江苏省苏州市吴中区2016-2017学年九年级(上)期中数学试卷(解析版)
- 格式:doc
- 大小:257.50 KB
- 文档页数:5
新九年级上学期期中考试数学试题(答案)一、选择题(每小题3分,共30分)1.一元二次方程3x 2-6x -1=0的二次项系数、一次项系数、常数项分别是( ) A .3,6,1 B .3,6,-1 C .3,-6,1 D .3,-6,-12.用配方法解方程x 2-4x +2=0,配方正确的是( ) A .(x -2)2=2 B .(x +2)2=2C .(x -2)2=-2D . (x -2)2=63.下列手机手势解锁图案中,是中心对称图形的是( )A .B .C .D . 4.已知x 1,x 2是一元二次方程x 2-6x -5=0的两个根,则x 1+x 2的值是( ) A .6 B .-6 C .5 D .-5 5.如图,⊙O 的直径为10,弦AB =8,P 是AB 上一个动点,则OP 的最小值为( )A .2B .3C .4D .56.某市“赏花节”观赏人数逐年增加,据有关部门统计,2016年约为20万人次,2018年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+2x )+ 20(1+x )2=28.87.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在B ′C 上,则∠B ′的大小为( ) A .42° B .48° C .52° D .58° 8.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ) A .35°B .45°C .55°D .65°9.抛物线y =ax 2-2ax -3a 上有A (-0.5,y 1),B (2,y 2)和C (3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1,y 2,y 3的大小关系为( ) A .y 3<y 1<y 2 B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 1<y 2<y 3第5题图第7题图ABCA 'B 'A第8题图10.某学习小组在研究函数y =16x 3-2x 的图象和性质时,已列表、描点并画出了图象的一部分,则方程16x 3-2x =1实数根的个数为( )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.一元二次方程x 2-9=0的解是 .12.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有 个班级参赛.13.抛物线y =12x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是 .14.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t-1.5t 2,飞机着陆后滑行 m 才能停下来.15.如图,将⊙O沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AB 上的一动点,则∠APB 的大小是 度.16.如图,⊙O 的半径是1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连OC ,则OC 的最大值为 .第10题图第16题图第15题图三、解答题(本大题共8小题,共72分)17.(本题8分)解方程x2-3x+1=018.(本题8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)直接写出方程ax2+bx+c=2的根;(2)直接写出不等式ax2+bx+c<0的解集.19.(本题8分) 关于x的一元二次方程x2+(2m-1)x+m2=0有实数根. (1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.20.(本题8分) 如图,△ABC是等边三角形.(1)作△ABC的外接圆;(2)在劣弧BC上取点D,分别连接BD,CD,并将△ABD绕A点逆时针旋转60°;(3)若AD=4,直接写出四边形ABDC的面积.21.(本题8分) 如图,AB为⊙O的直径,且AB=10,C为⊙O上一点,AC平分∠DAB交⊙O于点E,AE=6,,AD⊥CD于D,F为半圆弧AB的中点,EF交AC于点G.(1)求CD的长;(2)求EG的长.第18题图第20题图AB C第21题图A B22.(本题10分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和100米长的木栏围成一个矩形菜园ABC D.(1)如图1,已知矩形菜园的一边靠墙,且AD≤MN,设AD=x米.①若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;②求矩形菜园ABCD面积的最大值;(2)如图2,若a=20,则旧墙和木栏能围成的矩形菜园ABCD面积的最大值是米2.23.(本题10分) 如图,在等腰Rt△ABC中,∠ACB=90°,点P是△ABC内一点,连接PA,PB,PC,且PA,设∠APB=α,∠CPB=β.(1)如图1,若∠ACP=45°,将△PBC绕点C顺时针旋转90°至△DAC,连结新九年级(上)数学期中考试试题(含答案)(1)一、选择题(本大题共10小题,共30.0分)1.下列运算中,结果正确的是()A. B. C. D.2.若是关于x.y的方程2x-y+2a=0的一个解,则常数a为()A. 1B. 2C. 3D. 43.下列由左到右边的变形中,是因式分解的是()A. B.C. D.4.如图,直线a∥b,∠1=120°,则∠2的度数是()A.B.C.D. AB CD M NNMDCBA第22题图2第22题图15.已知a m=6,a n=3,则a2m-3n的值为()A. B. C. 2 D. 96.下列代数式变形中,是因式分解的是()A. B.C. D.7.已知4y2+my+9是完全平方式,则m为()A. 6B.C.D. 128.803-80能被()整除.A. 76B. 78C. 79D. 829.如果x=3m+1,y=2+9m,那么用x的代数式表示y为()A. B. C. D.10.已知关于x,y的方程组,则下列结论中正确的是()①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若22a-3y=27,则a=2.A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.在方程4x-2y=7中,如果用含有x的式子表示y,则y=______.12.将方程3x+2y=7变形成用含y的代数式表示x,得到______.13.若要(a-1)a-4=1成立,则a=______.14.如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______°.15.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要C类卡片______张.16.若x+y+z=2,x2-(y+z)2=8时,x-y-z=______.三、计算题(本大题共2小题,共20.0分)17.计算:(1)(8a3b-5a2b2)÷4ab(2)(2x+y)2-(2x+3y)(2x-3y)18.我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材.如图1所示,(单位:cm)(1)列出方程(组),求出图甲中a与b的值.(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.①两种裁法共产生A型板材______张,B型板材______张;y个,根据题意完成表格:B型(张)x③做成的竖式和横式两种无盖礼品盒总数最多是______个;此时,横式无盖礼品盒可以做______个.(在横线上直接写出答案,无需书写过程)四、解答题(本大题共5小题,共36.0分)19.化简:(1)(2a2)4÷3a2(2)(1+a)(1-a)+a(a-3)20.先化简,再求值:(2x+3)(2x-3)-(x-2)2-3x(x-1),其中x=2.21.已知a-b=7,ab=-12.(1)求a2b-ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数.23.已知:如图,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.(1)请问BD和CE是否平行?请你说明理由.(2)AC和BD的位置关系怎样?请说明判断的理由.答案和解析1.【答案】A【解析】解:A、x3•x3=x6,本选项正确;B、3x2+2x2=5x2,本选项错误;C、(x2)3=x6,本选项错误;D、(x+y)2=x2+2xy+y2,本选项错误,故选:A.A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.2.【答案】B【解析】解:将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选:B.将x=-1,y=2代入方程中计算,即可求出a的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.【答案】D【解析】解:A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、x2-4+3x=(x+4)(x-1),故此选项错误;D、x2-4=(x+2)(x-2),正确.故选:D.直接利用因式分解的意义分别判断得出答案.此题主要考查了因式分解的意义,正确把握定义是解题关键.4.【答案】C【解析】解:∵a∥b∴∠3=∠2,∵∠3=180°-∠1,∠1=120°,∴∠2=∠3=180°-120°=60°,故选C.如图根据平行线的性质可以∠2=∠3,根据邻补角的定义求出∠3即可.本题考查平行线的性质,利用两直线平行同位角相等是解题的关键,记住平行线的性质,注意灵活应用,属于中考常考题型.5.【答案】A【解析】解:∵a m=6,a n=3,∴原式=(a m)2÷(a n)3=36÷27=,故选:A.原式利用同底数幂的除法法则及幂的乘方运算法则变形,将已知等式代入计算即可求出值.此题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、是整式的乘法,故A错误;B、左边不等于右边,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.本题考查了因式分解的意义,把一个多项式转化成几个整式乘积的形式是解题关键.7.【答案】C【解析】解:∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.原式利用完全平方公式的结构特征求出m的值即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.【答案】C【解析】解:∵803-80=80×(802-1)=80×(80+1)×(80-1)=80×81×79.∴803-80能被79整除.故选:C.先提取公因式80,再根据平方查公式进行二次分解,即可得803-80=80×81×79,继而求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后,利用平方差公式进行二次分解是关键.9.【答案】C【解析】解:x=3m+1,y=2+9m,3m=x-1,y=2+(3m)2,y=(x-1)2+2,故选:C.根据移项,可得3m的形式,根据幂的运算,把3m代入,可得答案.本题考查了幂的乘方与积的乘方,先化成要求的形式,把3m代入得出答案.10.【答案】D【解析】解:把a=5代入方程组得:,解得:,本选项错误;由x与y互为相反数,得到x+y=0,即y=-x,代入方程组得:,解得:a=20,本选项正确;若x=y,则有,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确;方程组解得:,由题意得:2a-3y=7,把x=25-a,y=15-a代入得:2a-45+3a=7,解得:a=,本选项错误,则正确的选项有,故选:D.把a=5代入方程组求出解,即可做出判断;根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;假如x=y,得到a无解,本选项正确;根据题中等式得到2a-3y=7,代入方程组求出a的值,即可做出判断.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.11.【答案】【解析】解:4x-2y=7,解得:y=.故答案为:将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.【答案】x=【解析】解:由题意可知:x=故答案为:x=根据等式的性质即可求出答案.本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.13.【答案】4,2,0【解析】解:a-4=0,即a=4时,(a-1)a-4=1,当a-1=1,即a=2时,(a-1)a-4=1.当a-1=-1,即a=0时,(a-1)a-4=1故a=4,2,0.故答案为:4,2,0.根据任何非0的数的0次幂等于1,以及1的任何次幂等于1、-1的偶次幂等于1即可求解.本题考查了整数指数幂的意义,正确进行讨论是关键.14.【答案】25【解析】解:∵∠B=55°,∠C=100°,∴∠A=180°-∠B-∠C=180°-55°-100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.故答案为:25.根据三角形的内角和定理求出∠A,再根据平移的性质可得AB∥A′B′,然后根据两直线平行,内错角相等可得∠AB′A′=∠A.本题考查了平移的性质,三角形的内角和定理,平行线的性质,熟记平移的性质得到AB∥A′B′是解题的关键.15.【答案】5【解析】解:长方形的面积=(2a+b)(a+2b)=2a2+5ab+b2,所以要拼成一个长为(2a+b),宽为(a+2b)的大长方形,则需要A类卡片2张,B类卡片1张,C类卡片5张.故答案为5.计算长方形的面积得到(2a+b)(a+2b),再利用多项式乘多项式展开后合并,然后确定ab的系数即可得到需要C类卡片的张数.本题考查了多项式乘多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.16.【答案】4【解析】解:∵x2-(y+z)2=8,∴(x-y-z)(x+y+z)=8,∵x+y+z=2,∴x-y-z=8÷2=4,故答案为:4.首先把x2-(y+z)2=8的左边分解因式,再把x+y+z=2代入即可得到答案.此题主要考查了因式分解的应用,关键是熟练掌握平方差公式分解因式.平方差公式:a2-b2=(a+b)(a-b).17.【答案】解:(1)原式=2a2-ab;(2)原式=4x2+4xy+y2-4x2+9y2=10y2+4xy.【解析】(1)原式利用多项式除以单项式法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算,去括号合并即可得到结果.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】64 38 20 16或17或18【解析】解:(1)由题意得:,解得:,答:图甲中a与b的值分别为:60、40.(2)由图示裁法一产生A型板材为:2×30=60,裁法二产生A型板材为:1×4=4,所以两种裁法共产生A型板材为60+4=64(张),由图示裁法一产生B型板材为:1×30=30,裁法二产生A型板材为,2×4=8,所以两种裁法共产生B型板材为30+8=38(张),故答案为:64,38.由已知和图示得:横式无盖礼品盒的y个,每个礼品盒用2张B型板材,所以用B型板材2y张.由上表可知横式无盖款式共5y个面,用A型3y张,则B型需要2y张.则做两款盒子共需要A型4x+3y张,B型x+2y张.则4x+3y≤64;x+2y≤38.两式相加得5x+5y≤102.则x+y≤20.4.所以最多做20个.两式相减得3x+y≤26.则2x≤5.6,解得x≤2.8.则y≤18.则横式可做16,17或18个.故答案为:20,16或17或18.(1)由图示列出关于a、b的二元一次方程组求解.(2)根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,同样由图示完成表格,并完成计算.本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,再是根据图示解答.19.【答案】解:(1)原式=24a8÷3a2=.(2)原式=1-a2+a2-3a=1-3a.【解析】(1)根据单项式的幂的乘方法则和除法法则进行计算.(2)根据多项式的乘法法则以及单项式乘多项式的法则进行计算.本题考查单项式的乘方法则、单项式除以单项式的法则、乘法公式等知识,正确运用法则是解题的关键.20.【答案】解:(2x+3)(2x-3)-(x-2)2-3x(x-1)=4x2-9-x2+4x-4-3x2+3x=7x-13,当x=2时,原式=7×2-13=1.【解析】利用平方差及完全平方公式化简,再把x=2代入求解即可.本题主要考查了整式的化简求值,解题的关键是正确的化简.21.【答案】解:(1)∵a-b=7,ab=-12,∴a2b-ab2=ab(a-b)=-12×7=-84;(2)∵a-b=7,ab=-12,∴(a-b)2=49,∴a2+b2-2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25-24=1,∴a+b=±1.【解析】(1)直接提取公因式ab,进而分解因式得出答案;(2)直接利用完全平方公式进而求出答案;(3)直接利用(2)中所求,结合完全平方公式求出答案.此题主要考查了完全平方公式以及提取公因式法分解因式,正确应用完全平方公式是解题关键.22.【答案】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°.【解析】由平行线的性质知∠DEF=∠EFB=20°,进而得到图b 中∠GFC=140°,依据图c 中的∠CFE=∠GFC-∠EFG 进行计算.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号) 三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC ,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号)三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.新九年级上册数学期中考试试题(答案)一、选择题(每小题3分,共30分)1.下列四个图形中是中心对称图形的为(A )2.方程2x 2=3x 的解为(D )A .x =0B .x =32C .x =-32D .x 1=0,x 2=323.(2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是(C )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5)4.(2018·淮安)若关于x 的一元二次方程x 2-2x -k +1=0有两个相等的实数根,则k 的值是(B )A .-1B .0C .1D .25.(2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-36.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD.下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC,第6题图) ,第9题图),第10题图)7.(2018·贵港)已知α,β是一元二次方程x 2+x -2=0的两个实数根,则α+β-αβ的值是(B )A .3B .1C .-1D .-38.(2018·赤峰)2017~2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有x 支,则可列方程为(B )A .12x(x -1)=380B .x(x -1)=380C .12x(x +1)=380 D .x(x +1)=380 9.如图,有一块边长为6 cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(C )A . 3 cm 2B .32 3 cm 2C .92 3 cm 2D .2723 cm 2 10.(2018·贵阳)已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是(D )A .-254<m <3B .-254<m <2 C .-2<m <3 D .-6<m <-2 二、填空题(每小题3分,共24分)11.已知x =1是关于x 的方程ax 2-2x +3=0的一个根,则a =-1.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为16.13.用一条长40 cm 的绳子围成一个面积为64 cm 2的矩形.设矩形的一边长为x cm ,则可列方程为x(20-x)=64.14.(2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是x 1=-2,x 2=1.,第14题图) ,第15题图) ,第17题图) ,第18题图)15.如图,在△ABC 中,AB =4,BC =7,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为3.16.(2018·内江)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为1.17.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.18.如图是抛物线y 1=ax 2+bx +c(a ≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x 轴的一个交点是B(4,0),直线y 2=mx +n(m ≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②方程ax 2+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x(ax +b)≤a +b ,其中正确的结论是②⑤.(只填写序号)三、解答题(共66分)19.(6分)用适当的方法解下列方程.(1)(2x +3)2-16=0; (2)2x 2=3(2x +1).(1)x 1=12,x 2=-72 解:(2)x 1=3+152,x 2=3-15220.(6分)已知2-5是一元二次方程x 2-4x +c =0的一个根,求它的另一个根及c 的值. 设方程的另一根为t ,则2-5+t =4,(2-5)t =c ,解得 t =2+ 5. c =-1.∴它的另一个根是2+5,c 的值是121.(6分)已知抛物线y =ax 2+bx +c ,当x =-1时,y =-22;当x =0时,y =-8;当x =2时,y =8.(1)求抛物线解析式;(2)判断点(-2,-40)是否在该抛物线上?说明理由.(1)将(-1,-22),(0,-8),(2,8)代入抛物线,得⎩⎨⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得⎩⎨⎧a =-2,b =12,c =-8,所以,抛物线解析式:y =-2x 2+12x -8 (2)把x =-2代入抛物线解析式,则有y =-40,所以点(-2,-40)在抛物线上22.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.已知△ABC.(1)作出△ABC 以O 为旋转中心,顺时针旋转90°的△A 1B 1C 1;(只画出图形)(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2(只画出图形),写出B 2和C 2的坐标.(1)△A 1B 1C 1如图所示 (2)△A 2B 2C 2如图所示,B 2(4,-1),C 2(1,-2)23.(8分)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 12+x 22=8,求m 的值.(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,解得m <12.∴m 的取值范围为m <12(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 12+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-124.(10分)(2018·遵义)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.。
九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在下表相应位置上)1.(3分)使有意义的x的取值范围是()B≥2.(3分)(2006•无锡)设一元二次方程x2﹣2x﹣4=0的两个实数为x1和x2,则下列结论==2=3.(3分)(2010•随州)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()B=3x==5.(3分)点P到⊙O的圆心O的距离为d,⊙O的半径为r,d与r的值是一元二次方程x26.(3分)当b<0时,化简等于()∴∴7.(3分)如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,tan∠OBM=,则AB的长是()=,AB8.(3分)如图,一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有()二、填空题(每题3分,共30分)9.(3分)=2..10.(3分)(2012•历下区二模)己知α是锐角,且,则α=45°.进行解答即可.11.(3分)小明沿着坡度为1:2的山坡向上走了100m,则他升高了20m.B==B==20mm12.(3分)(2008•濮阳)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC=20cm.13.(3分)最简二次根式与是同类二次根式,则xy=9.14.(3分)关于x的方程mx2﹣(2m﹣1)x+m﹣2=0有两个实数根,则m的取值范围是m且m≠0.﹣﹣m15.(3分)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为14.5cm.(16.(3分)如图,⊙O的直径AB与弦CD相交于点E,若AE=7,BE=1,cos∠AED=,则CD=2.AB=×AED=,,=CD=2DF=2.17.(3分)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为 2.3.EF=18.(3分)如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,则sin∠APD的值是.,BE==,=,BE==BE=,=ABF==APD=故答案为:三、解答题19.(8分)计算:.(﹣×﹣20.(8分)先化简,再求值:(),其中a满足a2+a﹣1=0.÷•21.(8分)关于x的一元二次方程x2﹣x+p﹣1=0有两个实数根x1、x2.(1)求p的取值范围;(2)若,求p的值.≤,22.(8分)如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.23.(10分)(2006•上海)已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=.求:(1)线段DC的长;(2)tan∠EDC的值.,∴EDC=tanC=.24.(10分)国家为了加强对房地产市场的宏观调控,抑制房价的过快上涨,规定购买新房满5年后才可上市转卖,对二手房买卖征收差价的x%的附加税.某城市在不征收附加税时,每年可成交10万套二手房;征收附加税后,每年减少0.1x万套二手房交易.现已知每套二手房买卖的平均差价为10万元.如果要使每年征收的附加税金为16亿元,并且要使二手房市场保持一定的活力,每年二手房交易量不低于6万套.问:二手房交易附加税的税率应确定为多少?25.(10分)(2011•宁波)如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.BE=26.(10分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(下面两小题的结果都精确到0.1米,参考数据:≈1.732)(1)若修建的斜坡BE的坡度为1:0.8,则平台DE的长为14.0米;(2)斜坡前的池塘内有一座建筑物GH,小明在平台E处测得建筑物顶部H的仰角(即∠HEM)为30°,测得建筑物顶部H在池塘中倒影H′的俯角为45°(即∠H′EM),测得点B、C、A、G、H、H′在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,求建筑物GH的高和AG的长.×=15×=15∴==,=1∴==×=3027.(12分)(2011•盘锦)已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A 逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.(1)如图(1),求证:△AGD≌△AEB;(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.CDH=CF×=.AC=2AO=5,=AC=5=ME=,(﹣•EF=28.(12分)如图,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,速度为2cm/s,同时点Q由A出发沿AC方向向点C匀速运动,速度为1cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤5).解答下列问题:(1)当t为何值时,△APQ是直角三角形?(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由;(3)把△APQ沿AB(或沿AC)翻折,翻折前后的两个三角形所组成的四边形能不能是菱形?若能,求出此时菱形的面积;若不能,请说明理由.APAE==,∴=t=,=,∴=t=,t=或××=t•×AD=AP=(=,∴=t=,A=×=×=×××=;AQ=,=,∴=t=,×)×=×,×××=;或.。
2016-2017学年江苏省苏州市吴江区九年级(上)期中数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分.)1.(3分)下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个 B.3个 C.4个 D.5个2.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α+β=()A.2 B.﹣2 C.3 D.﹣33.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.4.(3分)(x2+y2)2﹣4(x2+y2)﹣5=0,则x2+y2的值为()A.5 B.﹣1 C.5或﹣1 D.无法确定5.(3分)某商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是()A.9% B.10% C.11% D.12%6.(3分)如图,▱ABCD的一边AB为直径的⊙O过点C,若∠AOC=70°,则∠BAD 等于()A.145°B.140°C.135° D.130°7.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是()A.cm B.cm C.cm D.cm8.(3分)等边三角形的内切圆半径、外接圆半径和一边上的高的比为()A.1::B.1::2 C.1:2:3 D.1:2:9.(3分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°10.(3分)如图,以AB为直径的半圆绕A点,逆时针旋转60°,点B旋转到点B′的位置,已知AB=6,则图中阴影部分的面积为()A.6πB.5πC.4πD.3π二、填空题:(本大题共10小题,每小题3分,共30分.)11.(3分)方程x2=3x的根是.12.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2+3mn+n2=.13.(3分)已知关于x的一元二次方程m2x2+(2m﹣1)x+1=0有两个不相等的实数根,则m的取值范围是.14.(3分)甲、乙两同学解方程x2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和﹣10,则原方程为.15.(3分)已知⊙O的周长为12π,若点P到点O的距离为5,则点P在⊙O.16.(3分)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为.17.(3分)如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=.18.(3分)如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=.19.(3分)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=°.20.(3分)如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB的最大值为.三、解答题:(本大题共8小题,共70分,)21.(20分)解方程(1)x2﹣6x﹣18=0(配方法)(2)3(x﹣2)2=x(x﹣2)(3)x2+2x﹣5=0(4)(2x﹣3)2﹣2(2x﹣3)﹣3=0.22.(6分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为正,求实数m的取值范围?23.(7分)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.24.(7分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?25.(7分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.26.(7分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.27.(8分)已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.(1)试说明:DE=BF;(2)若∠DAB=60°,AB=6,求△ACD的面积.28.(8分)如图,△ABC中,∠C=90°,AC=4,BC=3.半径为1的圆的圆心P以1个单位/S的速度由点A沿AC方向在AC上移动,设移动时间为t(单位:s).(1)当t为何值时,⊙P与AB相切;(2)作PD⊥AC交AB于点D,如果⊙P和线段BC交于点E.求当t为何值时,四边形PDBE为平行四边形.2016-2017学年江苏省苏州市吴江区九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分.)1.(3分)下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个 B.3个 C.4个 D.5个【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选:B.2.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α+β=()A.2 B.﹣2 C.3 D.﹣3【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2.故选:B.3.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选:B.4.(3分)(x2+y2)2﹣4(x2+y2)﹣5=0,则x2+y2的值为()A.5 B.﹣1 C.5或﹣1 D.无法确定【解答】解:设=tx2+y2,则原方程可化为:(t﹣5)(t+1)=0,所以t=5或t=﹣1(舍去),即x2+y2=5.故选:A.5.(3分)某商品两次价格上调后,单位价格从4元变为4.84元,则平均每次调价的百分率是()A.9% B.10% C.11% D.12%【解答】解:设平均每次调价的百分率为x,依题意有4(1+x)2=4.84,解得x1=10%,x2=﹣2.1(不合题意,舍去).故平均每次调价的百分率是10%.故选:B.6.(3分)如图,▱ABCD的一边AB为直径的⊙O过点C,若∠AOC=70°,则∠BAD 等于()A.145°B.140°C.135° D.130°【解答】解:∵∠AOC=70°,∴∠B=∠AOC=35°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ABC+∠BAD=180°,∴∠BAD=145°,故选:A.7.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是()A.cm B.cm C.cm D.cm【解答】解:设AP=x,则PB=5x,那么⊙O的半径是(x+5x)=3x∵弦CD⊥AB于点P,CD=10cm∴PC=PD=CD=×10=5cm由相交弦定理得CP•PD=AP•PB即5×5=x•5x解得x=或x=﹣(舍去)故⊙O的半径是3x=3cm,故选:C.8.(3分)等边三角形的内切圆半径、外接圆半径和一边上的高的比为()A.1::B.1::2 C.1:2:3 D.1:2:【解答】解:如图,∵△ABC是等边三角形,∴△ABC的内切圆和外接圆是同心圆,圆心为O,设OE=r,AO=R,AD=h,∵AD⊥BC,∴∠DAC=∠BAC=×60°=30°,在Rt△AOE中,∴R=2r,OD=OE=r,∴AD=AO+OD=2r+r=3r,∴r:R:h=r:2r:3r=1:2:3,故选:C.9.(3分)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°【解答】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.10.(3分)如图,以AB为直径的半圆绕A点,逆时针旋转60°,点B旋转到点B′的位置,已知AB=6,则图中阴影部分的面积为()A.6πB.5πC.4πD.3π【解答】解:如图所示:∵以AB为直径的半圆绕A点,逆时针旋转60°,∴AB=AB′=6,∠BAB′=60°,==6π.∴图中阴影部分的面积为:S扇形B′AB故选:A.二、填空题:(本大题共10小题,每小题3分,共30分.)11.(3分)方程x2=3x的根是0或3.【解答】解:x2=3xx2﹣3x=0即x(x﹣3)=0∴x=0或3故本题的答案是0或3.12.(3分)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2+3mn+n2=﹣1.【解答】解:∵m,n是方程x2+2x﹣5=0的两个实数根,∴m+n=﹣2,mn=﹣5,∴m2+3mn+n2=(m+n)2+mn=(﹣2)2﹣5=﹣1.故答案为:﹣1.13.(3分)已知关于x的一元二次方程m2x2+(2m﹣1)x+1=0有两个不相等的实数根,则m的取值范围是m<且m≠0.【解答】解:∵a=m,b=2m﹣1,c=1,方程有两个不相等的实数根,∴△=b2﹣4ac=(2m﹣1)2﹣4m2=1﹣4m>0,∴m<.又∵二次项系数不为0,∴m≠0即m<且m≠0.14.(3分)甲、乙两同学解方程x2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和﹣10,则原方程为x2+9x+14=0.【解答】解:∵x2+px+q=0,甲看错了一次项,得两根2和7,∴q=2×7=14,∵x2+px+q=0,乙看错了常数项,得两根1和﹣10,∴p=﹣(1﹣10)=9,∴原一元二次方程为:x2+9x+14=0.故答案为:x2+9x+14=0.15.(3分)已知⊙O的周长为12π,若点P到点O的距离为5,则点P在⊙O的内部.【解答】解:∵⊙O的周长为12π,∴⊙O的半径为6,∵点P到圆心O的距离为5,∴点和圆心的距离小于6,∴点P在⊙O的内部.故答案是:的内部.16.(3分)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为10或11.【解答】解:将x=3代入x2﹣(m+1)x+2m=0中,得:9﹣3(m+1)+2m=0,解得:m=6,将m=6代入原方程,得x2﹣7x+12=(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,∴三角形的三边为:3,3,4或3,4,4(均满足两边之和大于第三边).∴C=3+3+4=10或C△ABC=3+4+4=11.△ABC故答案为:10或11.17.(3分)如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=50°.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.18.(3分)如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=33°.【解答】解:连接EO,∵AD=DO,∴∠BAC=∠DOA=22°,∴∠EDO=44°,∵DO=EO,∴∠OED=∠ODE=44°,∴∠DOE=180°﹣44°﹣44°=92°,∴∠EOG=180°﹣92°﹣22°=66°,∴∠EFG=∠EOG=33°,故答案为:33°.19.(3分)如图,以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=65°.【解答】解:连接DO,∵∠DAB=20°,∴∠DOB=40°,∴∠COD=90°﹣40°=50°,∵CO=DO,∴∠OCD=∠CDO,∴∠OCD=(180°﹣50°)÷2=65°.故答案为:65.20.(3分)如图,海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.为了避免触礁,轮船P与A、B的张角∠APB的最大值为40°.【解答】解:∵海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°.∴当P点在圆上时,不进入经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,轮船P与A、B的张角∠APB的最大,此时为∠AOB=80°的一半,为40°.故答案为:40°.三、解答题:(本大题共8小题,共70分,)21.(20分)解方程(1)x2﹣6x﹣18=0(配方法)(2)3(x﹣2)2=x(x﹣2)(3)x2+2x﹣5=0(4)(2x﹣3)2﹣2(2x﹣3)﹣3=0.【解答】解:(1)x2﹣6x﹣18=(x﹣3)2﹣27=0,∴(x﹣3)2=27,x﹣3=±3,∴x1=3+3,x2=﹣3+3.(2)原方程整理为:x2﹣5x+6=(x﹣2)(x﹣3)=0,解得:x1=3,x2=2.(3)x2+2x﹣5=(x+1)2﹣6=0,∴(x+1)2=6,x+1=±,∴x1=﹣1,x2=﹣﹣1.(4)设2x﹣3=y,则原方程变形为y2﹣2y﹣3=(y+1)(y﹣3)=0,解得:y1=﹣1,y2=3.当y=﹣1时,2x﹣3=﹣1,解得:x=1;当y=3时,2x﹣3=3,解得:x=3.∴方程(2x﹣3)2﹣2(2x﹣3)﹣3=0的解为3或1.22.(6分)关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为正,求实数m的取值范围?【解答】解:∵关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为正,∴a=1,b=2,c=1﹣2m,1﹣2m>0,∴m<,∴b2﹣4ac=4﹣4(1﹣2m)=8m≥0,即m≥0,∴m 的取值范围为:0≤m<.23.(7分)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.【解答】解:(1)证明:∵在方程x2﹣6x﹣k2=0中,△=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.24.(7分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?【解答】解:设每件童装应降价x元,由题意得:(40﹣x)(20+2x)=1200,解得:x=10或x=20.因为减少库存,所以应该降价20元.25.(7分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.【解答】解:(1)先作弦AB的垂直平分线;在弧AB上任取一点C连接AC,作弦AC的垂直平分线,两线交点作为圆心O,OA作为半径,画圆即为所求图形.(2)过O作OE⊥AB于D,交弧AB于E,连接OB.∵OE⊥AB∴BD=AB=×16=8cm由题意可知,ED=4cm设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2∴(x﹣4)2+82=x2解得x=10.即这个圆形截面的半径为10cm.26.(7分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.27.(8分)已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.(1)试说明:DE=BF;(2)若∠DAB=60°,AB=6,求△ACD的面积.【解答】(1)证明:∵弧CB=弧CD∴CB=CD,∠CAE=∠CAB(1分)又∵CF⊥AB,CE⊥AD∴CE=CF(2分)∴Rt△CED≌Rt△CFB(HL)∴DE=BF;(4分)(2)解:∵CE=CF,∠CAE=∠CAB∴△CAE≌△CAF∵AB是⊙O的直径∴∠ACB=90°∵∠DAB=60°∴∠CAB=30°,AB=6∴BC=3∵CF⊥AB于点F∴∠FCB=30°∴,∴S=S△ACE﹣S△CDE=S△ACF﹣S△CFB=•(AF﹣BF)•CF=(AB﹣2BF)•CF=.(8△ACD分)28.(8分)如图,△ABC中,∠C=90°,AC=4,BC=3.半径为1的圆的圆心P以1个单位/S的速度由点A沿AC方向在AC上移动,设移动时间为t(单位:s).(1)当t为何值时,⊙P与AB相切;(2)作PD⊥AC交AB于点D,如果⊙P和线段BC交于点E.求当t为何值时,四边形PDBE为平行四边形.【解答】解:(1)∵过P作PH⊥AB于H,又∵⊙P与AB相切,∴PH=1,∴∠AHP=∠C=90°,∠A=∠A,∴△APH∽△ABC,…(2分)∴,∵△ABC中,∠C=90°,AC=4,BC=3,∴AB==5,∴,∴AP=,∴当t=时,⊙P与AB相切;…(5分)(2)∵PD⊥AC,∠C=90°,∴PD∥BE,∴当PE∥AB时,四边形PDBE为平行四边形.∴△CPE∽△CAB,∴,∴,∴CP=,∴AP=AC﹣CP=,∴当t=时,四边形PDBE为平行四边形.…(9分)赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为 M FEB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
吴中区初三年级期中教学质量调研测试数学试卷2013.11 注意事项:1.本试卷满分130分,考试时间120分钟;2.答卷前将答题卡上的相关项目填涂清楚,所有解答均须写在答题卡上,在本试卷上答题无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.)1.若使二次根式在实数范围内有意义,则x的取值范围是( )A.x≥5 B.x>5 C.x<5 D.x≤52.下列计算中,正确的是( )A.=±2 B.3-2=1C.÷=4 D.=23.下列电视台图标中,属于中心对称图形的是( )4.若半径分别为6和8的两圆相切,则两圆的圆心距为( )A.14 B.2 C.14或2 D.7或15.用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x-1)2=6C.(x+2)2=9 D.(x-2)2=96.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差S2如下表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是( )A.甲B.乙C.丙D.丁7.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为( )A.40°B.50°C.60°D.80°8.小刚用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是( )A.120πcm2B.240πcm2C.260πcm2D.480πcm29.已知关于x的方程x2+mx+n=0有一个根是-n(n≠0),则下列代数式的值恒为常数的是( ) A.n+m B.C.n-m D.nm10.在平面直角坐标系中,以点(3,-5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径,.的取值范围是( )A.r>4 B.0<r<6 C.4≤r<6 D.4<r<6二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上.)11.一元二次方程x2-4=0的解是▲.12.计算:▲.13.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.96,2.10,2.31则这组数据的极差是▲.14.关于x的一元二次方程x2-4x-a=0无实数根,则实数a的取值范围是▲.15.若⊙O的半径是方程(2x+1)(x-4)=0的一个根,圆心O到直线l的距离为3,则直线l与⊙O 的位置关系是▲.16.若(a-3)2+,则=▲.17.如图,等腰梯形ABCD内接于半圆O,且AB=1,BC=2,则OA=▲.18.若⊙O的半径为R,则⊙O的内接正八边形的边长是▲.三、解答题(本大题共11小题,共76分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.)19.(本题满分520.(本题满分5分)解关于x的方程:(3x-1)(x+1)=4.21.(本题满分6分)关于x的一元二次方程mx2-(3m-1)x=1-2m,其根的判别式(即b2-4ac)的值为122.(本题满分6分)关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.23.(本题满分6分)某工程队在我市轻轨2号线建设过程中,承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2.求:(1)该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.24.(本题满分6分)某校九年级开展男、女学生数学学习竞赛.从全体九年级学生中随意抽取男生、女生各10名同学,进行“十分制”(满分10分)答题对抗赛,竞赛成绩结果(单位:分)如下:男生:2,4,6,8,7,7,8,9,9,10:女生:9,6,7,6,2,7,7,9,8,9.(1)男女两组学生的对抗赛成绩的方差各是多少?(2)规定成绩较稳定者胜出,你认为哪一组应胜出?说明理由.25.(本题满分7分)如图,点A、B、C是⊙O上的三点,AB//OC.(1)求证:AC平分∠OAB;(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.26.(本题满分8分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样小明就找到了一种把式子a+b化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a =▲,b=▲;(2)利用所探索的结论,找一组正整数a、b、m、n填空:▲+▲=(▲+▲)2;(3)若a+4=(m+n)2,且a、m、n均为正整数,求a的值.27.(本题满分8分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积.28.(本题满分9分)把一边长为60cm的正方形硬纸板,进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).(1)如图1,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子;①要使折成的长方体盒子的底面积为576cm2,那么剪掉的正方形的边长为多少?②设长方体盒子的侧面积为Scm2,试说明:S不可能大于1800 cm2.(2)如图2,若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分正好折成-个有盖的长方体盒子.若折成的一个长方体盒子的表面积为2800cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).29.(本题满分10分)如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=x-6,分别与x轴、y轴相交于A、B两点.动点C从点B出发沿射线B以3cm/秒的速度运动,以C点为圆心作半径为1cm的⊙C.(1)求A、B两点的坐标;(2)设⊙C运动的时间为t,当⊙C和坐标轴相切时,则时间t的值是▲:(直接写出答案,不必写推理过程.)(3)在点C运动的同时,另有动点P从O点出发沿射线OA以2cm/秒的速度运动,以P点为圆心作半径为3cm的⊙P;若点C与点P同时分别从点B、点O开始运动,问是否存在一点P,使⊙P 与⊙C相外切,如果存在,求点P的坐标;如果不存在,请说明理由.。
2016-2017学年度第一学期期中检测九年级数学试题(全卷共120分,考试时间90分钟)温馨提示:请把答案全部填涂在答题纸上,否则不给分.一、选择题(本题共8题,每题3分,共24分. 在每题给出的四个选项中,有且只有一项 是正确的,请将正确选项前的字母填写在答题卡上) 1. 一元二次方程x 2-9=0的根为A . x = 3B . x =-3C . x 1= 3,x 2 =-3D . x = 9 2. 如图,点A 、B 、C 是⊙O 上的三点,若∠BOC =80º,则∠A 的度数是 A .40º B .60º C .80º D .100º 3.用配方法解方程x 2-4x -1=0时,配方后得到的方程为A .(x +2)2= 3 B .( x +2)2 = 5 C .(x -2)2 = 3 D .( x -2)2 = 54.下列关于x 的一元二次方程有实数根的是A .x 2 + 1= 0B .x 2 + x + 1= 0C .x 2 - x + 1= 0D .x 2 -x -1= 05.在下列命题中,正确的是A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 6.对于二次函数 y =-(x +1)2-3 ,下列结论正确的是A .函数图像的顶点坐标是(-1,-3)B .当 x >-1时,y 随x 的增大而增大C .当x =-1时,y 有最小值为-3D .图像的对称轴是直线x = 17.如图,圆弧形桥拱的跨度AB = 16 m ,拱高CD = 4 m ,则圆弧形桥拱所在圆的半径为 A .6 m B .8 m C .10 m D .12 mB OCA( 第2题 )yx-3O-1( 第7题 ) ( 第8题 )ABDC8.如图是二次函数y = ax 2 + bx + c 图像的一部分,其对称轴为直线x =-1,且过点(-3,0),下列说法:① abc < 0;② 2a -b = 0;③ 4a + 2b + c < 0;④若(-5,y 1) ,(2.5,y 2)是抛物线上两点,则y 1 > y 2,其中说法正确的是 ( )A .①②③B .②③C .①②④D .①②③④ 二、填空题(每小题3分,共30分) 9. 方程x 2 = x 的解是_______________.10.已知扇形的圆心角为120º,半径为6 cm ,则该扇形的弧长为_______ cm (结果保留π). 11.一元二次方程2x 2 + 4x -1= 0的两根为x 1、x 2,则x 1 + x 2的值是_________. 12.圆锥的底面半径为3 cm ,母线长为5 cm ,则这个圆锥的侧面积是_________cm 2. 13. 抛物线y = x 2沿x 轴向右平移1个单位长度,则平移后抛物线对应的表达式是________. 14.一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x ,根据题意,可列方程是:_________________.15.若关于x 的一元二次方程x 2+2x +m = 0有两个相等的实数根,则m =______.16.如图,P A 、PB 是⊙O 的两条切线,A ,B 是切点,若∠APB = 60°,PO = 2,则PB =_________. 17.如图,半圆O 的直径AB =2,弦CD ∥AB ,∠COD =90°,则图中阴影部分的面积为_____.18. 已知二次函数y = ax 2+ bx + c 中,函数y 与自变量x 的部分对应值如下表:x … -2 -1 0 1 2 … y…1771-11…则当y < 7时,x 的取值范围是______________.( 第16题 ) ( 第17题 )C DB AO三、解答题(共66分)19. 解方程 (每题5分,共10分)(1) x 2 + 4x -2 = 0; (2) (x -1)(x +2) = 2(x +2)20. (6分)如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,CD =16,AB =20,求BE 的长.21. (8分) 如图,已知二次函数y = ax 2 + bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).(1) 求二次函数的表达式; (2) 画出二次函数的图像.EDO C( 第20题 )xyACB O( 第21题 )22. (8分) 如图,学校准备修建一个面积为48 m 2的矩形花园.它的一边靠墙,其余三边利用长20 m的围栏.已知墙长9 m ,问围成矩形的长和宽各是多少?23. (10分) 如图,在Rt △ABC 中,∠C = 90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D . (1) 判断直线BC 与⊙O 的位置关系,并说明理由; (2) 若AC = 3,∠B = 30°.① 求⊙O 的半径;② 设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积 ( 结果保留根号和π ) .( 第22题)( 第23题 )EOA24. (12分) 某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图像如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2) 为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x =5m+600,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?y(元/千度)千度)( 第24题)25. (12分) 在平面直角坐标系中,抛物线y =-x 2-2x + 3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1) 请直接写出点A ,C ,D 的坐标;(2) 如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3) 如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形? 若存在,求出点P 的坐标,若不存在,请说明理由.2016-2017学年度第一学期期中检测九年级数学试题参考答案及评分标准一、选择题(每题3分,共24分)( 图1 ) ( 图2 )( 第25题 )y x DCA OB yxDCA O B二、选择题 (每题3分,共30分)9. x 1=0,x 2=1; 10.4π; 11.-2; 12.15π; 13.y = (x -1)2; 14. 60 (1-x )2 = 48.6; 15. 1 ; 16.3; 17.41π ; 18. -1< x < 3. 三、解答题 (共66分) 19.解法一:(1)x 2+4x +4-4-2=··································································································································· 1分 (x +2)2=6··································································································································· 2分 x +2=6± ··································································································································· 3分 x 1=-26-,x 2=-26+··································································································································· 5分 解法二:a=1,b =4,c=-2··································································································································· 1分 △=42-4·1·(-2) = 24··································································································································· 2分 x=2244±- ··································································································································· 3分 x 1=62--,x 2 =62+- ··································································································································· 5分 (2)解:(x-1)(x +2)-2(x +2)=··································································································································· 1分 (x +2)(x-3)=··································································································································· 2分 x +2=,x-3=··································································································································· 3分 x 1=-2,x 2=3··································································································································· 5分20.解:连接OC ,∵AB是⊙O的直径,CD ⊥AB ,∴CE =21CD = 8··································································································································· 2分 ∵AB=20,∴OB=OC =10···································································································································∵∠OEC =90°,∴22810-=OE = 6··································································································································· 5分 又∵BE =OB-OE,∴BE =10-6=4··································································································································· 6分21. 解:(1)∵二次函数y =ax 2+ bx + c 的图像经过A (-1,2)、B (0,-1)、C (1,-2).∴⎪⎩⎪⎨⎧-=++-==+-212c b a c c b a ··································································································································· 3分解得⎪⎩⎪⎨⎧-=-==121c b a ··································································································································· 4分 ∴二次函数的表达式为y=x 2-2x-1··································································································································· 5分(2) 图像如图:··································································································································CyxAOB22. 解:设宽为x m,则长为(20-2x) m. ···································································································································1分由题意,得x·(20﹣2x) = 48, ···································································································································3分解得x1 = 4,x2 = 6. ···································································································································5分当x= 4时,20-2×4 = 12>9 (舍去), ···································································································································6分当x=6时,20-2×6= 8. ···································································································································7分答:围成矩形的长为8 m、宽为 6 m. ···································································································································8分23. 解:(1) 连结OD,∵OA=OD,∴∠OAD =∠ODA. ···································································································································1分∵∠BAC的角平分线AD交BC边于D,∴∠CAD =∠OAD. ···································································································································2分∴∠CAD =∠ODA ,∴OD ∥AC ,··································································································································· 3分∴∠ODB =∠C =90°,即OD ⊥BC .··································································································································· 4分又∵直线BC 过半径OD 的外端,∴直线BC 与⊙O 相切.··································································································································· 5分(2) ① 设OA = OD = r ,在Rt △BDO 中,∠B = 30°,∴OB = 2r .··································································································································· 6分在Rt △ACB 中,∠B =30°,∴AB = 2AC = 6.··································································································································· 7分∴3r = 6,解得r =2.··································································································································· 8分② 在Rt △ACB 中,∠B =30°,∴∠BOD = 60°.∴ππ322360602=⋅⋅︒=︒ODES 扇形. ··································································································································· 9分∴所求图形面积为π3232-=-∆ODE BOD S S 扇形.··································································································································· 10分。
九年级上学期数学期中考试试卷一、单项选择题1.以下方程中,属于一元二次方程的是〔〕A. x+1=0B. x2=2x﹣1C. 2y﹣x=1D. x2+3=2.方程x2=3x的解为〔〕A. x=3B. x=0C. x1=0,x2=﹣3D. x1=0,x2=33.如图,点、、在上,假设,那么的度数是〔〕A. 18°B. 36°C. 54°D. 72°4.九年级〔1〕班甲、乙、丙、丁四名同学几次数学测试成绩的平均数〔分〕及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选〔〕A. 甲B. 乙C. 丙D. 丁5.一元二次方程x2+kx﹣3=0的一个根是x=1,那么k的值为〔〕A. 2B. ﹣2C. 3D. ﹣36.圆锥的底面半径为3cm,母线长为6cm,那么圆锥的侧面积是〔〕A. 18cm2B.C. 27cm2D.7.如图,在边长为4的正方形中,以点为圆心,为半径画弧,交对角线于点,那么图中阴影局部的面积是〔结果保存〕〔〕A. B. C. D.8.10个大小相同的正六边形按如下列图方式紧密排列在同一平面内,A,B,C,D,E,O均是正六边形的顶点.那么点O是以下哪个三角形的外心〔〕.A. B. C. D.9.根据以下表格的对应值:判断方程x2+x-1=0一个解的取值范围是〔〕A. 0.59<x<0.60B. 0.60<x<0.61C. 0.61<x<0.62D. 0.62<x<0.6310.如图,菱形ABCD的边长为10,面积为80,∠BAD<90°,⊙O与边AB,AD都相切菱形的顶点A到圆心O的距离为5,那么⊙O的半径长等于〔〕A. 2.5B.C.D. 3二、填空题11.方程x2=9的解为12.假设⊙O的半径为3,点P为平面内一点,OP=2,那么点P在⊙O________〔填“上〞、“内部〞或“外部〞〕13.一组数据4,1,7,4,5,6那么这组数据的极差为________.14.三角形两边的长分别是3和4,第三边的长是方程的根,那么该三角形的周长为________.15.关于的一元二次方程有两个不相等的实数根,那么实数的取值范围是________.16.如图,△ABC内接于⊙O,∠BAC=30°,BC=2,那么⊙O的直径等于________.17.如图,AB是⊙O的直径,AB=20cm,弦BC=12cm,F是弦BC的中点.假设动点E以2cm/s的速度从A 点出发沿着AB方向运动,设运动时间为t〔s〕〔0≤t≤10〕,连接EF,当△BEF是直角三角形时,t〔s〕的值为________.18.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D -d.在平面直角坐标系xOy中,图形G为以原点O为圆心,2为半径的圆,那么点A(1,-1)到图形G的距离跨度是________.三、解答题19.解方程:〔1〕〔2〕20.〔1〕根据要求,解答以下问题:①方程的解为________;②方程的解为________;③方程的解为________;〔2〕根据以上方程特征及其解的特征,请猜想:①方程的解为________.②关于x的方程________的解为x1=1,x2=n;〔3〕请用配方法解方程,以验证猜想结论的正确性.21.为了了解某校八年级学生每周平均课外阅读时间的情况,随机抽取了50名八年级学生,对其每周平均课外阅读时间进行统计,并绘制成下面的统计图。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在下列方程中,一元二次方程是( )A.x2﹣2xy+y2=0 B.x(x+3)=x2﹣1 C.x2﹣2x=3 D.x+=0试题2:数据50,20,50,30,25,50,55的众数和中位数分别是( )A.50,30 B.50,40 C.50,50 D.50,55试题3:.已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在( )A.小圆内 B.大圆内 C.小圆外大圆内 D.大圆外试题4:一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A. B. C. D.试题5:方程2x2﹣3x+1=0经过配方化为(x+a)2=b的形式,正确的是( )A. B. C. D.试题6:如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB试题7:近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工王师傅2013年月退休金为1800元,2015年达到2460元.设王师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为( )A.2460(1﹣x)2=1800B.1800(1+x)2=2460C.1800(1﹣x)2=2460D.1800+1800(1+x)+1800(1+x)2=2460试题8:已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )A.2.5 B.5 C.10 D.15试题9:关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为( )A.6 B.5 C.4 D.3试题10:.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )A. B. C. D.试题11:方程x2=9的解为__________.试题12:方程:①x2+3x﹣1=0,②x2﹣6x+5=0,③2y2﹣3y+4=0,④x2+5=2x中,有实数解的共有__________个.试题13:已知⊙O的内接正六边形周长为12cm,则这个圆的半经是__________cm.试题14:已知2+是关于x的方程x2﹣4x+c=0的一个根,则c的值是__________.试题15:.数据:10,15,10,17,18,20的方差是__________.试题16:如图,正方形网格中每个小正方形边长都是l,则△ABC的外接圆的圆心坐标为__________.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=__________度.试题18:如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是__________.试题19:﹣+20160试题20:(﹣)÷.试题21:x2+8=4x试题22:2(x﹣3)2=﹣x(3﹣x)试题23:关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为4,求m的值.一次期中考试中,A、B、C、D、E五位同学的数学、语文成绩等有关信息如下表所示:(单位:分)A B C D E 极差平均数标准差数学71 72 69 68 70 __________ 70语文88 82 94 85 76 18 85 __________其中,表格中的“标准差”是方差的算术平方根.(1)填写表格中的空档;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合埋的选择,标准分的计算公式是:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与语文哪个学科考得更好?试题25:某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?试题26:如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.试题27:阅读下列材料,然后回答问题.先阅读下列第(1)题的解答过程,再解第(2)题.(1)已知实数a、b满足a2=2﹣2a,b2=2﹣2b,且a≠b,求+的值.解:由已知得:a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,故a、b是方程:x2+2x﹣2=0的两个不相等的实数根,由根与系数的关系得:a+b=﹣2,ab=﹣2.∴+===﹣4(2)已知p2﹣2p﹣5=0,且 p、q为实数,①若q2﹣2q﹣5=0,且p≠q,则:p+q=__________,pq=__________;②若5q2+2q﹣1=0,且pq≠1,求的值.试题28:如图,AB是⊙O的直径,∠ABT=45°,AT=AB(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,若⊙O的半径是2,求TC及AC2.试题29:己知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0.(1)若这个方程有实数解,求k的取值范围;(2)若这个方程的解是直线y=3x+1与x轴的交点的横坐标.是否存在k使反比例函数y=的图象在第2、4象限?如果存在求出k,如果不存在,说明理由.试题30:如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).(1)求C点的坐标;(2)求直线AC的函数关系式;(3)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?试题1答案:C【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、方程含有两个未知数,故不是;B、方程的二次项系数为0,故不是;C、符合一元二次方程的定义;D、不是整式方程.故选C.【点评】一元二次方程必须满足的条件:首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.试题2答案:C【考点】众数;中位数.【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:20,25,30,50,50,50,55,众数为:50,中位数为:50.故选C.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.试题3答案:C【考点】点与圆的位置关系.【分析】根据点与圆的位置关系确定方法,d>r,在圆外,d=r,在圆上,d<r,在圆内,即可得出点P与圆的位置关系.【解答】解:∵两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,∴r<OP<R,∴点P在小圆外大圆内.故选C.【点评】此题主要考查了点与圆的位置关系,正确运用点与圆位置关系是解决问题的关键.试题4答案:A【考点】概率公式.【分析】用黄球的个数除以球的总个数即可得到答案.【解答】解:∵一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是=,故选A.【点评】此题主要考查了概率公式的应用,关键是掌握概率公式:概率=所求情况数与总情况数之比.试题5答案:C【考点】解一元二次方程-配方法.【分析】首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.【解答】解:移项得2x2﹣3x=﹣1,把二次项系数化为1,x2﹣x=﹣,配方得x2﹣x+=﹣即(x﹣)2=,故选C.【点评】用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.试题6答案:B【考点】菱形的判定;垂径定理.【专题】压轴题.【分析】利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.【解答】解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.【点评】此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.试题7答案:B【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设王师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意可用x表示2015年的月退休金,然后根据已知可以得出方程.【解答】解:设王师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得2015年的月退休金为:1800(1+x)2,列出方程为:1800(1+x)2=2460.故选:B.【点评】考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.试题8答案:C【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故选C.【点评】本题的关键是明白侧面展开后得到一个半圆就是底面圆的周长.试题9答案:A【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣5)2﹣4k>0,解不等式得k<,然后在此范围内找出最大整数即可.【解答】解:根据题意得:△=(﹣5)2﹣4k>0,解得:k<.所以k可取的最大整数为6.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.试题10答案:B【考点】动点问题的函数图象.【分析】根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.【解答】解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.【点评】(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.试题11答案:±3.【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】此题直接用开平方法求解即可.【解答】解:∵x2=9,∴x=±3.【点评】解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.试题12答案:3个.【考点】根的判别式.【分析】分别求出四个方程的根的判别式△=b2﹣4ac与0的关系,进而作出判断.【解答】解:①x2+3x﹣1=0,△=b2﹣4ac=9+4=13>0;②x2﹣6x+5=0,△=b2﹣4ac=36﹣20=16>0;③2y2﹣3y+4=0,△=b2﹣4ac=9﹣32=﹣23<0;④x2+5=2x,△=b2﹣4ac=20﹣20=0;四个方程中①②④有实数解.故答案为3.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.试题13答案:2cm.【考点】正多边形和圆.【分析】首先求出∠AOB=×360°,进而证明△OAB为等边三角形,问题即可解决.【解答】解:如图,∵⊙O的内接正六边形ABCDEF的周长长为12cm,∴边长为2cm,∵∠AOB=×360°=60°,且OA=OB,∴△OAB为等边三角形,∴OA=AB=2,即该圆的半径为2,故答案为:2.【点评】本题考查了正多边形和圆,以正多边形外接圆、正多边形的性质等几何知识点为考查的核心构造而成;灵活运用有关定理来分析、判断、推理或解答是关键.试题14答案:1.【考点】一元二次方程的解;二次根式的化简求值.【分析】把2+代入方程,即可得到一个关于c的方程,求得c的值.【解答】解:把2+代入方程x2﹣4x+c=0得:(2+)2﹣4(2+)+c=0解得:c=1.故答案是:1.【点评】本题主要考查了方程的解的定义,正确求解c的值是解决本题的关键.试题15答案:.【考点】方差.【分析】先由平均数的公式计算出平均数的值,再根据方差的公式计算.【解答】解:平均数=(10+15+10+17+18+20)÷6=15,方差=[2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+2]=.故答案为:.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.试题16答案:(8.5,2).【考点】三角形的外接圆与外心;坐标与图形性质.【分析】由题意得出△ABC的外接圆的圆心在BC的垂直平分线上,得出圆心的纵坐标为2,设圆心的坐标为(x,2),由两点间的距离公式得出方程,解方程即可.【解答】解:∵△ABC的外接圆的圆心在BC的垂直平分线上,∴圆心D的纵坐标为2,设圆心的坐标为(x,2),∵圆心到点A和B的距离相等,∴(x﹣2)2+(2﹣4)2=(x﹣3)2+(2﹣6)2,解得:x=8.5,∴△ABC的外接圆的圆心坐标为(8.5,2).故答案为:(8.5,2).【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、三角形的外接圆的性质、两点间的距离公式;熟练掌握三角形的外心性质,两点间的距离公式得出方程是解决问题的关键.试题17答案:60度.【考点】圆周角定理;平行四边形的性质.【专题】计算题.【分析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数.【解答】解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.试题18答案:2﹣.【考点】二次函数的最值;坐标与图形性质;相似三角形的性质.【专题】动点型.【分析】根据三角形的面积公式,△ABE底边BE上的高AO不变,BE越小,则面积越小,可以判断当AD与⊙C相切时,BE的值最小,根据勾股定理求出AD的值,然后根据相似三角形对应边成比例列式求出OE的长度,代入三角形的面积公式进行计算即可求解.【解答】解:如图所示,当AD与⊙C相切时,线段BE最短,此时△ABE面积的最小,∵A(2,0),C(﹣1,0),⊙C半径为1,∴AO=2,AC=2+1=3,CD=1,在Rt△ACD中,AD===2,∵CD⊥AD,∴∠D=90°,∴∠D=∠AOE,在△AOE与△ADC中,,∴△AOE∽△ADC,∴=,即=,解得EO=,∵点B(0,2),∴OB=2,∴BE=OB﹣OE=2﹣,∴△ABE面积的最小值=×BE×AO=(2﹣)×2=2﹣.故答案为:2﹣.【点评】本题考查了坐标与图形的性质,勾股定理,相似三角形的判定与性质,根据相似三角形对应边成比例列式求出OE的长度是解题的关键.试题19答案:原式=2﹣+1=+1;试题20答案:原式=[﹣]•=•=•=.试题21答案:x2﹣4x+8=0,x2﹣4x+(2)2=0,(x﹣2)2=0,所以x1=x2=2;试题22答案:2(x﹣3)2﹣x(x﹣3)=0,(x﹣3)(2x﹣6﹣x)=0,x﹣3=0或2x﹣6﹣x=0,所以x1=3,x2=6.试题23答案:【考点】根的判别式.【分析】首先把原方程整理成一般形式,再根据判别式的定义得到△=(3m﹣1)2﹣4m(2m﹣1)=4,解方程求出m的值即可.【解答】解:一元二次方程mx2﹣(3m﹣1)x=1﹣2m的一般形式是mx2﹣(3m﹣1)x+2m﹣1=0,∵根的判别式的值为4,∴△=(3m﹣1)2﹣4m(2m﹣1)=4,整理得:m2﹣2m﹣3=0,解得:m=3,或m=﹣1.即m的值为3或﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.试题24答案:【考点】标准差;算术平均数;极差.【分析】(1)由平均数、标准差的公式计算即可;(2)代入公式:标准分=(个人成绩﹣平均成绩)÷成绩标准差,再比较即可.【解答】解:(1)极差=72﹣68=4,平均分=(71+72+…+70)÷5=70,标准差=6,故答案为:4;6;(2)∵数学标准分=,英语标准分=0.5,∴数学更好.【点评】计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)计算偏差,即每个数据与平均数的差;(3)计算偏差的平方和;(4)偏差的平方和除以数据个数.标准差即方差的算术平方根;注意标准差和方差一样都是非负数.试题25答案:【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)直接根据题意先求出增加的租金是6个5000,从而计算出租出多少间;(2)设每间商铺的年租金增加x万元,直接根据收益=租金﹣各种费用=275万元作为等量关系列方程求解即可.【解答】解:(1)∵(130000﹣100000)÷5000=6,∴能租出30﹣6=24(间).(2)设每间商铺的年租金增加x万元,则每间的租金是(10+x)万元,5000元=0.5万元,有间商铺没有出租,出租的商铺有(30﹣)间,出租的商铺需要交(30﹣)×1万元费用,没有出租的需要交×0.5万元的费用,则(30﹣)×(10+x)﹣(30﹣)×1﹣×0.5=2752x2﹣11x+5=0解得:x1=5,x2=0.55+10=15万元; 0.5+10=10.5万元∴每间商铺的年租金定为10.5万元或15万元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题中的等量关系题目中已经给出,相对降低了难度.试题26答案:【考点】扇形面积的计算;线段垂直平分线的性质;解直角三角形.【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,解直角三角形求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【解答】解:(1)∵直径AB⊥DE,∴CE=DE=.∵DE平分AO,∴CO=AO=OE.又∵∠OCE=90°,∴sin∠CEO==,∴∠CEO=30°.在Rt△COE中,OE===2.∴⊙O的半径为2.(2)连接OF.在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=×π×22=π.∵∠EOF=2∠D=90°,OE=OF=2,∴S Rt△OEF=×OE×OF=2.∴S阴影=S扇形OEF﹣S Rt△OEF=π﹣2.【点评】此题综合考查了垂径定理和解直角三角形及扇形的面积公式.试题27答案:【考点】根与系数的关系.【专题】阅读型.【分析】①把p、q看作方程x2﹣2x﹣5=0的两根,根据•根与系数的关系得到p+q=2,pq=﹣5;②先把5q2+2q﹣1=0变形为()2﹣2•﹣5=0,则p、可看作方程x2﹣2x﹣5=0的两根,根据根与系数关系得到p+=2,p•=﹣5,再利用完全平方公式变形得=(p+)2﹣2p•,然后利用整体代入的方法计算.【解答】解:①∵p2﹣2p﹣5=0,q2﹣2q﹣5=0,p≠q,∴p、q可看作方程x2﹣2x﹣5=0的两根,∴p+q=2,pq=﹣5;故答案为2,﹣5;②∵5q2+2q﹣1=0,∴()2﹣2•﹣5=0,而pq≠1,∴p、可看作方程x2﹣2x﹣5=0的两根,∴p+=2,p•=﹣5,∴=(p+)2﹣2p•=22﹣2×(﹣5)=14.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.试题28答案:【考点】切线的判定.【分析】(1)根据等腰直角三角形的性质求出∠BAT=90°,根据切线的判定定理证明即可;(2)根据勾股定理求出TC的长;作CD⊥AT于D,根据平行线分线段成比例定理求出CD、AD的长,根据勾股定理计算即可.【解答】(1)证明:∵∠ABT=45°,AT=AB,∴∠ATB=∠ABT=45°,∴∠BAT=90°,∴AT是⊙O的切线;(2)解:∵⊙O的半径是2,∴AT=AB=4,∵∠OAT=90°,∴OT==2,∴TC=OT﹣OC=2﹣2,作CD⊥AT于D,则AO∥CD,∴==,即==,解得,CD=,AD=,由勾股定理得,AC2=CD2+AD2=.【点评】本题考查的是切线的判定和平行线分线段成比例定理的应用,掌握经过半径的外端且垂直于这条半径的直线是圆的切线、灵活运用平行线分线段成比例定理是解题的关键.试题29答案:【考点】根的判别式;一次函数图象上点的坐标特征;反比例函数的性质.【分析】(1)根据判别式的意义得出△=[﹣2(k﹣3)]2﹣4×1×(k2﹣4k﹣1)≥0,解不等式即可;(2)先求出直线y=3x+1与x轴的交点坐标为﹣,再代入一元二次方程得出关于k的方程,解方程求出k的值,然后代入反比例函数检验即可.【解答】解:(1)根据题意得:△=[﹣2(k﹣3)]2﹣4×1×(k2﹣4k﹣1)≥0,整理得:﹣2k+10≥0,解得:k≤5.即若这个方程有实数解,k的取值范围为k≤5;(2)存在;理由如下:∵直线y=3x+1,当y=0时,3x+1=0,解得:x=﹣,∴直线y=3x+1与x轴的交点坐标为﹣,∴(﹣)2﹣2(k﹣3)×(﹣)+k2﹣4k﹣1=0.整理得:9k2﹣30k﹣26=0,解得:k=,或k=,当k=时,3k+2=3×+2=7+>0,此时不符合题意;当k=时,3k+2=3×+2=7﹣<0,此时符合题意;∴当k=时,反比例函数y=的图象在第2、4象限.【点评】此题主要考查了一元二次方程跟的判别式、一次函数图象上点的坐标特征、反比例函数的性质;熟练掌握一元二次方程跟的判别式,求出直线与x轴的交点横坐标得出关于k的方程是解决问题(2)的关键.试题30答案:【考点】圆的综合题.【分析】(1)在Rt△AOD中,根据OA的长以及∠BAD的正切值,即可求得OD的长,从而得到D点的坐标,然后由菱形的邻边相等和对边相互平行来求点C的坐标;(2)根据点A、C的坐标,利用待定系数法可求得直线AD的解析式.(3)由于点P沿菱形的四边匀速运动一周,那么本题要分作四种情况考虑:在Rt△OAD中,易求得AD的长,也就得到了菱形的边长,而菱形的对角线平分一组对角,那么∠DAC=∠BAC=∠BCA=∠DCA=30°;①当点P在线段AD上时,若⊙P与AC相切,由于∠PAC=30°,那么AP=2R(R为⊙P的半径),由此可求得AP的长,即可得到t的值;②③④的解题思路与①完全相同,只不过在求t值时,方法略有不同.【解答】解:(1)∵点A的坐标为(﹣2,0),∠BAD=60°,∠AOD=90°,∴OD=OA•tan60°=2,AD=4,∴点D的坐标为(0,2),又∵AD=CD,CD∥AB,∴C(4,2);(2)设直线AC的函数表达式为y=kx+b(k≠0),∵A(﹣2,0),C(4,2),∴,解得.故直线AC的解析式为:y=x+;(3))∵四边形ABCD是菱形,∴∠DCB=∠BAD=60°,∴∠1=∠2=∠3=∠4=30°,AD=DC=CB=BA=4,如图所示:①点P在AD上与AC相切时,连接P1E,则P1E⊥AC,P1E=r,∵∠1=30°,∴AP1=2r=2,∴t1=2.②点P在DC上与AC相切时,CP2=2r=2,∴AD+DP2=6,∴t2=6.③点P在BC上与AC相切时,CP3=2r=2,∴AD+DC+CP3=10,∴t3=10.④点P在AB上与AC相切时,AP4=2r=2,∴AD+DC+CB+BP4=14,∴t4=14,∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切.【点评】此题主要考查了一次函数解析式的确定、解直角三角形、菱形的性质、切线的判定和性质等;需要注意的是(3)题中,点P是在菱形的四条边上运动,因此要将所有的情况都考虑到,以免漏解.。
2016-2017学年第一学期期中调研卷九年级数学一、 选择题(每题3分,共30分)1.下列方程为一元二次方程的是A .0222=+-y xy x B.1)3(2-=+x x x C .223x x -= D. 10x x += 2.方程(x -2)(x +3)=0的解是( )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-3 3.一元二次方程x 2﹣4x+5=0的根的情况是( )A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根4.抛物线y=x 2-6x + 5的顶点坐标为( )A .(3,-4)B .(-3,4)C .(3,4)D .(-3,-4)5.Rt △ABC 中,∠C=90°,tanA=43,AC=6cm ,那么BC 等于( ) A .8cm B .24186..555cm C cm D cm 6.下列函数中,当x >0时,y 随x 增大而减小的是( )A .y =x 2B .y =x -1C .y =34xD . y =1x 7. 用20 cm 长的绳子围成一个矩形,如果这个矩形的一边长为x cm ,面积是S cm 2,则S 与x 的函数关系式为( )A .S = x (20-x )B .S = x (20-2x )C .S = x (10-x )D .S = 2x (10-x )8.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x (m)之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是 A .2m B .8m C .10m D .12m9.如图,一次函数y =x 与二次函数y =ax 2+bx +c 图象相交于A 、B 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )10.已知抛物线3(1)()y a x x a =+-)与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的a 的值有 ( ) O O OOOA. 2个 B .3个 C .4个 D .5个二、填空题(每题3分,共24分)11.方程x 2=10x 的根是 .12.将抛物线y=x 2先向上平移2个单位,所得抛物线的解析式为 .13.在△ABC 中,∠C=90°,AC=5,BC=12,则sinA= .14. 若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为 .15.若二次函数y =ax 2+bx +c 的x 与y 的部分对应值如表,则当x =-1时,y 的值为 .16.若m ,n 是方程x 2 + x -3=0的两个实数根,则m 2 + 2m + n 的值为17.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,可列出的方程是 。
江苏省苏州市吴中区2016-2017学年九年级(上)期中数学试卷(解析版)一、选择题1.下列方程中,是一元二次方程的是()A.x2+=0 B.ax2+bx+c=0C.(x﹣1)(x﹣2)=1 D.3x2﹣2xy﹣5y2=02.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.80°C.40°D.50°3.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=74.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有一个实数根C.有两个相等的实数根D.没有实数根5.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A.10 B.5 C.12 D.56.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm27.在平面直角坐标系中,⊙O的半径为5,圆心O为坐标原点,则点P(3,﹣4)与⊙O 的位置关系是()A.点P在⊙O上 B.点P在⊙O外部C.点P在⊙O内部D.不能确定8.如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD 的周长是36,则AP的长为()A.12 B.18 C.24 D.99.下列说法一定正确的是()A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等10.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN 的长度为()A.πB.πC.π D.π二、填空题11.方程x2=x的解是.12.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为.13.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.14.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为.15.直角三角形的两直角边长分别为6和8,它的外接圆的半径是.16.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=.17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.18.如图,P为⊙O的直径AB延长线上的一点,PC切⊙O于点C,弦CD⊥AB,垂足为点E,若PC=3,PB=2.则圆的半径为.19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=.20.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.三、解答题(共70分)21.(8分)解下列方程:(1)x2﹣4x﹣3=0;(2)(x﹣1)(x+2)=2(x+2).22.(8分)已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.23.(8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.24.(9分)如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)画出圆弧所在圆的圆心P;(2)过点B画一条直线,使它与该圆弧相切;(3)连结AC,求线段AC和弧AC围成的图形的面积.25.(8分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?26.(9分)如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE ⊥BC,垂足为E.(1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由;(3)求线段CE 的长.27.(10分)如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连AD . (1)求证:AD=AN ;(2)若AB=4,ON=1,求⊙O 的半径;(3)若S △CMN :S △ADN =1:8,且AE=4,求CM .28.(10分)如图,Rt △ABC 的内切圆⊙O 与AB 、BC 、CA 分别相切于点D 、E 、F ,且∠ACB=90°,AB=5,BC=3,点P 在射线AC 上运动,过点P 作PH ⊥AB ,垂足为H . (1)直接写出线段AD 及⊙O 半径的长;(2)设PH=x ,PC=y ,求y 关于x 的函数关系式;(3)当PH 与⊙O 相切时,求相应的y 值.2016-2017学年江苏省苏州市吴中区九年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列方程中,是一元二次方程的是()A.x2+=0 B.ax2+bx+c=0C.(x﹣1)(x﹣2)=1 D.3x2﹣2xy﹣5y2=0【考点】一元二次方程的定义.【分析】根据一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件进行解答.【解答】解:A、不是关于x的一元二次方程,故此选项错误;B、a=0时不是一元二次方程,故此选项错误;C、是一元二次方程,故此选项正确;D、不是一元二次方程,故此选项错误;故选:C.【点评】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A.60°B.80°C.40°D.50°【考点】三角形的外接圆与外心.【分析】由OB=OC,∠OCB=40°,根据等边对等角与三角形内角和定理,即可求得∠BOC 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,求得∠A的度数.【解答】解:∵OB=OC,∠OCB=40°,∴∠OBC=∠OCB=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选D.【点评】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.3.用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x﹣1)2=1 D.(x﹣1)2=7【考点】解一元二次方程-配方法.【分析】利用配方法解已知方程时,首先将﹣3变号后移项到方程右边,然后方程左右两边都加上一次项系数一半的平方1,左边化为完全平方式,右边合并为一个非负常数,即可得到所求的式子.【解答】解:x2﹣2x﹣3=0,移项得:x2﹣2x=3,两边都加上1得:x2﹣2x+1=3+1,即(x﹣1)2=4,则用配方法解一元二次方程x2﹣2x﹣3=0时,方程变形正确的是(x﹣1)2=4.故选:B【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.4.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有一个实数根C.有两个相等的实数根D.没有实数根【考点】根的判别式.【分析】要判断方程x2﹣4x+4=0的根的情况就要求出方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:∵a=1,b=﹣4,c=4,∴△=16﹣16=0,∴方程有两个相等的实数根.故选C.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=8,且AE:BE=1:4,则AB的长度为()A.10 B.5 C.12 D.5【考点】垂径定理;勾股定理.【分析】连接OC,设AE=x,表示出半径,在Rt△OCE中,用勾股定理得出x的值,从而得出AB的长.【解答】解:连接OC,设AE=x,∵AE:BE=1:4,∴BE=4x,∴OC=2.5x,∴OE=1.5x,∵CD⊥AB,∴CE=DE,∵CD=8,∴CE=4,Rt△OCE中,OE2+CE2=OC2,∴(1.5x)2+42=(2.5x)2,∴x=2,∴AB=10,故选A.【点评】本题考查了勾股定理以及垂径定理,掌握勾股定理以及垂径定理的用法是解题的关键.6.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.15cm2D.15πcm2【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×5÷2=15π.故选D.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.7.在平面直角坐标系中,⊙O的半径为5,圆心O为坐标原点,则点P(3,﹣4)与⊙O 的位置关系是()A.点P在⊙O上 B.点P在⊙O外部C.点P在⊙O内部D.不能确定【考点】点与圆的位置关系;坐标与图形性质.【分析】先根据勾股定理求出OP的长,再与⊙P的半径为5相比较即可.【解答】解:∵圆心P的坐标为(3,﹣4),∴OP==5.∵⊙P的半径为5,∴原点O在⊙P上.故选A.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.8.如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD 的周长是36,则AP的长为()A.12 B.18 C.24 D.9【考点】切线的性质.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解即可.【解答】解:∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=36,∴PA=PB=18,故选B.【点评】此题主要考查了切线长定理的应用,能够将△PCD的周长转换为切线PA、PB的长是解答此题的关键.9.下列说法一定正确的是()A.三角形的内心是三内角角平分线的交点B.过三点一定能作一个圆C.同圆中,同弦所对的圆周角相等D.三角形的外心到三边的距离相等【考点】三角形的内切圆与内心;角平分线的性质;三角形的外接圆与外心.【分析】分别根据确定圆的条件、垂径定理、三角形的外心与内心的定义对各选项进行逐一分析即可.【解答】解:A、符合内心的定义,故本选项正确.B、不在同一直线上的三点确定一个圆,故本选项错误;C、同圆中,同弦所对的圆周角不一定相等,故本选项错误;D、不符合外心的定义,故本选项错误;故选A.【点评】本题考查的是三角形的内切圆与内心,熟知三角形三个内角角平分线的交点叫三角形的内心是解答此题的关键.10.如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧MN 的长度为()A.πB.πC.π D.π【考点】正多边形和圆;切线的性质;弧长的计算.【分析】连接OM,ON,首先根据切线的性质和正五边形的性质求得圆心角的度数,然后利用弧长公式进行计算.【解答】解:如图:连接OM,ON,∵⊙O与正五边形ABCDE的边AB、AE相切于点M、N,∴OM⊥AB,ON⊥AC,∵∠A=108°,∴∠MON=72°,∵半径为1,∴劣弧MN的长度为:=π,故选B.【点评】本题考查了正多边形和圆的知识,解题的关键是能够连接OM和ON,从而求得劣弧所在扇形的圆心角,利用扇形弧长公式求解.二、填空题11.方程x2=x的解是x1=0,x2=1.【考点】解一元二次方程-因式分解法.【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.12.若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为﹣2.【考点】根与系数的关系.【分析】设关于x的方程x2+3x+a=0的两根分别为m、n,由根与系数的关系可得出m+n=﹣3,结合m=﹣1,即可得出结论.【解答】解:设关于x的方程x2+3x+a=0的两根分别为m、n,由已知得:,解得:n=﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系以及解一元一次方程,解题的关键是得出方程两根之和为﹣3.本题属于基础题,难度不大,解决该题型题目时,由根与系数的关系得出两根之和与两根之积是关键.13.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是相离.【考点】直线与圆的位置关系.【分析】先求出⊙O的半径,再根据圆心O到直线l的距离为3即可得出结论.【解答】解:∵⊙O的直径是4,∴⊙O的半径r=2,∵圆心O到直线l的距离为3,3>2,∴直线l与⊙O相离.故答案为:相离.【点评】本题考查的是直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.14.一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,设平均每次降价的百分率为x,则列方程为60(1﹣x)2=48.6.【考点】由实际问题抽象出一元二次方程.【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降价的百分率)=48.6,把相应数值代入即可求解.【解答】解:第一次降价后的价格为60×(1﹣x),二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x),所以可列方程为60(1﹣x)2=48.6.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15.直角三角形的两直角边长分别为6和8,它的外接圆的半径是5.【考点】三角形的外接圆与外心.【分析】首先根据勾股定理,得斜边是10,再根据其外接圆的半径是斜边的一半,得出其外接圆的半径.【解答】解:∵直角边长分别为6和8,∴斜边是10,∴这个直角三角形的外接圆的半径为5.故答案为:5.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.16.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=90°.【考点】圆周角定理;坐标与图形性质.【分析】由经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧上一点,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.【解答】解:∵∠AOB=90°,∴∠ACB=∠AOB=90°.故答案为:90°.【点评】此题考查了圆周角的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.17.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=70度.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】首先连接BD,由AB为⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB 的度数,继而求得∠ABD的度数,由圆的内接四边形的性质,求得∠C的度数,然后由点C为的中点,可得CB=CD,即可求得∠CBD的度数,继而求得答案.【解答】解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠A=40°,∴∠ABD=90°﹣∠A=50°,∠C=180°﹣∠A=140°,∵点C为的中点,∴CD=CB,∴∠CBD=∠CDB=20°,∴∠ABC=∠ABD+∠CBD=70°.故答案为:70°.【点评】此题考查了圆周角定理、圆的内接四边形的性质以及弧与弦的关系.注意准确作出辅助线是解此题的关键.18.如图,P为⊙O的直径AB延长线上的一点,PC切⊙O于点C,弦CD⊥AB,垂足为点E,若PC=3,PB=2.则圆的半径为.【考点】切线的性质;勾股定理;垂径定理.【分析】首先连接OC,由PC切⊙O于点C,OC⊥PC,然后设圆的半径为x,由勾股定理可得方程:x2+32=(x+2)2,解此方程即可求得答案.【解答】解:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴OC2+PC2=OP2,设圆的半径为x,则OC=x,OP=OB+PB=x+2,∴x2+32=(x+2)2,解得:x=,∴圆的半径为:.故答案为:.【点评】此题考查了切线的性质以及勾股定理的应用.注意准确作出辅助线,利用方程思想求解是解此题的关键19.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=8.【考点】根与系数的关系;一元二次方程的解.【分析】根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.【解答】解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=(5﹣2m)﹣(﹣5)+3m+n=10+m+n=10﹣2=8故答案为:8.【点评】此题主要考查了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.20.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.【考点】一次函数综合题.【分析】根据直线y=kx﹣3k+4必过点D(3,4),求出最短的弦CB是过点D且与该圆直径垂直的弦,再求出OD的长,再根据以原点O为圆心的圆过点A(13,0),求出OB的长,再利用勾股定理求出BD,即可得出答案.【解答】解:∵直线y=kx﹣3k+4=k(x﹣3)+4,∴k(x﹣3)=y﹣4,∵k有无数个值,∴x﹣3=0,y﹣4=0,解得x=3,y=4,∴直线必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦,∵点D的坐标是(3,4),∴OD=5,∵以原点O为圆心的圆过点A(13,0),∴圆的半径为13,∴OB=13,∴BD=12,∴BC的长的最小值为24;故答案为:24.【点评】此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出BC最短时的位置.三、解答题(共70分)21.解下列方程:(1)x2﹣4x﹣3=0;(2)(x﹣1)(x+2)=2(x+2).【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)将方程的左边配成完全平方式即可求解;(2)移项然后提取公因式即可求解.【解答】解:(1)∵x2﹣4x﹣3=0,∴x2﹣4x+4﹣4﹣3=0,∴(x﹣2)2=7,∴x﹣2=±∴x1=2﹣,x2=2+;(2)∵(x﹣1)(x+2)=2(x+2),∴(x+2)(x﹣1﹣2)=0,∴x+2=0或x﹣3=0,∴x1=﹣2,x2=3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.【考点】解一元二次方程-因式分解法;根的判别式;三角形三边关系.【分析】(1)若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,即可求出k的取值范围.(2)由于AB=2是方程kx2﹣4x+2=0,所以可以确定k的值,进而再解方程求出BC的值.【解答】解:(1)∵方程有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×k×2=16﹣8k≥0,解得:k≤2,又因为k是二次项系数,所以k≠0,所以k的取值范围是k≤2且k≠0.(2)由于AB=2是方程kx2﹣4x+2=0,所以把x=2代入方程,可得k=,所以原方程是:3x2﹣8x+4=0,解得:x1=2,x2=,所以BC的值是.【点评】本题主要考查了一元二次方程的根的判别式的应用,容易出现的错误是忽视根的判别式应用的前提条件:二次项系数k≠0.23.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.【考点】圆周角定理;勾股定理;垂径定理.【分析】(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD 中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.【解答】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AOD=∠B=70°,∴∠CAB=90°﹣∠B=90°﹣70°=20°,∵OA=OD,∴∠DAO=∠ADO===55°,∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===2,∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=4,∴DE=OD﹣OE=4﹣.【点评】本题主要考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是解答此题的关键.24.如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)画出圆弧所在圆的圆心P;(2)过点B画一条直线,使它与该圆弧相切;(3)连结AC,求线段AC和弧AC围成的图形的面积.【考点】作图—复杂作图;垂径定理;切线的判定;扇形面积的计算.【分析】(1)连接BC,作BC的垂直平分线,交坐标轴与P,P即为圆心;(2)先连接BP,再过B点作BP的垂线即为所求过点B且与该弧相切的直线;(3)首先得出∠APC=90°,进而利用扇形面积以及三角形面积公式求出即可.【解答】解:(1)连接BC,作BC的垂直平分线,再利用网格得出AB的垂直平分线,即可得出交点P的位置;(2)如图所示:EF即为所求;(3)连接AP,PC,AC,∵AP=,PC=,AC=,∴AP2+PC2=AC2,∴△APC是直角三角形,∴∠APC=90°,==,∴S扇形APCS=××=,△APC∴线段AC和弧AC围成的图形的面积为:﹣.【点评】本题主要考查作图﹣复杂作图以及等腰直角三角形的判定和扇形面积与三角形面积求法等知识,关键是根据题意确定出圆心P的位置.25.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【考点】一元二次方程的应用.【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【解答】解:设购买了x件这种服装且多于10件,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=20时,80﹣2(20﹣10)=60元>50元,符合题意;当x=30时,80﹣2(30﹣10)=40元<50元,不合题意,舍去;答:她购买了20件这种服装.【点评】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.26.如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且弧BD=弧AD,过点D作DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)求线段CE的长.【考点】圆的综合题.【分析】(1)根据四边形ABCD是⊙O内接四边形,可得∠DCE=∠BAD,根据弧BD=弧AD,可得∠BAD=∠ACD,等量代换得到∠DCE=∠ACD,从而求解;(2)直线ED与⊙O相切.连接OD.根据圆的性质和等边对等角可得∠ODC=∠OCD,等量代换得到∠DCE=∠ODC,根据平行线的判定和性质得到∠ODE=∠DEC,再根据垂直的定义和性质可得OD⊥DE,根据切线的判定即可求解;(3)延长DO交AB于点H.根据三角形中位线定理可得HO=BC=3,根据勾股定理可得OD,得到HD,再根据矩形的判定和性质得到BE=HD=8,从而得到CE的长.【解答】解:(1)∵四边形ABCD是⊙O内接四边形,∴∠BAD+∠BCD=180°,又∵∠BCD+∠DCE=180°,∴∠DCE=∠BAD,∵弧BD=弧AD,∴∠BAD=∠ACD,∴∠DCE=∠ACD,∴CD平分∠ACE.(2)直线ED与⊙O相切.连接OD.∵OC=OD,∴∠ODC=∠OCD,又∵∠DCE=∠ACD,∴∠DCE=∠ODC,∵OD∥BE,∴∠ODE=∠DEC,又∵DE⊥BC,∴∠DEC=90°,∴∠ODE=90°∴OD⊥DE,∴ED与⊙O相切.(3)延长DO交AB于点H.∵OD∥BE,O是AC的中点,∴H是AB的中点,∴HO是△ABC的中位线,∴HO=BC=3,又∵AC为直径,∴∠ADC=90°,又∵O是AC的中点∴OD=AC=×=5,∴HD=3+5=8,∵∠ABC=∠DEC=∠ODE=90°,∴四边形BEDH 是矩形,∴BE=HD=8,∴CE=8﹣6=2.【点评】考查了圆的综合题,涉及的知识点有:内接四边形的性质,等弧对等角,圆的性质和等边对等角,平行线的判定和性质,垂直的定义和性质,切线的判定,三角形中位线定理,勾股定理,矩形的判定和性质.综合性较强,有一定的难度.27.(10分)(2016秋•吴中区期中)如图,⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连AD .(1)求证:AD=AN ;(2)若AB=4,ON=1,求⊙O 的半径;(3)若S △CMN :S △ADN =1:8,且AE=4,求CM .【考点】相似三角形的判定与性质;勾股定理;垂径定理.【分析】(1)先根据圆周角定理得出∠BAD=∠BCD ,再由直角三角形的性质得出∠ANE=∠CNM ,故可得出∠BCD=∠BAM ,由全等三角形的判定定理得出△ANE ≌△ADE ,故可得出结论;(2)先根据垂径定理求出AE 的长,设NE=x ,则OE=x ﹣1,NE=ED=x ,r=OD=OE +ED=2x ﹣1,连结AO ,则AO=OD=2x ﹣1,在Rt △AOE 中根据勾股定理可得出x 的值,进而得出结论;(3)根据线段垂直平分线的判定得到AE 平分ND ,于是得到S △AEN =S △ADE 通过△CMN ∽△AEN ,即可得到结论.【解答】(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角,∴∠BAD=∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM ,∴∠BCD=∠BAM ,∴∠BAM=BAD ,在△ANE 与△ADE 中,,∴△ANE ≌△ADE ,∴AD=AN ;(2)解:∵AB=4,AE ⊥CD ,∴AE=2, 又∵ON=1,∴设NE=x ,则OE=x ﹣1,NE=ED=x ,r=OD=OE +ED=2x ﹣1连结AO ,则AO=OD=2x ﹣1,∵△AOE 是直角三角形,AE=2,OE=x ﹣1,AO=2x ﹣1,∴(2)2+(x ﹣1)2=(2x ﹣1)2,解得x=2,∴r=2x ﹣1=3;(3)解:∵AD=AN ,AB ⊥CD ,∴AE 平分ND ,∴S △AEN =S △ADE∵S △CMN :S △AND =1:8,∴S △CMN :S △AEN =1:4,又∵△CMN ∽△AEN ,∴()2=,∵AE=4,∴CM=2.【点评】本题考查的是垂径定理,相似三角形的判定和性质,勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.28.(10分)(2016秋•吴中区期中)如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH ⊥AB,垂足为H.(1)直接写出线段AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.【考点】圆的综合题.【分析】(1)三角形的内切圆的性质即可;(2)先判断出∠C=∠PHA=90°,进而得出,△AHP∽△ACB,得出的比例式建立方程即可;(3)分当点P在线段AC上时和当点P在AC的延长线上时两种情况讨论计算.【解答】解:(1)⊙O的半径r=(AC+BC﹣AB)=(4+3﹣5)=1;∴AD=3(2)①如图1,若点P在线段AC上时.在Rt△ABC中,AB=5,AC=4,BC=3,∵∠C=90°,PH⊥AB,∴∠C=∠PHA=90°,∵∠A=∠A,∴△PAH∽△BAC,∴∴y=﹣x+4,即y与x的函数关系式是y=﹣x+4(0≤x≤2.4);②同理,当点P在线段AC的延长线上时,△AHP∽△ACB,∴y=x﹣4,即y与x的函数关系式是y=x﹣4(x>2.4),(3)①当点P在线段AC上时,如图2,P′H′与⊙O相切.∵∠OMH′=∠MH′D=∠H′DO=90°,OM=OD,∴四边形OMH′D是正方形,∴MH′=OM=1;由(1)知,四边形CFOE是正方形,CF=OF=1,∴P′H′=P′M+MH′=P′F+FC=P′C,即x=y;又由(2)知,y=﹣x+4,解得,y=.②当点P在AC的延长线上时,如图,P″H″与⊙O相切.此时y=1.【点评】此题是圆的综合题,主要考查了圆的性质,正方形的判定和性质,相似三角形的判定和性质,解本题的关键是判断出,△AHP∽△ACB.。
江苏省苏州市吴中区2016届九年级数学上学期期中试题一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.在下列方程中,一元二次方程是( )A.x2﹣2xy+y2=0 B.x(x+3)=x2﹣1 C.x2﹣2x=3 D.x+=02.数据50,20,50,30,25,50,55的众数和中位数分别是( )A.50,30 B.50,40 C.50,50 D.50,553.已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在( ) A.小圆内B.大圆内C.小圆外大圆内 D.大圆外4.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A.B.C.D.5.方程2x2﹣3x+1=0经过配方化为(x+a)2=b的形式,正确的是( )A.B.C.D.6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB7.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工王师傅2013年月退休金为1800元,2015年达到2460元.设王师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为( ) A.2460(1﹣x)2=1800B.1800(1+x)2=2460C.1800(1﹣x)2=2460D.1800+1800(1+x)+1800(1+x)2=24608.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A.2.5 B.5 C.10 D.159.关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为( ) A.6 B.5 C.4 D.310.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.把答案填在答题卷相应位置上.)11.方程x2=9的解为__________.12.方程:①x2+3x﹣1=0,②x2﹣6x+5=0,③2y2﹣3y+4=0,④x2+5=2x中,有实数解的共有__________个.13.已知⊙O的内接正六边形周长为12cm,则这个圆的半经是__________cm.14.已知2+是关于x的方程x2﹣4x+c=0的一个根,则c的值是__________.15.数据:10,15,10,17,18,20的方差是__________.16.如图,正方形网格中每个小正方形边长都是l,则△ABC的外接圆的圆心坐标为__________.17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=__________度.18.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是__________.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(1)﹣+20160(2)(﹣)÷.20.解下列方程(1)x2+8=4x(2)2(x﹣3)2=﹣x(3﹣x)21.关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为4,求m的值.22.一次期中考试中,A、B、C、D、E五位同学的数学、语文成绩等有关信息如下表所示:标准差(1)填写表格中的空档;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合埋的选择,标准分的计算公式是:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与语文哪个学科考得更好?23.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?24.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.25.阅读下列材料,然后回答问题.先阅读下列第(1)题的解答过程,再解第(2)题.(1)已知实数a、b满足a2=2﹣2a,b2=2﹣2b,且a≠b,求+的值.解:由已知得:a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,故a、b是方程:x2+2x﹣2=0的两个不相等的实数根,由根与系数的关系得:a+b=﹣2,ab=﹣2.∴+===﹣4(2)已知p2﹣2p﹣5=0,且 p、q为实数,①若q2﹣2q﹣5=0,且p≠q,则:p+q=__________,pq=__________;②若5q2+2q﹣1=0,且pq≠1,求的值.26.如图,AB是⊙O的直径,∠ABT=45°,AT=AB(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,若⊙O的半径是2,求TC及AC2.27.己知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0.(1)若这个方程有实数解,求k的取值范围;(2)若这个方程的解是直线y=3x+1与x轴的交点的横坐标.是否存在k使反比例函数y=的图象在第2、4象限?如果存在求出k,如果不存在,说明理由.28.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).(1)求C点的坐标;(2)求直线AC的函数关系式;(3)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?2015-2016学年江苏省苏州市吴中区九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.在下列方程中,一元二次方程是( )A.x2﹣2xy+y2=0 B.x(x+3)=x2﹣1 C.x2﹣2x=3 D.x+=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、方程含有两个未知数,故不是;B、方程的二次项系数为0,故不是;C、符合一元二次方程的定义;D、不是整式方程.故选C.【点评】一元二次方程必须满足的条件:首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.数据50,20,50,30,25,50,55的众数和中位数分别是( )A.50,30 B.50,40 C.50,50 D.50,55【考点】众数;中位数.【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:20,25,30,50,50,50,55,众数为:50,中位数为:50.故选C.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在( ) A.小圆内B.大圆内C.小圆外大圆内 D.大圆外【考点】点与圆的位置关系.【分析】根据点与圆的位置关系确定方法,d>r,在圆外,d=r,在圆上,d<r,在圆内,即可得出点P与圆的位置关系.【解答】解:∵两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,∴r<OP<R,∴点P在小圆外大圆内.故选C.【点评】此题主要考查了点与圆的位置关系,正确运用点与圆位置关系是解决问题的关键.4.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是( )A.B.C.D.【考点】概率公式.【分析】用黄球的个数除以球的总个数即可得到答案.【解答】解:∵一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球,∴从该盒子中任意摸出一个球,摸到黄球的概率是=,故选A.【点评】此题主要考查了概率公式的应用,关键是掌握概率公式:概率=所求情况数与总情况数之比.5.方程2x2﹣3x+1=0经过配方化为(x+a)2=b的形式,正确的是( )A.B.C.D.【考点】解一元二次方程-配方法.【分析】首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.【解答】解:移项得2x2﹣3x=﹣1,把二次项系数化为1,x2﹣x=﹣,配方得x2﹣x+=﹣即(x﹣)2=,故选C.【点评】用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB【考点】菱形的判定;垂径定理.【专题】压轴题.【分析】利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.【解答】解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.【点评】此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.7.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工王师傅2013年月退休金为1800元,2015年达到2460元.设王师傅的月退休金从2013年到2015年年平均增长率为x,可列方程为( ) A.2460(1﹣x)2=1800B.1800(1+x)2=2460C.1800(1﹣x)2=2460D.1800+1800(1+x)+1800(1+x)2=2460【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设王师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意可用x表示2015年的月退休金,然后根据已知可以得出方程.【解答】解:设王师傅的月退休金从2013年到2015年年平均增长率为x,那么根据题意得2015年的月退休金为:1800(1+x)2,列出方程为:1800(1+x)2=2460.故选:B.【点评】考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A.2.5 B.5 C.10 D.15【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×5,解得x=10.故选C.【点评】本题的关键是明白侧面展开后得到一个半圆就是底面圆的周长.9.关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为( ) A.6 B.5 C.4 D.3【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣5)2﹣4k>0,解不等式得k<,然后在此范围内找出最大整数即可.【解答】解:根据题意得:△=(﹣5)2﹣4k>0,解得:k<.所以k可取的最大整数为6.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )A.B.C.D.【考点】动点问题的函数图象.【分析】根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x (单位:秒)的关系图是哪个即可.【解答】解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.【点评】(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.二、填空题(本大题共8小题,每小题3分,共24分.把答案填在答题卷相应位置上.)11.方程x2=9的解为±3.【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】此题直接用开平方法求解即可.【解答】解:∵x2=9,∴x=±3.【点评】解决本题的关键是理解平方根的定义,注意一个正数的平方根有两个,这两个数互为相反数.12.方程:①x2+3x﹣1=0,②x2﹣6x+5=0,③2y2﹣3y+4=0,④x2+5=2x中,有实数解的共有3个.【考点】根的判别式.【分析】分别求出四个方程的根的判别式△=b2﹣4ac与0的关系,进而作出判断.【解答】解:①x2+3x﹣1=0,△=b2﹣4ac=9+4=13>0;②x2﹣6x+5=0,△=b2﹣4ac=36﹣20=16>0;③2y2﹣3y+4=0,△=b2﹣4ac=9﹣32=﹣23<0;④x2+5=2x,△=b2﹣4ac=20﹣20=0;四个方程中①②④有实数解.故答案为3.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.已知⊙O的内接正六边形周长为12cm,则这个圆的半经是2cm.【考点】正多边形和圆.【分析】首先求出∠AOB=×360°,进而证明△OAB为等边三角形,问题即可解决.【解答】解:如图,∵⊙O的内接正六边形ABCDEF的周长长为12cm,∴边长为2cm,∵∠AOB=×360°=60°,且OA=OB,∴△OAB为等边三角形,∴OA=AB=2,即该圆的半径为2,故答案为:2.【点评】本题考查了正多边形和圆,以正多边形外接圆、正多边形的性质等几何知识点为考查的核心构造而成;灵活运用有关定理来分析、判断、推理或解答是关键.14.已知2+是关于x的方程x2﹣4x+c=0的一个根,则c的值是1.【考点】一元二次方程的解;二次根式的化简求值.【分析】把2+代入方程,即可得到一个关于c的方程,求得c的值.【解答】解:把2+代入方程x2﹣4x+c=0得:(2+)2﹣4(2+)+c=0解得:c=1.故答案是:1.【点评】本题主要考查了方程的解的定义,正确求解c的值是解决本题的关键.15.数据:10,15,10,17,18,20的方差是.【考点】方差.【分析】先由平均数的公式计算出平均数的值,再根据方差的公式计算.【解答】解:平均数=(10+15+10+17+18+20)÷6=15,方差=[2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+2]=.故答案为:.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.如图,正方形网格中每个小正方形边长都是l,则△ABC的外接圆的圆心坐标为(8.5,2).【考点】三角形的外接圆与外心;坐标与图形性质.【分析】由题意得出△ABC的外接圆的圆心在BC的垂直平分线上,得出圆心的纵坐标为2,设圆心的坐标为(x,2),由两点间的距离公式得出方程,解方程即可.【解答】解:∵△ABC的外接圆的圆心在BC的垂直平分线上,∴圆心D的纵坐标为2,设圆心的坐标为(x,2),∵圆心到点A和B的距离相等,∴(x﹣2)2+(2﹣4)2=(x﹣3)2+(2﹣6)2,解得:x=8.5,∴△ABC的外接圆的圆心坐标为(8.5,2).故答案为:(8.5,2).【点评】本题考查了三角形的外接圆与外心、坐标与图形性质、三角形的外接圆的性质、两点间的距离公式;熟练掌握三角形的外心性质,两点间的距离公式得出方程是解决问题的关键.17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60度.【考点】圆周角定理;平行四边形的性质.【专题】计算题.【分析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数.【解答】解:连接DO并延长,∵四边形OABC为平行四边形,∴∠B=∠AOC,∵∠AOC=2∠ADC,∴∠B=2∠ADC,∵四边形ABCD是⊙O的内接四边形,∴∠B+∠ADC=180°,∴3∠ADC=180°,∴∠ADC=60°,∴∠B=∠AOC=120°,∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO,∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°.故答案为:60.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.18.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是2﹣.【考点】二次函数的最值;坐标与图形性质;相似三角形的性质.【专题】动点型.【分析】根据三角形的面积公式,△ABE底边BE上的高AO不变,BE越小,则面积越小,可以判断当AD与⊙C相切时,BE的值最小,根据勾股定理求出AD的值,然后根据相似三角形对应边成比例列式求出OE的长度,代入三角形的面积公式进行计算即可求解.【解答】解:如图所示,当AD与⊙C相切时,线段BE最短,此时△ABE面积的最小,∵A(2,0),C(﹣1,0),⊙C半径为1,∴AO=2,AC=2+1=3,CD=1,在Rt△ACD中,AD===2,∵CD⊥AD,∴∠D=90°,∴∠D=∠AOE,在△AOE与△ADC中,,∴△AOE∽△ADC,∴=,即=,解得EO=,∵点B(0,2),∴OB=2,∴BE=OB﹣OE=2﹣,∴△ABE面积的最小值=×BE×AO=(2﹣)×2=2﹣.故答案为:2﹣.【点评】本题考查了坐标与图形的性质,勾股定理,相似三角形的判定与性质,根据相似三角形对应边成比例列式求出OE的长度是解题的关键.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(1)﹣+20160(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算;零指数幂.【专题】计算题.【分析】(1)利用零指数幂的意义和分母有理化得到原式=2﹣+1,然后合并即可;(2)先把括号内通分,再进行通分母得减法运算,然后把除法运算化为乘法运算后约分即可.【解答】解:(1)原式=2﹣+1=+1;(2)原式=[﹣]•=•=•=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式的混合运算.20.解下列方程(1)x2+8=4x(2)2(x﹣3)2=﹣x(3﹣x)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题.【分析】(1)先把方程化为一般式,然后利用配方法解方程;(2)先把方程变形为2(x﹣3)2﹣x(x﹣3)=0,然后利用因式分解法解方程.【解答】解:(1)x2﹣4x+8=0,x2﹣4x+(2)2=0,(x﹣2)2=0,所以x1=x2=2;(2)2(x﹣3)2﹣x(x﹣3)=0,(x﹣3)(2x﹣6﹣x)=0,x﹣3=0或2x﹣6﹣x=0,所以x1=3,x2=6.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.也考查了配方法解一元二次方程.21.关于x的一元二次方程mx2﹣(3m﹣1)x=1﹣2m,其根的判别式的值为4,求m的值.【考点】根的判别式.【分析】首先把原方程整理成一般形式,再根据判别式的定义得到△=(3m﹣1)2﹣4m(2m ﹣1)=4,解方程求出m的值即可.【解答】解:一元二次方程mx2﹣(3m﹣1)x=1﹣2m的一般形式是mx2﹣(3m﹣1)x+2m﹣1=0,∵根的判别式的值为4,∴△=(3m﹣1)2﹣4m(2m﹣1)=4,整理得:m2﹣2m﹣3=0,解得:m=3,或m=﹣1.即m的值为3或﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.22.一次期中考试中,A、B、C、D、E五位同学的数学、语文成绩等有关信息如下表所示:标准差(1)填写表格中的空档;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合埋的选择,标准分的计算公式是:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A同学在本次考试中,数学与语文哪个学科考得更好?【考点】标准差;算术平均数;极差.【分析】(1)由平均数、标准差的公式计算即可;(2)代入公式:标准分=(个人成绩﹣平均成绩)÷成绩标准差,再比较即可.【解答】解:(1)极差=72﹣68=4,平均分=(71+72+…+70)÷5=70,标准差=6,故答案为:4;6;(2)∵数学标准分=,英语标准分=0.5,∴数学更好.【点评】计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)计算偏差,即每个数据与平均数的差;(3)计算偏差的平方和;(4)偏差的平方和除以数据个数.标准差即方差的算术平方根;注意标准差和方差一样都是非负数.23.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)直接根据题意先求出增加的租金是6个5000,从而计算出租出多少间;(2)设每间商铺的年租金增加x万元,直接根据收益=租金﹣各种费用=275万元作为等量关系列方程求解即可.【解答】解:(1)∵(130000﹣100000)÷5000=6,∴能租出30﹣6=24(间).(2)设每间商铺的年租金增加x万元,则每间的租金是(10+x)万元,5000元=0.5万元,有间商铺没有出租,出租的商铺有(30﹣)间,出租的商铺需要交(30﹣)×1万元费用,没有出租的需要交×0.5万元的费用,则(30﹣)×(10+x)﹣(30﹣)×1﹣×0.5=2752x2﹣11x+5=0解得:x1=5,x2=0.55+10=15万元; 0.5+10=10.5万元∴每间商铺的年租金定为10.5万元或15万元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题中的等量关系题目中已经给出,相对降低了难度.24.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.【考点】扇形面积的计算;线段垂直平分线的性质;解直角三角形.【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,解直角三角形求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【解答】解:(1)∵直径AB⊥DE,∴CE=DE=.∵DE平分AO,∴CO=AO=OE.又∵∠OCE=90°,∴sin∠CEO==,∴∠CEO=30°.在Rt△COE中,OE===2.∴⊙O的半径为2.(2)连接OF.在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=×π×22=π.∵∠EOF=2∠D=90°,OE=OF=2,∴S Rt△OEF=×OE×OF=2.∴S阴影=S扇形OEF﹣S Rt△OEF=π﹣2.【点评】此题综合考查了垂径定理和解直角三角形及扇形的面积公式.25.阅读下列材料,然后回答问题.先阅读下列第(1)题的解答过程,再解第(2)题.(1)已知实数a、b满足a2=2﹣2a,b2=2﹣2b,且a≠b,求+的值.解:由已知得:a2+2a﹣2=0,b2+2b﹣2=0,且a≠b,故a、b是方程:x2+2x﹣2=0的两个不相等的实数根,由根与系数的关系得:a+b=﹣2,ab=﹣2.∴+===﹣4(2)已知p2﹣2p﹣5=0,且 p、q为实数,①若q2﹣2q﹣5=0,且p≠q,则:p+q=2,pq=﹣5;②若5q2+2q﹣1=0,且pq≠1,求的值.【考点】根与系数的关系.【专题】阅读型.【分析】①把p、q看作方程x2﹣2x﹣5=0的两根,根据•根与系数的关系得到p+q=2,pq=﹣5;②先把5q2+2q﹣1=0变形为()2﹣2•﹣5=0,则p、可看作方程x2﹣2x﹣5=0的两根,根据根与系数关系得到p+=2,p•=﹣5,再利用完全平方公式变形得=(p+)2﹣2p•,然后利用整体代入的方法计算.【解答】解:①∵p2﹣2p﹣5=0,q2﹣2q﹣5=0,p≠q,∴p、q可看作方程x2﹣2x﹣5=0的两根,∴p+q=2,pq=﹣5;故答案为2,﹣5;②∵5q2+2q﹣1=0,∴()2﹣2•﹣5=0,而pq≠1,∴p、可看作方程x2﹣2x﹣5=0的两根,∴p+=2,p•=﹣5,∴=(p+)2﹣2p•=22﹣2×(﹣5)=14.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.26.如图,AB是⊙O的直径,∠ABT=45°,AT=AB(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,若⊙O的半径是2,求TC及AC2.【考点】切线的判定.【分析】(1)根据等腰直角三角形的性质求出∠BAT=90°,根据切线的判定定理证明即可;(2)根据勾股定理求出TC的长;作CD⊥AT于D,根据平行线分线段成比例定理求出CD、AD的长,根据勾股定理计算即可.【解答】(1)证明:∵∠ABT=45°,AT=AB,∴∠ATB=∠ABT=45°,∴∠BAT=90°,∴AT是⊙O的切线;(2)解:∵⊙O的半径是2,∴AT=AB=4,∵∠OAT=90°,∴OT==2,∴TC=OT﹣OC=2﹣2,作CD⊥AT于D,则AO∥CD,∴==,即==,解得,CD=,AD=,由勾股定理得,AC2=CD2+AD2=.【点评】本题考查的是切线的判定和平行线分线段成比例定理的应用,掌握经过半径的外端且垂直于这条半径的直线是圆的切线、灵活运用平行线分线段成比例定理是解题的关键.27.己知关于x的方程x2﹣2(k﹣3)x+k2﹣4k﹣1=0.(1)若这个方程有实数解,求k的取值范围;(2)若这个方程的解是直线y=3x+1与x轴的交点的横坐标.是否存在k使反比例函数y=的图象在第2、4象限?如果存在求出k,如果不存在,说明理由.【考点】根的判别式;一次函数图象上点的坐标特征;反比例函数的性质.【分析】(1)根据判别式的意义得出△=[﹣2(k﹣3)]2﹣4×1×(k2﹣4k﹣1)≥0,解不等式即可;(2)先求出直线y=3x+1与x轴的交点坐标为﹣,再代入一元二次方程得出关于k的方程,解方程求出k的值,然后代入反比例函数检验即可.【解答】解:(1)根据题意得:△=[﹣2(k﹣3)]2﹣4×1×(k2﹣4k﹣1)≥0,整理得:﹣2k+10≥0,解得:k≤5.即若这个方程有实数解,k的取值范围为k≤5;(2)存在;理由如下:∵直线y=3x+1,当y=0时,3x+1=0,解得:x=﹣,∴直线y=3x+1与x轴的交点坐标为﹣,∴(﹣)2﹣2(k﹣3)×(﹣)+k2﹣4k﹣1=0.整理得:9k2﹣30k﹣26=0,解得:k=,或k=,当k=时,3k+2=3×+2=7+>0,此时不符合题意;当k=时,3k+2=3×+2=7﹣<0,此时符合题意;∴当k=时,反比例函数y=的图象在第2、4象限.【点评】此题主要考查了一元二次方程跟的判别式、一次函数图象上点的坐标特征、反比例函数的性质;熟练掌握一元二次方程跟的判别式,求出直线与x轴的交点横坐标得出关于k 的方程是解决问题(2)的关键.28.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).(1)求C点的坐标;(2)求直线AC的函数关系式;(3)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?【考点】圆的综合题.【分析】(1)在Rt△AOD中,根据OA的长以及∠BAD的正切值,即可求得OD的长,从而得到D点的坐标,然后由菱形的邻边相等和对边相互平行来求点C的坐标;。
初三年级教学质量调研测试(一) 数 学 2016.04本试卷有选择题、填空题和解答题三部分组成,共28题,满分100分,考试时间120分钟注意事项:1. 答题前,考生务必将学校、班级、姓名、考试号等信息黑色墨水签字笔填写在答题卷的相应位置上;2.答选择题必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生必须答在答题卡相应的位置上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1. 2的倒数是A. -2B. -12C. 2D. 122.下列运算正确的是A. 236a a a ⋅=B. 32a a a ÷=C. 329()a a =D. 235a a a +=3. m 的颗粒物,将用科学记数法表示为A. 50.2510-⨯B. 60.2510-⨯C. 52.510-⨯D. 62.510-⨯4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于A. 43B. 34C. 45D. 355.如图,直线AC//BD ,AO 、BO 分别是 ∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为A. 互余B. 相等C. 互补D. 不等6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15-20,包括15,不包括20,以下同),请根据统计计算成绩在20-30次的频率是A. 0.7B. 0.6C. 0.5 D7.如果x a y b⎧=⎨=⎩是方程x-3y=-3的一组解,那么代数5-a+3b 的值是 A. 8 B.5 C.2 D.08.关于x 的一元二次方程2210kx x +-=有两个不相等实数根,则k 的取值范围是A. k >-1B. k >-1且k ≠0C. k ≠0D. k ≥-19.如图,已知ABCD 的对角线BD=4cm ,将ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为A. 4π cmB. 3π cmC. 2π cmD. π cm10.给出下列命题及函数y x =,2y x =和1y x =的图像①如果21a a a>>时,那么01a <<; ②如果21a a a >>时,那么1a >;③如果21a a a>>时,那么10a -<<; ④如果21a a a >>时,那么 1a <-.A.正确的命题是①②B.错误..的命题是②③④ C.正确的命题是①④D.错误..的命题只有③二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.计算:1(3)3-⨯=_________________________. 12.有一组数据:3,5,5,6,7,这组数据的中位数是________________________.13.如图,AB 是圆O 的直径,点C 在圆O 上,若∠A=40°,则∠B 的度数为___________.14.在平面直角坐标系中,点A 的坐标是(3,-2),则点A 关于原点O 的对称点的坐标是__________.15.抛物线223y x x =++的顶点左边是____________.16.热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,这栋高楼是100米,A 处与高楼的水平距离是______________米(结果保留根号).17.如图,半圆O 的直径AE=4,点B ,C, D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为_____________.18.如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两动点,则BM+MN 的最小值为________________.三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.(本题满分5分)计算:8 — | —1| + (—π)020.(本题满分5分) 解不等式组:312(1)312x x x ⎧-<+⎪⎨+≥⎪⎩21.(本题满分6分)先化简,再求值:232()224x x x x x x -÷+--,其中43x =-.22.(本题满分6分)某商场销售A、B两种型号的U盘,两种U盘的进货价格分别为每只30元,40元.商场销售5只A型号和1只B型号U盘,可获利润76元;销售6只A型号和3只B型号U盘,可获利润120.求商场销售A、B两种型号的U盘的销售价格分别是多少元?(利润=销售价-进货价)23.(本题满分8分)有3个完全相同的小球,把他们分别标号为1,2,3,放在一个口袋中,随机摸出一个小球不放回,再随机地摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;(2)求摸出的两个球号码之和等于5的概率.24. (本题满分8分)已知:如图,AB=AC,点D是BC的中点,AD=AE, AE⊥BE,垂足为E,连接DE. (1)求证:AB平分∠DAE;(2)若△ABC是等边三角形,且边长为2cm,求DE的长.25.(本题满分8分)(2015泸州)如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数myx的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.26. (本题满分10分)如图,AB 是⊙O 的直径,弦CD⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K .(1)求证:KE=GE ;(2)若KG2=KD•GE,试判断AC 与EF 的位置关系,并说明理由;(3)在(2)的条件下,若3sin 5E ∠=,25AK =,求圆O 的半径.27.(本题满分10分)如图,二次函数2y ax bx c =++(0a ≠)的图像经过A(0,3)、C(3,0)、D (2,3)三点.(1)求过A 、D 、C 三点的抛物线的解析式;(2)设Q 为x 轴上任意一点,点P 是抛物线上的点,且在抛物线对称轴左侧,满足∠QCP=45°,问是否存在这样的点P 、Q ,使得以P 、Q 、C 为顶点的三角形与△ADC 相似?若存在,求出点P 、Q 的坐标;若不存在,则说明理由.28.(本题满分10分)(2015•衢州)如图,在△ABC中,AB=5,AC=9,S△ABC=272,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A 运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH 的边上,请直接写出t的值.江苏省吴中市2016届中考第一次模拟数学测试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1. 2的倒数是A. -2B. -12C. 2D. 12考点:有理数混合运算分析: 有理数四则运算法则解答: D2.下列运算正确的是A. 236a a a ⋅=B. 32a a a ÷=C. 329()a a =D. 235a a a +=考点: 幂的运算分析: 幂的的乘除运算解答:Bm 的颗粒物,将用科学记数法表示为A. 50.2510-⨯B. 60.2510-⨯C. 52.510-⨯D. 62.510-⨯考点: 科学计算法分析: 用科学技术发表示数解答:D4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于A. 43B. 34C. 45D. 35考点: 三角函数与勾股定理分析: 勾股定理求边的长以及特殊三角函数的值解答:cosA=邻边/斜边=3/55.如图,直线AC//BD ,AO 、BO 分别是 ∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为A. 互余B. 相等C. 互补D. 不等考点: 角平分线的性质,平行线的性质分析: 先用平行线的性质,再结合平行线的性质去求解解答:A6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15-20,包括15,不包括20,以下同),请根据统计计算成绩在20-30次的频率是A. 0.7B. 0.6C. 0.5 D考点: 统计分析: 条形统计图解答:A7.如果x a y b⎧=⎨=⎩是方程x-3y=-3的一组解,那么代数5-a+3b 的值是 A. 8 B.5 C.2 D.0考点: 代数式求值分析: 方程的解含义以及真题思想,代入求值。
第一学期九年级期中考试数学学科试题注意事项:1.本试卷包含选择题(第1题~第10题,共10题)、非选择题(第11题~第28题,共18题)两部分.本卷满分130分,考试时间为120分钟.2.答题前,考生务必将本人的班级、姓名、学号填写在试卷的装订线内.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.方程x 2-4x =0的根是………………………………………………… ( ▲ ) A .x =4 B .x =0 C .x 1=0,x 2=4 D .x 1=0,x 2=-42.下列一元二次方程中,有实数根的是 ………………………………………………( ▲ )A .x 2-x +1=0B .x 2-2x +3=0C .x 2+x -1=0D .x 2+4=03.已知m ,n 是方程x 2-2x -2016=0的两个实数根,则n 2+2m 的值为于…………( ▲ )A . 1010B .2012C .2016D .20204.如图,在△ABC 中,若DE ∥BC ,AD = 5, BD = 10,DE = 4,则BC 的值为 ( ▲ )A .8B .9C .10D .12OBCA第4题 第8题 第9题 第10题5. 已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2), 以点B 为位似中心,且位似比为1:2将△ABC 放大得△A 1BC 1 ,则点C 1 的坐标为( ▲ ) A .(1,0)B .(5,8)C .(4,6)或(5,8)D .(1,0)或(5,8)6. 已知P 为⊙O 内一点,OP =1,如果⊙O 的半径是2,那么过P 点的最短弦长是 ( ▲ )A.1B.2C.3D.237.下列说法中,正确的是 ( ▲ ) A .垂直于半径的直线一定是这个圆的切线 B .任何三角形有且只有一个内切圆 C .三点确定一个圆 D .三角形的内心到三角形的三个顶点的距离相等 8.如图,在△ABC 中,点O 为重心,则S △DOE :S △BOC = (▲) A .1:4 B . 1:3C . 1:2D . 2:3MFADBCE NOBAC9.如图,⊙O 为△ABC 的外接圆,∠A =72°,则∠BCO 的度数为 (▲) A. 15° B. 18° C. 20° D. 28°10. 如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2016次操作后得到的折痕D 2015E 2015到BC 的距离记为h 2016.若h 1=1,则h 2016的值为 ( ▲ ) A.201521 B.201421 C. 2015211-D.2015122-二、填空题:(本大题共8小题,每空2分,共16分)11.在Rt△ABC 中,∠C = 90°,AB = 2BC ,则cos A 的值为 ▲ .12.已知(m −3)x 2−3x + 1 = 0是关于x 的一元二次方程,则m 的取值范围是 ▲ .13.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是 ▲ 米.14.某公司4月份的利润为160万元,由于经济危机,6月份的利润降到90万元,则平均每月减少的百分率是 ▲ .15.如图,∠ABC = 140°,D 为圆上一点,则∠ADC 的度数为 ▲ .第15题 第16题 第17题 第18题16.如图,已知△ABC ,AB =AC =2,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ▲ . 17.如图,平行四边形ABCD 中,AB=28,E 、F 是对角线AC 上的两点,且AE:EF:FC=1:2:3,DE 交AB 于点M ,MF 交CD 于点N ,则CN= ▲ .18.如图,△ABC 是等腰直角三角形,AC =BC =2a ,以斜边AB 上的点O 为圆心的圆分别与AC ,BC 相切与点E ,F , 与AB 分别交于点G ,H ,且 EH 的延长线和 CB 的延长线交于点D ,则CD 的长为 ▲ .三、解答题:(本大题共9小题,共84分)19.解方程:(本题共有2小题,每小题4分,共8分)(1) x 2-2x -4=0 (2) (x +3)(x -1)=1220.(6分)如图,在Rt △ABC 中,∠ACB=90°.(1)先作∠ABC 的平分线交AC 边于点O ,再以点O 为圆心,OC 为半径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB 与⊙O 的位置关系,并证明你的结论.21.(7分)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是 45°,向前走8m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°。
苏州市2016-2017学年第一学期 初三年级数学学科期中考试试卷一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡表格相应位置上........... 1、方程2x x =的两根分别为【 】 A .1x =-1,2x =0 B .1x =1,2x =0 C .1x =―l ,2x =1D .1x =1,2x =12、用配方法解一元二次方程x 2-2x -3=0时,方程变形正确的是【 】 A .(x -1)2=2 B .(x -1)2=4 C .(x -1)2=1 D .(x -1)2=73、若一元二次方程2x 2x m 0++=有实数解,则m 的取值范围是【 】A. m 1≤-B. m 1≤C. m 4≤D.m 12≤4、下列一元二次方程两实数根和为-4的是【 】 A 、x 2+2x-4=0 B 、x 2-4x+4=0 C 、x 2+4x+10=0 D 、x 2+4x-5=05、如图,A 、B 、C 是⊙O 上的点,若∠AOB=70°,则∠ACB 的度数为【 】 A 、70° B 、50° C 、90° D 、35°6、如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,已知CD=12,BE=3,则⊙O 的直径为【 】 A 、8 B 、10 C 、15 D 、207、如图,CA=OB=OC ,∠ACB=30°,则∠AOB 的大小是【 】 A 、40° B 、50° C 、60° D 、70°第5题 第6题 第7题8、若,0,0,0<<>c b a 则方程02=++c bx ax 的根的情况为【 】A 、有两个同号的实数根B 、有两个异号的实数根,且负根的绝对值大C 、有两个异号的实数根,且正根的绝对值大D 、无实数根9、已知抛物线221y ax x =-+与x 轴没有交点,那么该抛物线的顶点所在的象限是【 】A .第一象限B .第二象限C .第三象限D .第四象限 10、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;②024>++c b a ;③22()a c b +>; ④ b c 32<;⑤ ()a b m am b +>+ (1m ≠) 其中正确的结论有【 】A. 2个B. 3个C. 4个D. 5个二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位........置上... 11、若29x =,则x= ▲12、抛物线2(1)3y x =-+-的顶点坐标是 ▲13、若关于x 的方程22(1)0x a x a --+=的两根互为倒数,则a = ▲ .14、已知二次函数22(2)(0)y a x c a =-+≠,当自变量x 分别取0,3时,对应的值分别为123,,y y y ,则123,,y y y 的的值用“<”连接为▲15、在△ABC 中,BC =3cm ,∠BAC =60°,那么△ABC 能被半径至少为 ▲ cm 的圆形纸片所覆盖.16、某一型号飞机着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的函数关系式是260 1.5y x x =-,该型号飞机着陆后滑行 ▲ m 才能停下来.17、如图,四边形ABCD 是矩形,A ,B 两点在x 轴的正半轴上,C ,D 两点在抛物线26y x x =-+上,设OA =m (0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 ▲18、函数21y x ax =++在13x ≤≤时,y 只在1x =时取得最大值, 则实数a 的取值范围是 ▲三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应的位置上.........,解答时应 写出必要的计算过程、推演步骤或文字说明. 19、解方程:2(1)9x -=C ABOD20、解方程:2221x x x -=- 21、解方程:(3)(4)8x x -+=22、解分式方程:231202x x -=-23、已知:关于x 的方程2210x kx +-=⑴求证:方程有两个不相等的实数根;⑵若方程的一个根是1-,求另一个根及k 值.24、设,a b 是方程220130x x +-=的两个不相等的实数根,(1)求11a b+的值 (2)求2(1)a b ++的值25、如图,OA=OB ,AB 交⊙O 于点C 、D ,AC 与BD 是否相等?为什么?26、已知二次函数)0(2≠++=a c bx ax y 的图象以A (-1,4)为顶点,且过点B (2,0)(1)求该函数的关系式;(2)若将该函数图象以顶点为中心旋转0180,求旋转后抛物线的关系式. 27、将一根长为16π厘米的细铁丝剪成两段.并把每段铁丝围成圆,设所得两圆半径分别为1r 和2r(1)求1r 与2r 的关系式,并写出1r 的取值范围;(2)将两圆的面积和S 表示成1r 的函数关系式,求S 的最小值. 28、如图,2AO BO ==,090AOB ∠=,以AO 为半径作弧,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)当BC =1时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD =x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并指出x 的取值范围.29、已知A是X轴正半轴上一个动点,以线段OA为直径作⊙B,圆心为点B,线段EF是⊙B 的一条弦,EF//x轴,点C为裂弧EF的中点,过点E作DE垂直于EF,交抛物线C1:ax2+bx (a>0)经过点O和点A。
C
B
A
泰兴市 实验初级中学 初三数学阶段试题
2016.11
(考试时间120分钟 满分150分)
第一部分 选择题(共18分)
一、选择(每小题3分,共18分)
1.如图,在△ABC 中,∠C =90°,AB =13,AC =5,则sin B 的值是 A .13
12
B .13
5 C .125 D .513
2.直角坐标系中,以坐标原点O 为圆心,5为半径画圆,点P 的坐标是(4,3),则点P 与⊙O 的位置关系是
A .点P 在⊙O 上
B .点P 在⊙O 内
C .点P 在⊙O 外
D .无法确定 3.已知方程2kx —x +1=0 有两个不等的实数根,则k 的取值范围是 A .k >14 B .k <14 C .k ≠14 D .k <1
4
且k ≠0
4.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数 分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7
B .32,4
C .30,4
D .30,7
5.如图,AB 是⊙O 的直径,P A 是⊙O 的切线,点C 在⊙O 上,AC ⊥OP BC =2,AC =4,则P A 长为 A .3.5
B .4
C .25
D .23
6.下列说法:①方程x 2-x -1=0的两实根和为1;②相等的圆心角所对的弦相等; ③若数据a +1、a +2、a +3的方差是s 2,则数据a 、a +1、a +2的方差也为s 2;④圆和它的一个内接正三角形组成中心对称图形;⑤菱形的四边中点在同一个圆上. 其中正确的有
A .4个
B .3个
C .2 个
D . 1个
第二部分 非选择题(共132分)
二、填空(每小题3分,共30分)
7.若 1-tan B =0,则锐角∠B 的度数是 °. 8.一元二次方程x (x -2) =(x -2)的根为 .
9.已知一个圆锥形纸帽的母线长为6,底面圆的半径为2,则纸帽的侧面积为__________.
O
D C
B
A O
C
B
A D
C
B
A
10.如图,点G 为△ABC 的重心,过点G 作DE ∥A C 分别交AB 、BC 于点D 、E ,则AB
BD
的值为 .
11.如图,点O 是△ABC 的内切圆的圆心,若∠BOC =130°,则∠A 的度数为 °. 12.如图,△ABC 中,D 在BC 上,且∠DAC =∠B ,若BD ︰DC =3︰2,AC =102,则BC 长为 .
第10题 第11题 第12题 第13题
13.如图,A 、B 、C 三点在⊙O 上,若∠ABC =135°,则∠AOC 的度数为 °. 14.如图,在扇形OAB 中,∠AOB =100°,半径OA =6,将扇形OAB 沿过点A 的直线折叠,
点O 恰好落在弧AB 上的点D 处,折痕交OB 于点C ,则弧BD 的长为 .
第14题 第15题 第16题
15.如图是4×4的正方形网格,A 、B 、C 、D 为网格格点,连接AB 、CD 交于点O ,则cos ∠BOC
的值是____________.
16.如图,已知⊙O 的半径为5,弦AB 的长为6,现将一直角三角板的直角顶点置于圆心O
处,绕点O 旋转三角板,设三角板的两条直角边OC 、OD (足够长)分别交弦AB 所在直 线于E 、F 两点,则旋转过程中线段EF 的最小值为____________. 三、解答题 17.(本题10分
)
(1)
032tan60(1--+- (2)解方程:2x 2-4x +1=0
B
18.(本题8分)先化简,再求值:23344
(1)-11
a a a a a +++-÷-,其中a 满足a 2-a =0
19.(本题8分)如图,平面直角坐标系中,△ABC 的顶点
都在正方形(每个小正方形边长为单位1)网格的格点上。
(1) △ABC 的形状是____________________(直接写答案) (2)画出△ABC 沿x 轴翻折后的△A 1B 1C 1
(3)画出△ABC 绕点B 顺时针旋转90°的△BA 2C 2并求出 旋转过程中△ABC 扫过的面积.(结果保留π)
20.(本题10分)已知关于x 的方程x 2-(m +2)x +2m -1=0. (1)试说明:方程一定有两个不相等的实数根; (2)若方程有一根是1,求m 的值和另一个根.
21.(本题10分)某中学开展演讲比赛活动,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示. (1)根据右图填写下表;
(2)结合两班复赛成绩的平均数和中位数、方差,分析哪个班级的复赛成绩较好?
(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.
22.(本题10分)如图,已知△ABC ,∠C =90°,sin ∠A =
3
5
,AB =10,
D A BD 是中线,求AC 长和cos ∠DBC 的值.
23.(本题10分)某特产专卖店销售一种核桃,其进价为每千克40元,若按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低1元,则平均每天的销售量可增加10千克,若该专卖店销售这种核桃想要达到平均每天获利2240元的预期目标,且尽可能让利于顾客.问:每千克核桃应降价多少元?
24.(本题10分)如图,已知四边形ABCD 内接于⊙O ,DA 、CB 的
延长线交于点P ,连接AC 、BD ,BD =BC. (1) 证明:AB 平分∠P AC ;
(2) 若A C 是直径,AC =5,BC =4,求DC 长.
25.(本题12分)如图1,已知正方形ABCD 边长为4,点E 、F 分别在BC 、DC 上,AE ⊥EF ,连接
AF .
(1)求证:△A BE ∽△ECF
(2)若△AB E ∽△AEF ,求证:BE =CE
(3)如图2,在(2)的条件下,动点Q 从点F 出发沿F A 向终点A 匀速移动,同时动点P 从点D 出发 沿DF 向终点F 匀速移动,当一点到达终点停止移动时,另一点也停止移动;已知P 、Q 两点 移动的速度均为每秒1个单位长度,设移动时间为t 秒,求当t 为何值时,P 、Q 两点到点D 的 距离相等?
26.(本题14分)如图1,直线y =-x +4分别交x 轴、y 轴于A 、B 两点,点M 是线段AB 上一动点,以M 为圆心,r 为半径画圆.
(1)若点M 的横坐标为3,当⊙M 与x 轴相切时,则半径r 为 ,此时⊙M 与y 轴的位 置关系是 .(直接写答案) (2)若r =
5
2
,当⊙M 与坐标轴有且只有3个公共点时,求点M 的坐标;(可用图2进行探究) (3)如图3,当圆心M 与B 重合,r =2时,设点C 为⊙M 上的一个动点,连接OC ,将线段OC 绕 点O 顺时针旋转90°,得到线段OD ,连接BD 、BC ,求BD 长的最值并直接写出对应的点C 坐标.
命题:伏贵先 审核:张 昕 (数阶2 01机 2016秋)。