2019年浙江省绍兴市中考数学试卷(附答案与解析)
- 格式:docx
- 大小:1.09 MB
- 文档页数:12
2019年浙江省绍兴市中考数学经典试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若把 Rt △ABC 的各边都扩大 3倍,则各边扩大后的cosB 与扩大前的cosB 的值之间的关系是 ( )A .扩大3倍B .缩小3倍C .相等D .不能确定 2.如果整式226x x m -+恰好是一个完全平方式,那么常数m 的值是( ) A . 3B .-3C .3±D .9 3. 已知10x y =-⎧⎨=⎩和23x y =⎧⎨=⎩都是方程y ax b =+的解,则a 和b 的值是( ) A .11a b =-⎧⎨=-⎩ B .11a b =⎧⎨=⎩ C . 11a b =-⎧⎨=⎩ D .11a b =⎧⎨=-⎩4.已知a +b =2,则224a b b -+的值是( )A .2B .3C .4D .6 5.若(x-y )2+N=(x+y )2,则N 为( ) A .2y 2B . -2y 2C .2xyD .4xy 6.下列关于作图的语句中正确的是( ) A .画直线AB =10厘米B .画射线OB =10厘米C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一条直线和直线AB 平行7.下列方程的变形是移项的是( )A .由723x =,得67x = B .由x=-5+2x, x =2x-5 C .由2x-3=x+5, 得2x+x=5-3D .由111223y y -=+,得112123y y -=+ 8.如图是某校九年级(1)班的全体同学最喜欢的球类运动的统计图,则下列说法中,正确 的是( )A .从图中可以直接看出喜欢各种球类的具体人数B .从图中可以直接看出全班的总人数C .从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D .从图中可以直接看出全班同学现在最喜欢各种球类的人数的比例9.若-2 减去一个有理数的差等于-7,则-2乘以这个有理数的积等于()A.-10 B.10 C.-14 D.14二、填空题10.如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为厘米.11.抛物线y=ax2+2ax+a2+2的一部分如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是_____________.12.如图所示,图形①与图形成轴对称,图形①与图形成中心对称(填写所对应的序号).13.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.14.已知一次函数y=kx+5的图象经过点(-l,2),则k= .15.若33320x x y+++-=,则点P(x,y)在第象限,点Q(x+1,y-2)在.16.一只口袋里共有 3个红球,2 个黑球,1个黄球,现在小明任意模出两个球,则摸出一个红球和一个黑球的概率是.17.判断正误,在括号内打“√”或“×”.(1)三角形的一条角平分线把三角形分成面积相等的两部分. ( )(2)若一个三角形的两条高在这个三角形外部,则这个三角形是钝角三角形. ( )(3)直角三角形的三条高的交点恰为直角顶点. ( )(4)三角形的中线可能在三角形的外部. ( )18.已知A、B是数轴上的两点,AB=2. 若点B表示-1,那么点A 表示 .19.若a的平方根等于它的立方根,则2a= .2004320.绝对值小于4的所有负整数的和是,积是.21.比较数的大小:0 -0.4,5-- -3,0.00l -1000.三、解答题22.一个口袋中有 6 个红球和若干个绿球. 小明从口袋中随机揍出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,通过多次实验估计出从口袋中随机摸出一球为红球的概率为0.25,据此请估计口袋中的绿球数目.23.已知关于x 的一元二次方程21(1)420mm x x ++++=.(1)求实数m 的值;(2)求此方程的解.24.在梯形ABCD 中,AB ∥CD ,090A ∠=,AB=2,BC=3,CD=1,E 是AD 中点,试判断EC 与EB 的位置关系,并写出推理过程.25.某车站在春运期间为改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t (以下简称购票用时,单位为分钟).下面是这次调查统计分析得到的频数分布表和频数分布直方图.解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写缺失的数据并补全频数分布直方图;(3)旅客购票用时的平均数可能落在哪一小组?(4)若每增加一个购票窗口可以使平均购票用时降低5分钟,要使平均购票用时不超过10分钟,那么请你估计最少需增加几个窗口?26.求不等式3372384x x +++>-的非正整数解.27.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE 大48°,求∠BAE 和∠BAD 的度数.28.观察下列各等式:2622464+=--;5325434+=--; 7127414+=--;102210424-+=--- (1)依照上述各式成立的规律,在括号中填入适当的数,使等式20()2204()4+=--成立; (2)已知分式方程244x y x y +=--,请你直接写出x y +的值.29. 已知1x a y =⎧⎨=-⎩是二元一次方程122x y a -=的一个解,求a 的值. 23a =-30.如图所示,长方形ABCD 中,AE=13AB ,AG=13AD ,分别过点E ,G 作AD 和AB 的平行线,相交于点F .(1)从长方形ABCD到长方形AEFG是什么变换?(2)经过这一变换,长方形ABCD的角分别变为哪些角?它们的大小改变吗?(3)经过这一变换,长方形ABCD的各条边和面积发生了怎样的变化?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.B4.C5.D6.D7.D8.D9.A二、填空题10.11.12.④,③13.2,-1,-214.315.二,y轴上16.2517.(1)× (2)√ (3)√ (4)×18.1 或-319.20.-6,-621.>,<,>三、解答题22.不断重复实验可使频率接近于概率设有绿球x个,则60.256x=+,x=18,即口袋中有绿球 18 个23.(1)1=m;(2)121x x==-.(1)1=m;(2)121x x==-.24.EC EB⊥.延长CE、BA相交于点F,证明△DCE≌△AFE,得CE=FE,DC=AF,∴BF=BC=3,∴BE⊥CE⑴样本容量是100;⑵50,0.10,略;⑶第4小组;⑷至少增加2个窗口. 26.-l,027.设∠BAE和∠BAD 的度数分别为x、y. 根据题意,得48290y xy x-=⎧⎨+=⎩,解得1462xy=⎧⎨=⎩,所以∠BAE和∠BAD的度数分别为 14°和62°.28.(1)-12,-12;(2)829.23a=-30.(1)相似变换;(2)∠D→∠AGF,∠C→∠F,∠B→∠AEF,∠A→∠A;大小不改变;(3)各边为原来的13,面积为原来的19。
浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是A.5B.-5C.51D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 A.π B.π2 C.π2 D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为A.524B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
2019年浙江省绍兴市中考数学试卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器.参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是 A.5 B.-5 C.51 D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为A.πB.π2C.π2D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为A.524B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ .16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
2019年浙江省绍兴市中考数学原题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,有两个形状相同的星星图案,则x 的值为( )A .15B .12C .10D .8 2.抛物线221y x x =--+的顶点在( )A . 第一象限B .第二象限C .第三象限D .第四象限3.在一周内体育老师对某运动员进行了5次百米短跑测试,若想了解该运动员的成绩是否稳定,老师需要知道他5次成绩的( )A .平均数B .方差C .中位数D .众数 4.如图,表示A 点的位置的准确说法是( )A .距0点3 km 的地方B .在O 点的东北方向上C .在O 点东偏北40°的方向D .在0点北偏东50°方向,距O 点3 km 的地方5.对于数据3,3,2,3,6,3,10,3,6,3,2. 有以下结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位教与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的有( )A .1个B . 2个C .3个D .4个 6.与分式2x y的值相等的是( ) A .222x y ++ B .63x y C .3(2x)y D .2x y- 7.如图,线段AC 、BD 交于点0,且AO=CO ,BO=DO ,则图中全等三角形的对数有( )A .1对B . 2对C .3对D .4对8.A .B 两地相距 48km ,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用去 9h .已知水流速度为 4 km/h ,若设该轮船在静水中的速度为 x (km /h ),则可列方程( )A .4848944x x +=+-B .4848944x x +=+-C .4849x +=D .9696944x x +=+- 9.用代入法解方程组342(1)25(2)x y x y +=⎧⎨-=⎩ ,使得代入后化简比较容易的变形是( ) A .由①得243y x -=B . 由①得234x y -=C . 由②得53y x +=D . 由②得25y x =-10.要反映宁波市一周内每天的最高气温的变化情况,宜采用( )A .条形统计图B .扇形统计图C .折线统计图D .以上都可以11.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为( )A . 60n 厘米B . 50n 厘米C . (50n+10)厘米D . (60n-10)厘米 12.下列各分式中与11y x +-的值相等的分式是( ) A . 11y x -- B . 11y x --- C . 11y x +-- D . 11y x-+ 13.绝对值大于 1小于4的所有整数的和是( )A . 0B .5C .-5D . 10二、填空题14.如图是两棵小树在同一时刻的影子,请问它们的影子是在 灯光 光线下形成的.(填“太阳”或“灯光”)15.若直线 y= 一2x+1与双曲线k y x=的一个交点为(2,n),则n= ,k= . 16.如图,在三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为________.17.点P 1(5,-2)关于y 轴对称点是P 2,则P 1P 2的长为 .18.由一个圆平均分成8个相等扇形的转盘,每个扇形内标有如图数字,固定指针,转动转盘,则指针指到负数的概率是 .19.已知方程230x-=与2330+-=,写出它们的两个共同点:.x y写出它们的两个不同点:.20.若角α的余角与角α的补角的和是平角,则角α=.21.如图,有一个圆锥形粮堆,其轴截面是边长为6cm的正三角形ABC,•粮堆母线AC的中点P处有一个老鼠正在吃粮食,此时小猫正在B处,它要沿圆锥侧面到P•处捉老鼠,则小猫所经过的最短路程是_______m.(结果不取近似值)22.在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果……,那么……”的形式,写出一个你认为正确的命题:.三、解答题23.如图,由 5个大小完全相同的小正方形摆成如图①③的形状,现移动其中的一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形(用阴影表示).(1)使得图形成为轴对称图形,而不是中心对称图形;(2)使得图形成为中心对称图形,而不是轴对称图形;(3)使得图形既是轴对称图形,又是中心对称图形.24.如图所示,等腰梯形ABCD中,AD∥BC,AE∥DC,DF∥AB,求证:AE=DF.25.已知y-2与x+1成正比,且当x=l时,y=-6.(1)求y与x之间的函数解析式;(2)求当x=-l时,y的值.26.如图,AD是△ABCD的高,点E在AC边上,BE交AD于点F,且AC=BF,AD=BD,试问BE与AC有怎样的位置关系?请说明理由.27.如图,AB、AC表示两杂交叉的公路,现要在∠BAC的内部建一个物流中心,设计时要求该物流中心到两条公路的距离相等,且到公路交叉处点A 的距离为1000,请在图中作出物流中心的位置(用圆规、直尺作图,不写作法,但要保留作图痕迹).(1)若要以 1:50000的比例尺作设计图,求物流中心到公路交叉处点A 的图上距离;(2)在图中作出物流中心的位置.28.用计算器求值:(1)0.84÷4+(-0.79)×2;(2)49.75-0.252;(3)2.7×(0.5+6.3)-25÷4 5(4)12×(5.63-3.31)×112-25.29.是否存在这样的两个数,它们的积与它们的和相等?你大概马上就会想到 2+2=2×2,其实这样的两个数还有很多,如22(2)(2)33+-=⨯-,请再写出三组这样的两个数.30.为了能有效地使用电力资源,某市供电部门最近进行居民峰谷用电试点,每天8:00至21:O0用电每千瓦时0.55元(“峰电”价),21:00至次日8:00每千瓦时0.30元(“谷电”价).王老师家使用“峰谷”电后,5月份用电量为300千瓦时,付电费115元.求王老师家该月使用“峰电”多少千瓦时.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.答案:B4.D5.A6.B7.D8.A9.D10.C11.C12.C13.A二、填空题14.灯光15.一3,一616.60°17.10,18.319.8共同点:都含未知数 x,都是一次方程等. 不同点:一个是一元方程,一个是二元方程;前一个方程的解是唯一的,后一个方程有无数个解20.4521.322.5四边形ABCD中,如果AB∥DC,∠A=∠C,那么AD=BC三、解答题23.略24.证明AE=CD,DF=AB25.(1)y=-4x-2;(2)226.BE与AC互相垂直,即BE⊥AC.理由:∵AD是△ABC的高,∴∠ADC=∠BDF=90°.∴△ADC和△BDF都是直角三角形.∵AC=BF,AD=BD,∴Rt△ADC≌Rt△BDF(HL),∴∠C=∠DFB.∵∠DBF+∠FBD=90°,∴∠C+∠FBD=90°,∴∠BEC=90°,即BE⊥AC.27.(1)10000.0250000(米)= 2(厘米).答:物流中心到公路交叉处A 点的图上距离为2厘米.(2)作∠BAC的平分线AN,在射线AN上截取AP=2cm,点 P就是物流中心的位置,如图所示28.(1)-1.37 (2)796 (3)12. 11 (4)108.3629.不唯一. 如:-3,34;-1,12; 3,3230.100千瓦。
2019年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×10103.(4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.4.(4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.155.(4分)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°6.(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.47.(4分)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.(4分)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π9.(4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.(4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)因式分解:x2﹣1=.12.(5分)不等式3x﹣2≥4的解为.13.(5分)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是.14.(5分)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE 的度数为.15.(5分)如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.16.(5分)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.三、解答题(本大题共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?18.(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD 与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)21.(10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.22.(12分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.23.(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.2019年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:数字126000000科学记数法可表示为1.26×108元.故选:B.3.(4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A.4.(4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.15【分析】先计算出样本中身高不低于180cm的频率,然后根据利用频率估计概率求解.【解答】解:样本中身高不低于180cm的频率==0.15,所以估计他的身高不低于180cm的概率是0.15.故选:D.5.(4分)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.6.(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;【解答】解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.7.(4分)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.8.(4分)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π【分析】连接OB,OC.首先证明△OBC是等腰直角三角形,求出OB即可解决问题.【解答】解:连接OB,OC.∵∠A=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选:A.9.(4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变【分析】连接DE,△CDE的面积是矩形CFGE的一半,也是正方形ABCD的一半,则矩形与正方形面积相等.【解答】解:连接DE,∵,,∴矩形ECFG与正方形ABCD的面积相等.故选:D.10.(4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.【解答】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)因式分解:x2﹣1=(x+1)(x﹣1).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.(5分)不等式3x﹣2≥4的解为x≥2.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x≥4+2,合并同类项得,3x≥6,把x的系数化为1得,x≥2.故答案为:x≥2.13.(5分)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是4.【分析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.【解答】解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,∴m=15﹣8﹣3=4.故答案为:414.(5分)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE 的度数为15°或45°.【分析】分点E与正方形ABCD的直线AP的同侧、点E与正方形ABCD的直线AP的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.【解答】解:∵四边形ABCD是正方形,∴AD=AE,∠DAE=90°,∴∠BAM=180°﹣90°﹣30°=60°,AD=AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,∴∠ADE=45°,当点E与正方形ABCD的直线AP的两侧时,由题意得,E′A=E′M,∴△AE′M为等边三角形,∴∠E′AM=60°,∴∠DAE′=360°﹣120°﹣90°=150°,∵AD=AE′,∴∠ADE′=15°,故答案为:15°或45°.15.(5分)如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是y=x.【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A(,3),C(5,),所以B(,),然后利用待定系数法求直线BD的解析式.【解答】解:∵D(5,3),∴A(,3),C(5,),∴B(,),设直线BD的解析式为y=mx+n,把D(5,3),B(,)代入得,解得,∴直线BD的解析式为y=x.故答案为y=x.16.(5分)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是6+2或10或8+2.【分析】先根据题意画出图形,再根据周长的定义即可求解.【解答】解:如图所示:图1的周长为1+2+3+2=6+2;图2的周长为1+4+1+4=10;图3的周长为3+5++=8+2.故四边形MNPQ的周长是6+2或10或8+2.故答案为:6+2或10或8+2.三、解答题(本大题共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?【分析】(1)根据实数运算法则解答;(2)利用题意得到x2+1=4x+1,利用因式分解法解方程即可.【解答】解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.18.(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y关于x的函数表达式,再把x=180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:千米;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得,∴,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.19.(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【分析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天.20.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD 与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)【分析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,求出DF,再求出DF﹣DE即可解决问题.【解答】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10=3.2(cm).21.(10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.【分析】(1)连接OC,如图,利用切线的性质得∠OCD=90°,再根据含30度的直角三角形三边的关系得到OD=2,然后计算OA+OD即可;(2)添加∠DCB=30°,求AC的长,利用圆周角定理得到∠ACB=90°,再证明∠A=∠DCB=30°,然后根据含30度的直角三角形三边的关系求AC的长.【解答】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.22.(12分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.【分析】(1)①若所截矩形材料的一条边是BC,过点C作CF⊥AE于F,得出S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG 于H,则四边形AEFG为矩形,四边形BCHG为矩形,证出△CHF为等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG﹣HG=1,AG=AB﹣BG=5,得出S2=AE•AG =6×5=30;(2)在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△CGF为等腰三角形,得出MG=BC=5,BM=CG,FG =DG,设AM=x,则BM=6﹣x,FM=GM+FG=GM+CG=BC+BM=11﹣x,得出S=AM×FM=x(11﹣x)=﹣x2+11x,由二次函数的性质即可得出结果.【解答】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.23.(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2﹣DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【解答】解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.【分析】(1)作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.证明△FHE≌△MQN(ASA),即可解决问题.(2)由题意:2a≤MN≤a,a≤EF≤a,当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.由k=3,MP=EF=3PE,推出==3,推出==2,由△PNF∽△PME,推出==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,接下来分两种情形①如图2中,当点N与点D重合时,点M恰好与B重合.②如图3中,当点N与C重合,分别求解即可.【解答】解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴FH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE=m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b的值为或.。
2019年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×1010 3.(4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.4.(4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.155.(4分)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°6.(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.47.(4分)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.(4分)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π9.(4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.(4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2019•江西)因式分解:x2﹣1=.12.(5分)不等式3x﹣2≥4的解为.13.(5分)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m 所表示的数是.14.(5分)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB 长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为.15.(5分)如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.16.(5分)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是.三、解答题(本大题共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?18.(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)21.(10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO 全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.22.(12分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.23.(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM =10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b 的值.2019年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.2.(4分)某市决定为全市中小学教室安装空调,今年预计投入资金126000000元,其中数字126000000用科学记数法可表示为()A.12.6×107B.1.26×108C.1.26×109D.0.126×1010【解答】解:数字126000000科学记数法可表示为1.26×108元.故选:B.3.(4分)如图的几何体由六个相同的小正方体搭成,它的主视图是()A.B.C.D.【解答】解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选:A.4.(4分)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是()A.0.85B.0.57C.0.42D.0.15【解答】解:样本中身高不低于180cm的频率==0.15,所以估计他的身高不低于180cm的概率是0.15.故选:D.5.(4分)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.6.(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4【解答】解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.7.(4分)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.8.(4分)如图,△ABC内接于⊙O,∠B=65°,∠C=70°.若BC=2,则的长为()A.πB.πC.2πD.2π【解答】解:连接OB,OC.∵∠A=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选:A.9.(4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变【解答】解:∵正方形ABCD和矩形ECFG中,∠DCB=∠FCE=90°,∠F=∠B=90°,∴∠DCF=∠ECB,∴△BCE∽△FCD,∴,∴CF•CE=CB•CD,∴矩形ECFG与正方形ABCD的面积相等.故选:D.10.(4分)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【解答】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2019•江西)因式分解:x2﹣1=(x+1)(x﹣1).【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).12.(5分)不等式3x﹣2≥4的解为x≥2.【解答】解:移项得,3x≥4+2,合并同类项得,3x≥6,把x的系数化为1得,x≥2.故答案为:x≥2.13.(5分)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m所表示的数是4.【解答】解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,∴m=15﹣8﹣3=4.故答案为:414.(5分)如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB 长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为15°或45°.【解答】解:∵四边形ABCD是正方形,∴AD=AE,∠DAE=90°,∴∠BAM=180°﹣90°﹣30°=60°,AD=AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,∴∠ADE=45°,当点E与正方形ABCD的直线AP的两侧时,由题意得,E′A=E′M,∴△AE′M为等边三角形,∴∠E′AM=60°,∴∠DAE′=360°﹣120°﹣90°=150°,∵AD=AE′,∴∠ADE′=15°,故答案为:15°或45°.15.(5分)如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是y=x.【解答】解:∵D(5,3),∴A(,3),C(5,),∴B(,),设直线BD的解析式为y=mx+n,把D(5,3),B(,)代入得,解得,∴直线BD的解析式为y=x.故答案为y=x.16.(5分)把边长为2的正方形纸片ABCD分割成如图的四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是6+2或10或8+2.【解答】解:如图所示:图1的周长为1+2+3+2=6+2;图2的周长为1+4+1+4=10;图3的周长为3+5++=8+2.故四边形MNPQ的周长是6+2或10或8+2.故答案为:6+2或10或8+2.三、解答题(本大题共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:4sin60°+(π﹣2)0﹣(﹣)﹣2﹣.(2)x为何值时,两个代数式x2+1,4x+1的值相等?【解答】解:(1)原式=4×+1﹣4﹣2=﹣3;(2)x2+1=4x+1,x2﹣4x=0,x(x﹣4)=0,x1=0,x2=4.18.(8分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:千米;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得,∴,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.19.(8分)小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好成绩是都是在第4期出现,建议集训时间定为14天.20.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)【解答】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DF=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10=3.2(cm).21.(10分)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO 全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.【解答】解:(1)连接OC,如图,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠D=30°,∴OD=2OC=2,∴AD=AO+OD=1+2=3;(2)添加∠DCB=30°,求AC的长,解:∵AB为直径,∴∠ACB=90°,∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,∴∠ACO=∠DCB,∵∠ACO=∠A,∴∠A=∠DCB=30°,在Rt△ACB中,BC=AB=1,∴AC=BC=.22.(12分)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.【解答】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,S的最大值为30.25.23.(12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM =10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【解答】解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=20或(﹣20舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=10或(﹣10舍弃).综上所述,满足条件的AM的值为20或10.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==30,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30.24.(14分)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b 的值.【解答】解:(1)如图1中,作EH⊥BC于H,MQ⊥CD于Q,设EF交MN于点O.∵四边形ABCD是正方形,∴FH=AB,MQ=BC,∵AB=CB,∴EH=MQ,∵EF⊥MN,∴∠EON=90°,∵∠ECN=90°,∴∠MNQ+∠CEO=180°,∠FEH+∠CEO=180°∴∠FEH=∠MNQ,∵∠EHF=∠MQN=90°,∴△FHE≌△MQN(ASA),∴MN=EF,∴k=MN:EF=1.(2)∵a:b=1:2,∴b=2a,由题意:2a≤MN≤a,a≤EF≤a,∴当MN的长取最大时,EF取最短,此时k的值最大最大值=,当MN的最短时,EF的值取最大,此时k的值最小,最小值为.(3)连接FN,ME.∵k=3,MP=EF=3PE,∴==3,∴==2,∵∠FPN=∠EPM,∴△PNF∽△PME,∴==2,ME∥NF,设PE=2m,则PF=4m,MP=6m,NP=12m,①如图2中,当点N与点D重合时,点M恰好与B重合.作FH⊥BD于H.∵∠MPE=∠FPH=60°,∴PH=2m,FH=2m,DH=10m,∴===.②如图3中,当点N与C重合,作EH⊥MN于H.则PH=m,HE=m,∴HC=PH+PC=13m,∴tan∠HCE===,∵ME∥FC,∴∠MEB=∠FCB=∠CFD,∵∠B=∠D,∴△MEB∽△CFD,∴==2,∴===,综上所述,a:b的值为或.。
浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是 A.5 B.-5 C.51 D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于 A. -1 B. 0 C. 3 D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为A.πB.π2C.π2D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 A.524 B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
第2页(共24页)123如图的几何体由六个相同的小正方体搭成,它的主视图是()4C .0.42D .0.15,C ,量得170∠︒=,2100∠︒=,那么木条a ,b 所在()第5题图C .30︒D .70︒10)在同一直线上,则a 的值等于()C .3D .4()()53x x +-=经变换后得到抛物线(3)(5)y x x =+-,()B .向右平移2个单位D .向右平移8个单位65︒=,70C ∠︒=.若BC =则»BC的长为()第8题图C .2πD .E ,以EC 为边作矩形ECFG ,且边FG 过点D .在ECFG 的面积()第9题图B .先变小后变大毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3第4页(共24页)C .一直变大D .10.如图1,长、宽均为3,高为8面高为6意图,则图2中水面高度为图1第10题图A .245B .325C卷Ⅱ二、填空题(本大题有6小题,每小题5分,共3011.因式分解:21x -=.12.不等式324x-≥的解为.13.所表示的数是.第13题图14.如图,在直线AP 上方有一个正方形ABCD ,∠半径作弧,与AP 交于点A ,M ,分别以点A ,M 交于点E ,连结ED ,则ADE ∠的度数为.题14题图C 都在曲线ky x =(常数0k >,0x >)上,若顶点D的函数表达式是.第15题图分割成如图的四块,其中点O 为正方形的中心,点.用这四块纸片拼成与此正方形不全等的四边形MNPQ ,则四边形MNPQ 的周长是.第16题图17~20小题每小题8分,第21小题10分,第22,14分,共80分.解答需写出必要的文字说明、演算212-⎛⎫--- ⎪⎝⎭21x +,41x +的值相等?数学试卷第5页(共第6页(共24页)18.路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为0150x ≤≤时,求1(2)当150200x ≤≤时,求y 关于x 蓄电池的剩余电量.19.小明、小聪参加了100 m 跑的5期集训,时间、测试成绩绘制成如下两个统计图.第19题图根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5(2底座的高AB 为5cm ,长度均为20cm 的连杆.BCD 成平角,150ABC ∠︒=,如图2,求连杆端点D C 逆时针旋转,使165BCD ∠︒=,如图3,问此时0.1cm ,参考数据:2 1.41≈,3 1.73≈)图2图3第20题图AB 的长为2,过点C 的切线交AB 的延长线于点D ..30D ∠︒=,求AD 的长.请你解答.AD 的长30A ∠︒=,连结OC ,就可以证明ACB V 与DCO V ,并解答.第21题图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7第8页(共24页)22.有一块形状如图的五边形余料ABCDE ,AB =135C ∠︒=,90E ∠︒>并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE (2)能否截出比(1最大值;如果不能,说明理由.23.(12分)如图1是实验室中的一种摆动装置,BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,10DM =.(1)在旋转过程中,①当A ,D ,M 三点在同一直线上时,求AM ②当A ,D ,M (2)若摆动臂AD 顺时针旋转90°,点D 2D 处,连结12D D ,如图2,此时2135AD C ∠︒=,260CD =,求2BD 的长.图1a ,BCb =,点M ,N 分别在边AB ,CD 上,点E ,FEF 交于点P ,记k MN EF =:.EF ⊥时,求k 的值..60MPE ∠︒=,3MP EF PE ==时,求:a b 第24题图数学试卷第9页(共第10页(共24页)浙江省绍兴市2019卷Ⅰ一、选择题1.【答案】A【解析】根据绝对值的性质求解.解:根据负数的绝对值等于它的相反数,得|5|5-=.故选:A.【考点】绝对值2.【答案】B【解析】科学记数法的表示形式为10na ⨯值时,要看把原数变成a 数相同.当原数绝对值1>时,n 解:数字126000000科学记数法可表示为81.2610⨯故选:B.【考点】科学计数法3.【答案】A个正方形,故A 符合题意,故选:A.【考点】三视图4.【答案】D【解析】先计算出样本中身高不低于180 cm 解:样本中身高不低于180 cm 的频率150.15100==,所以估计他的身高不低于180 cm 的概率是0.15.故选:D.【考点】统计,等可能事件的概率,根据三角形内角和定理计算,得到答案.1801007010︒︒︒︒=--=,180°再将点(,10)a 代入解析式即可;y kx b +=,;.,顶点坐标是(1,16)--.(1,16)-.2个单位长度得到抛物线(3)(5)y x x =+-,数学试卷第1112页(共24页)8.【答案】A【解析】连接OB ,OC .首先证明OBC △解:连接OB ,OC .∵180180657045A ABC ACB ∠=-∠-∠=-︒-︒=︒︒︒∴90BOC ︒∠=∴BC =∴2OB OC ==∴»BC的长为2902360ππ⋅⋅=,故选:A.【考点】三角形内角和,圆周角,圆心角,弧长公式9.【答案】D【解析】由BCE FCD △∽△,即可得矩形ECFG 与正方形ABCD 的面积相等.解:∵正方形ABCD 和矩形ECFG 中,90DCB FCE ︒∠=∠=,90F B ︒∠=∠=,∴DCF ECB ∠=∠,∴BCE FCD △∽△,∴CF CDCB CE=,∴CF CE CB CD ⋅⋅=,∴矩形ECFG 与正方形ABCD 的面积相等.故选:D.【考点】正方形,矩形,相似三角形10.【答案】A【解析】设DE x =,则8AD x -=,BG 于F ,由CDE BCF △∽△的比例线段5=,数学试卷第13页(共第14页(共24页)解:原式(1)(1)x x =+-.故答案为:(1)(1)x x +-.【考点】因式分解,平方差公式12.【答案】2x ≥【解析】先移项,再合并同类项,把x 的系数化为1解:移项得,342x +≥,合并同类项得,36x ≥,把x 的系数化为1得,2x ≥.故答案为:2x ≥.【考点】一元一次不等式13.【答案】4【解析】根据“解:根据“上的三个数之和都等于15,∴第一列第三个数为:15258--=,∴15834m =--=.故答案为:4【考点】一元一次方程14.【答案】15°或45°【解析】分点E 与正方形ABCD 的直线AP 解:∵四边形ABCD 是正方形,∴AD AE =,90DAE ∠=︒,∴180903060BAM ∠=︒-︒-︒=︒,AD AB =,当点E 与正方形ABCD 的直线AP ∴45ADE ∠=︒,当点E 与正方形ABCD 的直线AP ∴AE M '△为等边三角形,∴60E AM ∠'=︒,︒,,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭,BD 的解析式.,35n k n +=+=,解得350m n ⎧=⎪⎨⎪=⎩,数学试卷第15第16页(共24页)16.【答案】6+或10或8+解:如图所示:图1的周长为1236+++=+;图2的周长为141410+++=;图3的周长为358++=+故四边形MNPQ 的周长是6+或10或8+故答案为:6+或10或8+三、解答题17.【答案】解:(1)原式341432=⨯+--=-.(2)2141x x +=+,240x x -=,(4)0x x -=,10x =,24x =.【解析】(1)根据实数运算法则解答;(2)利用题意得到2141x x +=+因式分解18.【答案】解:(115066035=-千米;,(200,10)代入,20=,0.5110y x =-+,当汽车已行驶180千米时,蓄.35千瓦时时汽车已行驶了150千米,据x 的函数表达式,再把180x =代入即可求出当汽车已.5710142056++++=(天),11.7611.6111.5311.62)511.68++++÷=(秒),5次测试的平均成绩是11.68秒;4期出现,建议集训时间定为14天.5期的集训共有多少天和小聪5次测试的平均.DE ⊥于O .数学试卷第17页(共第18页(共24页)图2∵90OEA BOE BAE∠=∠=∠=︒,∴四边形ABOE是矩形,∴90OBA=︒∠,∴1509060DBO∠=︒-︒=︒,∴sin60OD BD︒=⋅=,∴539.6(cm)DF OD OE OD AB=+=+=≈.(2)作DF l⊥于F,CP DF⊥于P,BG DF⊥于是矩形,图3∵60CBH∠=︒,90CHB∠=︒,∴30BCH∠=︒,∵165BCD∠=︒,45DCP∠=︒,∴sin60CH BC︒=⋅=,sin45DP CD︒=⋅∴DF DP PG GF DP CH AB=++=++=5 3.2(cm)-=.DE于O.解直角三角形求出OD即可解决问题.P,BG DF⊥于G,CH BG⊥于H.则四边形PCHG-DE即可解决问题.90DCB+∠=︒90OCD∠=︒,再根据含30度的直角2,然后计算OA OD+即可;的长,利用圆周角定理得到90ACB∠=︒,再证明数学试卷第19第20页(共24页)30A DCB∠=∠=︒,然后根据含3022.【答案】(1)①若所截矩形材料的一条边是BC 过点C 作CF AE ⊥于F ,16530S AB BC =⋅=⨯=;②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点则四边形AEFG 为矩形,四边形BCHG 为矩形,∵135C ∠=︒,∴45FCH ∠=︒,∴CHF △为等腰直角三角形,∴6AE FG ==,5HG BC ==,BG CH FH ==,∴651BG CH FH FG HG ===-=-=,∴615AG AB BG =-=-=,∴*26530S AE AG ==⨯=;(2)能;理由如下:在CD 上取点F ,过点F 作FM AB ⊥于M ,FN ⊥则四边形ANFM 为矩形,四边形BCGM 为矩形,∵135C ∠=︒,∴45FCG ∠=︒,∴CGF △为等腰直角三角形,∴5MG BC ==,BM CG =,FG DG =,设AM x =,则6BM x =-,∴11FM GM FG GM CG BC BM x =+=+=+=-,∴22(11)11( 5.5)S AM FM x x x x x =⨯=-=-+=-+∴当 5.5x =时,S 的最大值为30.25.图1图2图3BC ,过点C 作CF AE ⊥于F ,得出,过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过AEFG 为矩形,四边形BCHG 为矩形,证出CHF △6FG ==,5HG BC ==,BG CH FH ==,求出1=,5AG AB BG =-=,得出26530S AE AG =⋅=⨯=;FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM⊥四边形BCGM 为矩形,证出CGF △为等腰三角形,CG ,FG DG =,设AM x =,则6BM x =-,11BC BM x=+=-,得出211x x +,由二次函数的性质即可得出结果.40DM +=,或20.AM AD DM =-=22223010800DM -=-=,.22230101000DM +=+=,.或.数学试卷第21页(共第22页(共24页)由题意:1290D AD ∠=︒,1230AD AD ==,∴2145AD D ︒∠=,12302D D =,∵2135AD C ︒∠=,∴1290CD D ︒∠=,∴221212306CD CD D D =+=∵2190BAC A AD ∠=∠=︒,∴2212BAC CAD D AD CAD ∠-∠=∠-∠,∴12BAD CAD ∠=∠,∵AB AC =,21AD AD =,∴21()BAD CAD SAS V V ≌,∴21306BD CD ==【解析】(1)①分两种情形分别求解即可.②显然MAD ∠不能为直角.当AMD ∠为直角时,根据222AM AD DM =-,计算即可,当90ADM ∠=︒时,根据222AM AD DM =+,计算即可.(2)连接CD .首先利用勾股定理求出1CD ,再利用全等三角形的性质证明21BD CD =即可.【考点】线段、角的和差,勾股定理,等腰直角三角形,全等三角24.【答案】(1)如图1中,Q ,设EF 交MN 于点O .1+80CEO ∠=︒, ,k 的值最大,最大值,k 的值最小,最小值为5.第24页(共24页)∴3MN EFPM PE==,∴2PN PFPM PE==,∵FPN EPM∠=∠,∴PNF PMEV V∽,∴2NF PNME PM==,//NFME设2PE m=,则4PF m=,6MP m=,12NP m=,①如图2中,当点N与点D重合时,点M恰好与B图2∵60MPE FPH∠=∠=︒,∴2PH m=,FH=,10PH m=,∴35a AB FHb AD HD===②如图3中,当点N与C重合,作EH MN⊥于H.图3∴13HC PH PC m=+=,∴tan13MB HEHCEBC HC∠=--,∵ME FC∥,∴MEB FCB CFD∠=∠=∠,MQ CD⊥于Q,设EF交MN于点O.证明.,当MN的长取最大时,EF取最短,此的最短时,EF的值取最大,此时k的值最小,3PE=,推出=3MN EFPM PE-,推出2PN PFPM PE==,2PNPM==,ME NF∥,设2PE m=,则4PF m=,2中,当点N与点D重合时,点N与C重合,分别求解即可.数学试卷第23。
浙江省2019年初中学业水平考试绍兴市试卷数学试题卷考生须知:1.本试卷共6页,有三个大题,24小题,全卷满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在本试卷、草稿纸上均无效.3.答题前认真阅读答题纸上的“注意事项”,按规定答题,本次考生不能使用计算器. 参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标是)44,2(2a b ac a b --. 卷I (选择题)一、选择题(本大题共10个小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选均不给分)1. 5-的绝对值是A.5B.-5C.51D.51- 2.某市决定为全市中小学生教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为A.7106.12⨯B.81026.1⨯C.91026.1⨯D.1010126.0⨯3.如图的几何体由6个相同的小正方体搭成,它的主视图是4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x (cm )统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是A.0.85B. 0.57C. 0.42D.0.155.如图,墙上钉着三根木条a,b,c ,量得∠1=70°,∠2=100°,那么木条a,b 所在直线所夹的锐角是A.5°B.10°C.30°D.70°6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于A. -1B. 0C. 3D. 47.在平面直角坐标系中,抛物线)3)(5(-+=x x y 经过变换后得到抛物线)5)(3(-+=x x y ,则这个变换可以是A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.如图,△ABC 内接于圆O ,∠B=65°,∠C=70°,若BC=22,则弧BC 的长为 A.π B.π2 C.π2 D.π229.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积A.先变大后变小B.先变小后变大C.一直变大D.保持不变10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为A.524B.532 C.173412 D.173420 卷II (非选择题)二、填空题(本大题有6个小题,每小题5分,共30分)11.因式分解:=-12x ▲ .12.不等式423≥-x 的解为 ▲ .13.我国的《洛书》中记载着世界最古老的一个幻方:将1~9这九个数字填入3×3的方格中,使三行、三列、两对角线上的三个数之和都相等,如图的幻方中,字母m 所表示的数是 ▲ .14.如图,在直线AP 上方有一个正方形ABCD ,∠PAD=30°,以点B 为圆心,AB 为半径作弧,与AP 交于点A,M ,分别以点A,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则∠ADE 的度数为 ▲ .15.如图,矩形ABCD 的顶点A,C 都在曲线xk y =(常数0,0>≥x k )上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 ▲ . 16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E,F 分别是AB,AD 的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 ▲ .三、解答题(本大题有8小题,17~20题每小题8分,第21题10分,第22,23小题每小题12分,第24小题14分,共80分,解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:12)21()2(60sin 420----+︒-π(2)x 为何值时,两个代数式14,12++x x 的值相等?18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当1500≤≤x 时,求1千瓦时的电量汽车能行驶的路程;(2)当200150≤≤x 时求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.19.小明、小聪参加了100m 跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm 。
2019年浙江省绍兴市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( ) A .24B .18C .16D .62.如图,请你在正方形地板上涂上阴影部分,使得小猫在地板上自由地走来走去,它最终停留在地板上的概率是41.( ) 3.如图,在△ABC 中,点D 在AB 上,点E 在AC 上,若∠ADE=∠C ,且AB=5,AC=4,AD=x ,AE=y ,则y 与x 的关系式是( ) A .x y 5=B .x y 54=C .x y 45= D .x y 209=4.把一个矩形剪去一个正方形,所余的矩形与原矩形相似,那么原矩形中,较长的边与较短的边之比是( ) A .5:2 B .(13):2+C .(15):2+D .(16):2+5.如图,AB 是⊙O 的直径,CD ⊥AB 于E ,则下列结论:①BC= BD ;②AC= AD ;③ CE= DE ;④B = BE ·BA. 其中正确的有( )A .1 个B .2 个C .3个D .4个 6.点(21)P -,关于x 轴的对称点的坐标为( )A .(21),B .(21)--,C .(21)-,D .(12)-,7.“高高兴兴上学来,开开心心回家去.”小王某天放学后,l7时从学校出发,回家途中离家的路程s(km)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()A.17 h15 min B.17 h14 min C.17 h12 min D.17 h11 min8.数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的()A.平均数或中位数B.方差或标准差C.众数或平均数D.众数或中位数9.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5,则另一个三角形的周长是()A.23 B.27 C.29 D.3310.在22231,,,()122x xx yx xπ---+-中,不是分式的有()A.0个B.1个C.2个D.3个11.下列生活现象中,属于相似变换的是()A.抽屉的拉开B.荡秋千C.汽车刮雨器的运动D.投影片的文字经投影变换到屏幕12.图(1)、图(2)分别是2005~2008年我国某省初中在校生人数和初中学校数目统计图,由图可知,2005~2008年,该省初中()A.在校生人数逐年增加,学校数也逐年增加B.在校生人数逐年增加,学校数逐年减少C.在校生人数逐年减少,学校数也逐年减少D.在校生人数逐华减少,学校数逐年增加二、填空题13.已知⊙O的半径为5㎝,弦AB的长为8㎝,则圆心O到AB的距离为㎝.14.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 互相垂直,AC=9,中位线长215,则对角线BD 的长是 .15.写出线段的中点的定义: .16.农科院为了选出适合某地种植的玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到和试验田每公顷产量的数据,通过计算得到数据的平均数为7.54x 甲≈,7.53x 乙≈,数据的方差为20.01S 甲≈,20.002S 乙≈,则这两种玉米的产量比较稳定的是__________.17.若不等式-3x+n>0的解集是x<2,则不等式-3x +n <0的解集是_____________. 18.用x 、y 分别表示 2辆三轮车和3辆卡车一次运货的吨数,那么5辆三轮车和4辆卡车共能运货24吨所表示的数量关系式是 .19.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是 . 20.下列各代数式是整式的是 . ①1;②r ;③343r π ;④11x +;⑤213x +;⑥22x π21.已知0a b <<,且||||a b >,则323||a b a b -++= . 22.当m 取 时,232(3)mm y m x -+=-是二次函数.三、解答题23.如图,在以0为圆心的两个同心圆中,大圆的弦AB = CD ,且 AB 与小圆相切,求证:CD 与小圆也相切.24.阅读理解题:(1)如图,在△ABC 中,AD 是BC 边上的中线,且AD=21BC . 求证:∠BAC=90°. 证明:∵AD=12BC ,BD=CD=12BC ,∴AD=BD=DC , ∴∠B=∠BAD ,∠C=∠CAD ,∵∠B+∠BAD+∠CAD+∠C=180°,AB CD∴∠BAD+∠CAD=90°,即∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直线运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为25.化简:=-2)3(π .26.(1)在平面直角坐标系中,作出下列各点A(0,2)、B(1,O)、C(5,2)、D(2,4); (2)求四边形ABCD 的面积.27.根据下列条件,,写出仍能成立的不等式. (1)72>-,两边都加2; (2)35-<,两边都减1; (3)23<,两边都乘以4; (4)39>-,两边都除以 3; (5)24->-,两边都乘以3-; (6)168-<-,两边都除以一4. 观察以上各题的结果,你有什么发现吗?28.如图,把方格纸上的图形作相似变换,放大到原图形的2倍,并在方格纸上画出经过变换的像.29.把-12 写成两个整数的积的形式(要求写出所有可能)30.从2005年9月起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前浙江省绍兴市2019年中考试卷数 学(本试卷满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭.卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,多选、错选,均不给分) 1.5-的绝对值是( )A .5B .5-C .15D .15-2.某市决定为全市中小学教室安装空调,今年预计投入资金126 000 000元,其中数字126 000 000用科学记数法可表示为( )A .712.610⨯B .81.2610⨯C .91.2610⨯D .100.12610⨯3.如图的几何体由六个相同的小正方体搭成,它的主视图是( )第3题图ABCD4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是( )A .0.85B .0.57C .0.42D .0.155.如图,墙上钉着三根木条a ,b ,C ,量得170∠︒=,2100∠︒=,那么木条a ,b 所在直线所夹的锐角是( )第5题图A .5︒B .10︒C .30︒D .70︒6.若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( )A .1-B .0C .3D .47.在平面直角坐标系中,抛物线()()53yx x +-=经变换后得到抛物线(3)(5)y x x =+-,则这个变换可以是()A .向左平移2个单位B .向右平移2个单位C .向左平移8个单位D .向右平移8个单位8.如图,ABC △内接于⊙O ,65B ∠︒=,70C ∠︒=.若BC =则BC 的长为( )第8题图 A .πBC.2πD . 9.正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D .在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积( )第9题图A .先变大后变小B .先变小后变大C .一直变大D .保持不变毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)10.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )图1图2第10题图A .245B .325CD卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分) 11.因式分解:21x -= . 12.不等式324x -≥的解为 .13.我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m 所表示的数是 .第13题图14.如图,在直线AP 上方有一个正方形ABCD ,30PAD ∠︒=,以点B 为圆心,AB 长为半径作弧,与AP 交于点A ,M ,分别以点A ,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则ADE ∠的度数为 .题14题图15.如图,矩形ABCD 的顶点A ,C 都在曲线ky x=(常数0k >,0x >)上,若顶点D 的坐标为(5,3),则直线BD 的函数表达式是 .第15题图16.把边长为2的正方形纸片ABCD 分割成如图的四块,其中点O 为正方形的中心,点E ,F 分别为AB ,AD 的中点.用这四块纸片拼成与此正方形不全等的四边形MNPQ (要求这四块纸片不重叠无缝隙),则四边形MNPQ 的周长是 .第16题图三、解答题(本大题共8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:214sin 60(2)2π-︒⎛⎫+--- ⎪⎝⎭(2)x 为何值时,两个代数式21x +,41x +的值相等?数学试卷 第5页(共24页) 数学试卷 第6页(共24页)18.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0150x ≤≤时,求1千瓦时的电量汽车能行驶的路程;(2)当150200x ≤≤时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.第18题图19.小明、小聪参加了100 m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.第19题图根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.20.如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使BCD ∠成平角,150ABC ∠︒=,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 再绕点C 逆时针旋转,使165BCD ∠︒=,如图3,问此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少?(精确到0.1cm ,1.41≈1.73≈)图1图2 图3第20题图21.在屏幕上有如下内容:如图,ABC △内接于⊙O ,直径AB 的长为2,过点C 的切线交AB 的延长线于点D .张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件30D ∠︒=,求AD 的长.请你解答. (2)以下是小明、小聪的对话:小明:我加的条件是1BD =,就可以求出AD 的长小聪:你这样太简单了,我加的是30A ∠︒=,连结OC ,就可以证明ACB 与DCO 全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.第21题图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共24页) 数学试卷 第8页(共24页)22.有一块形状如图的五边形余料ABCDE ,6AB AE ==,5BC =,90A B ︒∠=∠=,135C ∠︒=,90E ∠︒>,要在这块余料中截取一块矩形材料,其中一条边在AE 上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.第22题图23.(12分)如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD =,10DM =.(1)在旋转过程中,①当A ,D ,M 三点在同一直线上时,求AM 的长.②当A ,D ,M 三点为同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由ABC △外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠︒=,260CD =,求2BD 的长.图1图2第23题图24.如图,矩形ABCD 中,AB a =,BC b =,点M ,N 分别在边AB ,CD 上,点E ,F 分别在边BC ,AD 上,MN ,EF 交于点P ,记k MN EF =:. (1)若:a b 的值为1,当MN EF ⊥时,求k 的值.(2)若:a b 的值为12,求k 的最大值和最小值.(3)若k 的值为3,当点N 是矩形的顶点,60MPE ∠︒=,3MP EF PE ==时,求:a b 的值.第24题图数学试卷 第9页(共24页) 数学试卷 第10页(共24页)浙江省绍兴市2019年中考试卷数学答案解析卷Ⅰ(选择题)一、选择题 1.【答案】A【解析】根据绝对值的性质求解.解:根据负数的绝对值等于它的相反数,得|5|5-=. 故选:A. 【考点】绝对值 2.【答案】B【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 解:数字126 000 000科学记数法可表示为81.2610⨯元. 故选:B.【考点】科学计数法 3.【答案】A【解析】根据从正面看得到的视图是主视图,可得答案.解:从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A 符合题意, 故选:A. 【考点】三视图 4.【答案】D【解析】先计算出样本中身高不低于180 cm 的频率,然后根据利用频率估计概率求解.解:样本中身高不低于180 cm 的频率150.15100==,所以估计他的身高不低于180 cm 的概率是0.15. 故选:D.【考点】统计,等可能事件的概率5.【答案】B【解析】根据对顶角相等求出3∠,根据三角形内角和定理计算,得到答案. 解:32100∠∠︒==,∴木条a ,b 所在直线所夹的锐角1801007010︒︒︒︒=--=, 故选:B.【考点】对顶角相等,三角形内角和为180° 6.【答案】C【解析】利用()1,4,()2,7两点求出所在的直线解析式,再将点(,10)a 代入解析式即可; 解:设经过()1,4,()2,7两点的直线解析式为y kx b +=,∴472k b k b =+⎧⎨=+⎩∴31k b =⎧⎨=⎩,∴31y x +=,将点(,10)a 代入解析式,则3a =; 故选:C.【考点】一次函数及其图象,待定系数法 7.【答案】B【解析】根据变换前后的两抛物线的顶点坐标找变换规律. 解:2(5)(3)(1)16y x x x =+-=+-,顶点坐标是(1,16)--.2(3)(5)(1)16y x x x =+-=--,顶点坐标是(1,16)-.所以将抛物线(5)(3)y x x =+-向右平移2个单位长度得到抛物线(3)(5)y x x =+-, 故选:B.【考点】二次函数及其图象,图形的平移8.【答案】A数学试卷 第11页(共24页) 数学试卷 第12页(共24页)【解析】连接OB ,OC .首先证明OBC △是等腰直角三角形,求出OB 即可解决问题. 解:连接OB ,OC .∵180180657045A ABC ACB ∠=-∠-∠=-︒-︒=︒︒︒, ∴90BOC ︒∠=∴BC =∴2OB OC ==∴BC 的长为2902360ππ⋅⋅=, 故选:A.【考点】三角形内角和,圆周角,圆心角,弧长公式 9.【答案】D【解析】由BCE FCD △∽△,根据相似三角形的对应边成比例,可得CF CE CD BC ⋅⋅=,即可得矩形ECFG 与正方形ABCD 的面积相等. 解:∵正方形ABCD 和矩形ECFG 中,90DCB FCE ︒∠=∠=,90F B ︒∠=∠=,∴DCF ECB ∠=∠, ∴BCE FCD △∽△, ∴CF CDCB CE=, ∴CF CE CB CD ⋅⋅=,∴矩形ECFG 与正方形ABCD 的面积相等. 故选:D.【考点】正方形,矩形,相似三角形 10.【答案】A【解析】设DE x =,则8AD x -=,由长方体容器内水的体积得出方程,解方程求出DE ,再由勾股定理求出CD ,过点C 作CF BG ⊥于F ,由CDE BCF △∽△的比例线段求得结果即可.解:过点C 作CF BG ⊥于F ,如图所示:设DE x =,则8AD x -=,根据题意得:1(88)333362x -+⨯⨯=⨯⨯,解得:=4x , ∴=4DE , ∵90E ∠=︒,由勾股定理得:5CD ==, ∵90BCE DCF ∠=∠=︒, ∴DCE BCF ∠=∠, ∵90DEC BFC ∠=∠=︒, ∴CDE BCF △∽△, ∴CE CDCF CB =, 即358CF =, ∴245CF =. 故选:A.【考点】E 角形面积,勾股定理,相似三角形卷Ⅱ(非选择题)二、填空题11.【答案】(1)(1)x x +-【解析】原式利用平方差公式分解即可. 解:原式(1)(1)x x =+-.数学试卷 第13页(共24页) 数学试卷 第14页(共24页)故答案为:(1)(1)x x +-. 【考点】因式分解,平方差公式 12.【答案】2x ≥【解析】先移项,再合并同类项,把x 的系数化为1即可. 解:移项得,342x +≥, 合并同类项得,36x ≥, 把x 的系数化为1得,2x ≥. 故答案为:2x ≥. 【考点】一元一次不等式 13.【答案】4【解析】根据“每行、每列、每条对角线上的三个数之和相等”解答即可.解:根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15, ∴第一列第三个数为:15258--=, ∴15834m =--=. 故答案为:4【考点】一元一次方程 14.【答案】15°或45°【解析】分点E 与正方形ABCD 的直线AP 的同侧、点E 与正方形ABCD 的直线AP 的两侧两种情况,根据正方形的性质、等腰三角形的性质解答. 解:∵四边形ABCD 是正方形, ∴AD AE =,90DAE ∠=︒,∴180903060BAM ∠=︒-︒-︒=︒,AD AB =,当点E 与正方形ABCD 的直线AP 的同侧时,由题意得,点E 与点B 重合, ∴45ADE ∠=︒,当点E 与正方形ABCD 的直线AP 的两侧时,由题意得,E A E M '=', ∴AE M '△为等边三角形, ∴60E AM ∠'=︒,∴36012090150DAE ∠'=︒-︒-︒=︒,∵AD AE =', ∴15ADE ∠'=︒, 故答案为:15°或45°.【考点】正方形,等腰三角形,等边三角形,圆 15.【答案】35y x =【解析】利用矩形的性质和反比例函数图象上点的坐标特征得到,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫⎪⎝⎭,所以,35k k B ⎛⎫⎪⎝⎭,然后利用待定系数法求直线BD 的解析式.解:∵(5,3)D ,∴,33k A ⎛⎫ ⎪⎝⎭,5,5k C ⎛⎫ ⎪⎝⎭,∴,35k k B ⎛⎫ ⎪⎝⎭,设直线BD 的解析式为y mx n =+,把(5,3)D ,,35k k B ⎛⎫⎪⎝⎭代入得5335n k k m n π+=⎧⎪⎨+=⎪⎩,解得350m n ⎧=⎪⎨⎪=⎩, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【考点】反比例函数及其图象,矩形,一次函数及其图象,待定系数法,整体思想 16.【答案】6+10或8+数学试卷 第15页(共24页) 数学试卷 第16页(共24页)【解析】先根据题意画出图形,再根据周长的定义即可求解. 解:如图所示:图1的周长为1236+++=+ 图2的周长为141410+++=; 图3的周长为358+=+故四边形MNPQ的周长是6+或10或8+故答案为:6+10或8+【考点】等腰直角三角形,平行四边形,矩形,图形的整合 三、解答题17.【答案】解:(1)原式4143=---. (2)2141x x +=+,240x x -=,(4)0x x -=, 10x =,24x =.【解析】(1)根据实数运算法则解答;(2)利用题意得到2141x x +=+,利用因式分解法解方程即可.【考点】锐角三角函数,零指数幂,负整数指数幂,二次根式化简,解一元二次方程,因式分解18.【答案】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15066035=-千米;(2)设()0y kx b k =+≠,把点(150,35),(200,10)代入,得1503520010k b k b +=⎧⎨+=⎩,∴k 0.5b 110=-⎧⎨=⎩,∴0.5110y x =-+,当180x =时,0.518011020y =-⨯+=,答:当150200x ≤≤时,函数表达式为0.5110y x =-+,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.【解析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把180x =代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量. 【考点】一次函数及其图象,待定系数法19.【答案】(1)这5期的集训共有:5710142056++++=(天),小聪5次测试的平均成绩是:(11.8811.7611.6111.5311.62)511.68++++÷=(秒), 答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好成绩是都是在第4期出现,建议集训时间定为14天. 【解析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可. 【考点】条形统计图,折线统计图,平均数,数据的分析 20.【答案】(1)如图2中,作BO DE ⊥于O .数学试卷 第17页(共24页) 数学试卷 第18页(共24页)图2∵90OEA BOE BAE ∠=∠=∠=︒, ∴四边形ABOE 是矩形, ∴90OBA =︒∠,∴1509060DBO ∠=︒-︒=︒,∴sin 60OD BD ︒=⋅=,∴539.6(cm)DF OD OE OD AB =+=+=≈.(2)作DF l ⊥于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG是矩形,图3∵60CBH ∠=︒,90CHB ∠=︒, ∴30BCH ∠=︒,∵165BCD ∠=︒,45DCP ∠=︒ ,∴sin 60CH BC ︒=⋅=,sin 45(cm)DP CD ︒=⋅=,∴5)(cm)DF DP PG GF DP CH AB =++=++=,∴下降高度:55 3.2(cm)DE DF ⋅=-==. 【解析】(1)如图2中,作BO DE ⊥于O .解直角三角形求出OD 即可解决问题. (2)作DF l ⊥于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG是矩形,求出DF ,再求出DF -DE 即可解决问题. 【考点】:锐角三角函数,解直角三角形,矩形 21.【答案】(1)连接OC ,如图,∵CD 为切线, ∴OC CD ⊥, ∴90OCD ︒∠= ∵30D ︒∠= ∴22OD OC ==∴123AD AO OD =+=+=(2)添加30DCB ∠=︒,求AC 的长, 解:∵AB 为直径, ∴90ACB ∠=︒∵90ACB OCB ∠+∠=︒,90OCB DCB ∠+∠=︒ ∴ACO DCB ∠=∠ ∵ACO A ∠=∠ ∴30A DCB ∠=∠=︒ 在Rt ACB △中,112BC AB ==,∴AC =【解析】(1)连接OC ,如图,利用切线的性质得90OCD ∠=︒,再根据含30度的直角三角形三边的关系得到2OD =,然后计算OA OD +即可;(2)添加30DCB ∠=︒,求AC 的长,利用圆周角定理得到90ACB ∠=︒,再证明数学试卷 第19页(共24页) 数学试卷 第20页(共24页)30A DCB ∠=∠=︒,然后根据含30度的直角三角形三边的关系求AC 的长.【考点】直线与圆相切,解直角三角形,线段、角度的和差,相似三角形等 22.【答案】(1)①若所截矩形材料的一条边是BC ,如图1所示: 过点C 作CF AE ⊥于F ,16530S AB BC =⋅=⨯=; ②若所截矩形材料的一条边是AE ,如图2所示:过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点C 作CH FG ⊥于H , 则四边形AEFG 为矩形,四边形BCHG 为矩形, ∵135C ∠=︒, ∴45FCH ∠=︒,∴CHF △ 为等腰直角三角形,∴6AE FG ==,5HG BC ==,BG CH FH ==, ∴651BG CH FH FG HG ===-=-=, ∴615AG AB BG =-=-=, ∴*26530S AE AG ==⨯=; (2)能;理由如下:在CD 上取点F ,过点F 作FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM ⊥于G , 则四边形ANFM 为矩形,四边形BCGM 为矩形, ∵135C ∠=︒, ∴45FCG ∠=︒,∴CGF △为等腰直角三角形,∴5MG BC ==,BM CG =,FG DG =, 设AM x =,则6BM x =-,∴11FM GM FG GM CG BC BM x =+=+=+=-, ∴22(11)11( 5.5)30.25S AM FM x x x x x =⨯=-=-+=-+ ∴当 5.5x =时,S 的最大值为30.25.图1图2图3【解析】(1)①若所截矩形材料的一条边是BC ,过点C 作CF AE ⊥于F ,得出16530S AB BC =⋅=⨯=;②若所截矩形材料的一条边是AE ,过点E 作EF AB ∥交CD 于F ,FG AB ⊥于G ,过点C 作CH FG ⊥于H ,则四边形AEFG 为矩形,四边形BCHG 为矩形,证出CHF △为等腰三角形,得出6AE FG ==,5HG BC ==,BG CH FH ==,求出1BG CH FH FG HG ===-=,5AG AB BG =-=,得出26530S AE AG =⋅=⨯=; (2)在CD 上取点F ,过点F 作FM AB ⊥于M ,FN AE ⊥于N ,过点C 作CG FM⊥于G ,则四边形ANFM 为矩形,四边形BCGM 为矩形,证出CGF △为等腰三角形,得出5MG BC ==,BM CG =,FG DG =,设AM x =,则6BM x =-,11FM GM FG GM CG BC BM x =+=+=+=-,得出21111S AM FM x x x x =⨯=-=-+(),由二次函数的性质即可得出结果.【考点】矩形,等腰直角三角形,二次函数最值问题,构造函数思想 23.【答案】解:(1)①40AM AD DM =+=,或20.AM AD DM =-= ②显然MAD ∠不能为直角.当AMD ∠为直角时,222223010800AM AD DM =-=-=,∴AM =-舍弃).当90ADM ∠=︒时,2222230101000AM AD DM =+=+=,∴AM =-.综上所述,满足条件的AM的值为(2)如图2中,连接CD .数学试卷 第21页(共24页) 数学试卷 第22页(共24页)由题意:1290D AD ∠=︒,1230AD AD ==, ∴2145AD D ︒∠=,12D D = ∵2135AD C ︒∠=, ∴1290CD D ︒∠=,∴1CD =∵2190BAC A AD ∠=∠=︒,∴2212BAC CAD D AD CAD ∠-∠=∠-∠, ∴12BAD CAD ∠=∠, ∵AB AC =,21AD AD =, ∴21()BAD CAD SAS ≌,∴21BD CD ==【解析】(1)①分两种情形分别求解即可.②显然MAD ∠不能为直角.当AMD ∠为直角时,根据222AM AD DM =-,计算即可,当90ADM ∠=︒时,根据222AM AD DM =+,计算即可.(2)连接CD .首先利用勾股定理求出1CD ,再利用全等三角形的性质证明21BD CD =即可.【考点】线段、角的和差,勾股定理,等腰直角三角形,全等三角 24.【答案】(1)如图1中,图1作EH BC ⊥于H ,MQ CD ⊥于Q ,设EF 交MN 于点O . ∵四边形ABCD 是正方形, ∴FH AB =,MQ BC =, ∵AB CB =, ∴EH MQ =, ∵EF MN ⊥, ∴90EON ∠=︒, ∵90ECN ∠=︒,∴1+80MNQ CEO ∠∠=︒,1+80FEH CEO ∠∠=︒, ∴FEH MNQ ∠=∠, ∵90EHF MQN ∠=∠=︒ ∴()FHE MQN ASA ≌∴MN EF = ∴k MN =,1EF =. (2)∵:1:2a b =, ∴2b a =, 由题意:25a MNa ,5a EF a ,∴当MN 的长取最大时,EF 取最短,此时k的值最大,最大值, 当MN 的最短时,EF 的值取最大,此时k. (3)连接FN ,ME . ∵3k =,3MP EFPE==,数学试卷 第23页(共24页) 数学试卷 第24页(共24页)∴3MN EFPM PE ==, ∴2PN PFPM PE==, ∵FPN EPM ∠=∠, ∴PNF PME ∽, ∴2NF PNME PM==,//NF ME 设2PE m =,则4PF m =,6MP m =,12NP m =,①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.作FH BD ⊥于H .图2∵60MPE FPH ∠=∠=︒,∴2PH m =,FH =,10PH m =,∴5a AB FHb AD HD === ②如图3中,当点N 与C 重合,作EH MN ⊥于H .则PH m =,HE =,图3∴13HC PH PC m =+=,∴tan MB HE HCE BC HC ∠=- ∵ME FC ∥,∴MEB FCB CFD ∠=∠=∠,∵B D ∠=∠, ∴MEB CFD ≌, ∴2CD FCMB ME==,∴2a CD MB b BD BC --, 综上所述,:a b的值为5或13. 【解析】(1)作EH BC ⊥于H ,MQ CD ⊥于Q ,设EF 交MN 于点O .证明FHE MQN ASA △≌△(),即可解决问题. (2)由题意:2a MN ≤,a EF ≤,当MN 的长取最大时,EF 取最短,此时k的值最大最大值=,当MN 的最短时,EF 的值取最大,此时k 的值最小,最. (3)连接FN ,ME .由3k =,3MP EF PE ==,推出=3MN EF PM PE -,推出2PN PFPM PE==,由PNF PME △∽△ ,推出2NF PNME PM==,ME NF ∥,设2PE m =,则4PF m =,6MP m =,12NP m =,接下来分两种情形①如图2中,当点N 与点D 重合时,点M 恰好与B 重合.②如图3中,当点N 与C 重合,分别求解即可.【考点】全等三角形,勾股定理,平行线之间距离,锐角三角函数,解直角三角形,相似三角形。