×sin60°=45厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(45+70)厘米.答:点D′到BC的距离为(45+70)厘米.(2)连接AE,AE′,EE′,如图4所示.由题意,得:AE′=AE,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE.∵四边形ABCD是矩形,∴∠ADE=90°.在Rt△ADE中,AD=90厘米,DE=30厘米,∴AE==30厘米,∴EE′=30厘米.答:E、E′两点的距离是30厘米.18.(2019•江西)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.解:(1)如图1,EF为所作;(2)如图2,∠BCD为所作.19.(2019•上海)已知:如图,AB、AC是⊙O的两条弦,且AB=AC,D是AO延长线上一点,联结BD并延长交⊙O于点E,联结CD并延长交⊙O于点F.(1)求证:BD=CD;(2)如果AB2=AO•AD,求证:四边形ABDC是菱形.证明:(1)如图1,连接BC,OB,OC,∵AB、AC是⊙O的两条弦,且AB=AC,∴A在BC的垂直平分线上,∵OB=OA=OC,∴O在BC的垂直平分线上,∴AO垂直平分BC,∴BD=CD;(2)如图2,连接OB,∵AB2=AO•AD,∴=,∵∠BAO=∠DAB,∴△ABO∽△ADB,∴∠OBA=∠ADB,∵OA=OB,∴∠OBA=∠OAB,∴∠OAB=∠BDA,∴AB=BD,∵AB=AC,BD=CD,∴AB=AC=BD=CD,∴四边形ABDC是菱形.20.(2019•江西)如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB交AF于点D,连接BC.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.(1)证明:连接OC,∵AF为半圆的切线,AB为半圆的直径,∴AB⊥AD,∵CD∥AB,BC∥OD,∴四边形BODC是平行四边形,∴OB=CD,∵OA=OB,∴CD=OA,∴四边形ADCO是平行四边形,∴OC∥AD,∵CD∥BA,∴CD⊥AD,∵OC∥AD,∴OC⊥CD,∴CD是半圆的切线;(2)解:∠AED+∠ACD=90°,理由:如图2,连接BE,∵AB为半圆的直径,∴∠AEB=90°,∴∠EBA+∠BAE=90°,∵∠DAE+∠BAE=90°,∴∠ABE=∠DAE,∵∠ACE=∠ABE,∴∠ACE=∠DAE,∵∠ADE=90°,∴∠DAE+∠AED=∠AED+∠ACD=90°.21.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE ⊥AD,交BD的延长线于点E.(1)求证:∠E═∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∴∠AFB=∠EAD=90°,=,∵BD:DE=2:3,∴cos∠ABC===.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.22.(2019•江西)图1是一台实物投影仪,图2是它的示意图,折线B﹣A﹣O表示固定支架,AO 垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1).(1)如图2,∠ABC=70°,BC∥OE.①填空:∠BAO=160°.②求投影探头的端点D到桌面OE的距离.(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求∠ABC的大小.(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)解:(1)①过点A作AG∥BC,如图1,则∠BAG=∠ABC=70°,∵BC∥OE,∴AG∥OE,∴∠GAO=∠AOE=90°,∴∠BAO=90°+70°=160°,故答案为:160;②过点A作AF⊥BC于点F,如图2,则AF=AB•sin∠ABE=30sin70°≈28.2(cm),∴投影探头的端点D到桌面OE的距离为:AF+0A﹣CD=28.2+6.8﹣8=27(cm);(2)过点DE⊥OE于点H,过点B作BM⊥CD,与DC延长线相交于点M,过A作AF⊥BM于点F,如图3,则∠MBA=70°,AF=28.2cm,DH=6cm,BC=30cm,CD=8cm,∴CM=AF+AO﹣DH﹣CD=28.2+6.8﹣6﹣8=21(cm),∴sin∠MBC=,∴∠MBC=36.8°,∴∠ABC=∠ABM﹣∠MBC=33.2°.23.(2019•安徽)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)解:连接CO并延长,与AB交于点D,∵CD⊥AB,∴AD=BD=AB=3(米),在Rt△AOD中,∠OAB=41.3°,∴cos41.3°=,即OA===4(米),tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),则CD=CO+OD=4+2.64=6.64(米).24.(2019•江西)在图1,2,3中,已知▱ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.(1)如图1,当点E与点B重合时,∠CEF=60°;(2)如图2,连接AF.①填空:∠F AD=∠EAB(填“>”,“<“,“=”);②求证:点F在∠ABC的平分线上;(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求的值.解:(1)∵四边形AEFG是菱形,∴∠AEF=180°﹣∠EAG=60°,∴∠CEF=∠AEC﹣∠AEF=60°,故答案为:60°;(2)①∵四边形ABCD是平行四边形,∴∠DAB=180°﹣∠ABC=60°,∵四边形AEFG是菱形,∠EAG=120°,∴∠F AE=60°,∴∠F AD=∠EAB,故答案为:=;②作FM⊥BC于M,FN⊥BA交BA的延长线于N,则∠FNB=∠FMB=90°,∴∠NFM=60°,又∠AFE=60°,∴∠AFN=∠EFM,∵EF=EA,∠F AE=60°,∴△AEF为等边三角形,∴F A=FE,在△AFN和△EFM中,,∴△AFN≌△EFM(AAS)∴FN=FM,又FM⊥BC,FN⊥BA,∴点F在∠ABC的平分线上;(3)∵四边形AEFG是菱形,∠EAG=120°,∴∠AGF=60°,∴∠FGE=∠AGE=30°,∵四边形AEGH为平行四边形,∴GE∥AH,∴∠GAH=∠AGE=30°,∠H=∠FGE=30°,∴∠GAN=90°,又∠AGE=30°,∴GN=2AN,∵∠DAB=60°,∠H=30°,∴∠ADH=30°,∴AD=AH=GE,∵四边形ABCD为平行四边形,∴BC=AD,∴BC=GE,∵四边形ABEH为平行四边形,∠HAE=∠EAB=30°,∴平行四边形ABEN为菱形,∴AB=AN=NE,∴GE=3AB,∴=3.25.(2019•安徽)如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,∵,∴△BCE≌△ADF(ASA);(2)∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,由(1)知:△BCE≌△ADF,∴S△BCE=S△ADF,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S,四边形AEDF的面积为T,∴==2.26.(2019•福建)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.27.(2019•台湾)在公园有两座垂直于水平地面且高度不一的图柱,两座圆柱后面有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分?(2)若同一时间量得高圆柱落在墙上的影长为150公分,则高图柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案.解:(1)设敏敏的影长为x公分.由题意:=,解得x=100(公分),经检验:x=100是分式方程的解.∴敏敏的影长为100公分.(2)如图,连接AE,作FB∥EA.∵AB∥EF,∴四边形ABFE是平行四边形,∴AB=EF=150公分,设BC=y公分,由题意BC落在地面上的影从为120公分.∴=,∴y=180(公分),∴AC=AB+BC=150+180=330(公分),答:高图柱的高度为330公分.28.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.29.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB =∠BPC=135°.(1)求证:△P AB∽△PBC;(2)求证:P A=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.解:(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC又∠APB=135°,∴∠P AB+∠PBA=45°∴∠PBC=∠P AB又∵∠APB=∠BPC=135°,∴△P AB∽△PBC(2)∵△P AB∽△PBC∴在Rt△ABC中,AB=AC,∴∴∴P A=2PC(3)如图,过点P作PD⊥BC,PE⊥AC交BC、AC于点D,E,∴PF=h1,PD=h2,PE=h3,∵∠CPB+∠APB=135°+135°=270°∴∠APC=90°,∴∠EAP+∠ACP=90°,又∵∠ACB=∠ACP+∠PCD=90°∴∠EAP=∠PCD,∴Rt△AEP∽Rt△CDP,∴,即,∴h3=2h2∵△P AB∽△PBC,∴,∴∴.即:h12=h2•h3.30.(2019•福建)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.(1)解:如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形。