一次函数集体备课记录杨小明
- 格式:docx
- 大小:12.30 KB
- 文档页数:2
八年级数学上册4.4一次函数的应用第1课时确定一次函数的表达式教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第四章第四节一次函数的应用,主要让学生掌握一次函数的表达式,并能够运用一次函数解决实际问题。
本节内容是在学习了平面直角坐标系、函数概念、一次函数的基础上进行学习的,是学生进一步学习函数知识的重要环节。
二. 学情分析学生在学习本节内容前,已经掌握了平面直角坐标系、函数概念、一次函数的知识,对函数有一定的认识。
但学生在运用一次函数解决实际问题时,还需要进一步的引导和训练。
三. 教学目标1.让学生掌握一次函数的表达式;2.培养学生运用一次函数解决实际问题的能力;3.提高学生对函数知识的理解和应用。
四. 教学重难点1.一次函数的表达式;2.如何运用一次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数的表达式,并能够运用一次函数解决实际问题。
六. 教学准备3.练习题;4.小组合作学习材料。
七. 教学过程1.导入(5分钟)利用课件展示一次函数的图像,引导学生回顾一次函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过讲解,呈现一次函数的表达式,让学生了解一次函数的一般形式。
3.操练(10分钟)学生根据一次函数的表达式,进行相关的练习,巩固对一次函数的理解。
4.巩固(10分钟)学生分组合作,通过解决实际问题,运用一次函数的表达式,加深对一次函数知识的理解。
5.拓展(10分钟)教师提出一些拓展问题,引导学生思考一次函数在实际生活中的应用,提高学生对函数知识的运用能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
7.家庭作业(5分钟)教师布置相关的家庭作业,让学生进一步巩固所学知识。
8.板书(5分钟)教师在黑板上板书一次函数的表达式,方便学生复习和记忆。
教学过程每个环节所用时间共计50分钟。
八年级数学一次函数听课记录
【原创实用版】
目录
1.介绍一次函数的概念
2.讲解一次函数的性质
3.举例说明一次函数的应用
4.总结听课笔记
正文
在八年级数学的一次函数课程中,我们学习了一次函数的概念、性质以及应用。
下面是我对这次课程的听课记录。
首先,老师介绍了一次函数的概念。
一次函数是指形如 y=kx+b(其
中 k 和 b 为常数,且 k≠0)的函数。
这里的 y 表示函数的输出,x 表示函数的输入,k 是斜率,表示函数图像的倾斜程度,b 是截距,表示函数图像与 y 轴的交点。
接着,老师讲解了一次函数的性质。
一次函数的图像是一条直线,它可以是上升的、下降的或平行于 x 轴。
当 k>0 时,函数图像上升;当 k<0 时,函数图像下降;当 k=0 时,函数图像平行于 x 轴。
此外,一次函数的图像与 x 轴的交点为 (-b/k, 0),与 y 轴的交点为 (0, b)。
然后,老师通过一些具体的例子说明了一次函数在实际生活中的应用。
例如,我们可以用一次函数来表示某种物品的价格与购买数量之间的关系,或者表示一个人在运动过程中的速度等。
最后,我们对本次课程的听课笔记进行了总结。
一次函数是数学中非常基础且重要的内容,理解一次函数的概念、性质以及应用,不仅有助于我们在数学学习中取得好成绩,还能提高我们在实际生活中解决实际问题的能力。
八年级数学一次函数听课记录
摘要:
一、一次函数的定义与性质
1.定义
2.性质
二、一次函数的图像与解析式
1.图像特点
2.解析式
三、一次函数的应用
1.线性函数关系
2.实际问题中的应用
四、一次函数与方程、不等式的关系
1.方程求解
2.不等式求解
五、课堂小结与作业
1.课堂重点回顾
2.课后作业
正文:
今天我们在八年级数学课上学习了关于一次函数的相关知识。
首先,我们明确了一次函数的定义,即形如y = kx + b 的函数,其中k 和b 为常数,且k 不等于0。
一次函数的性质包括:当x 增大时,如果k 为正数,则y
也增大;如果k 为负数,则y 减小。
接下来,我们学习了如何通过一次函数的图像来判断其解析式。
根据图像,我们可以知道函数的斜率k 和截距b。
例如,如果图像经过点(2, 3),那么解析式可以表示为y = kx + 3,我们只需要求出k 的值即可。
一次函数在实际问题中有很多应用,例如我们可以通过一次函数来描述价格、速度、距离等与时间的关系。
在解决实际问题时,我们需要先找到合适的函数模型,然后根据已知条件列出方程或不等式,并求解。
在课堂的最后,老师对一次函数与方程、不等式的关系进行了总结。
我们了解到,可以通过代入法或消元法求解一次函数的方程,而对于不等式,我们可以根据一次函数的性质判断其解集。
通过今天的学习,我们对一次函数有了更加深入的了解,相信在接下来的学习中,我们可以更好地运用一次函数解决实际问题。
一、活动背景随着新课程改革的不断深入,一次函数作为初中数学教学中的重要内容,其教学质量和效果备受关注。
为了提高教师对一次函数教学的理解和把握,提升课堂教学效率,我校数学教研组于2021年10月15日开展了以“一次函数教学策略探究”为主题的教研活动。
本次活动旨在通过集体备课、课堂教学展示、教学反思和研讨交流等形式,探讨一次函数教学的有效策略,促进教师专业成长。
二、活动内容1. 集体备课活动伊始,教研组长组织全体数学教师对一次函数的教学内容进行了集体备课。
首先,老师们共同学习了《义务教育数学课程标准(2022年版)》中关于一次函数的相关要求,明确了教学目标和重难点。
接着,针对一次函数的课堂教学,老师们从以下几个方面进行了深入探讨:(1)如何激发学生学习一次函数的兴趣?(2)如何帮助学生建立一次函数的概念?(3)如何引导学生掌握一次函数的性质和应用?(4)如何设计有效的课堂活动,提高学生的参与度?经过讨论,老师们形成了一致意见,并制定了相应的教学方案。
2. 课堂教学展示集体备课结束后,教研组安排了两位老师进行课堂教学展示。
第一位老师以“一次函数的概念”为主题,通过实例导入、小组合作、探究发现等方法,引导学生自主建构一次函数的概念。
第二位老师以“一次函数的性质与应用”为主题,通过实际问题解决、拓展延伸等形式,帮助学生掌握一次函数的性质和应用。
3. 教学反思两位展示课后,全体教师进行了教学反思。
首先,展示课的老师对自己的教学进行了总结和反思,分析了课堂教学中存在的问题和不足。
接着,其他老师针对展示课进行了点评,提出了改进意见和建议。
4. 研讨交流在研讨交流环节,老师们围绕以下话题展开讨论:(1)如何提高一次函数教学的趣味性?(2)如何加强一次函数与实际生活的联系?(3)如何培养学生的数学思维和创新能力?(4)如何合理运用信息技术,提高一次函数教学效果?在讨论过程中,老师们结合自己的教学实践,分享了各自的经验和做法,为一次函数教学提供了有益的借鉴。
八年级数学上册4.4.1 一次函数的应用教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册4.4.1 一次函数的应用教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册4.4.1 一次函数的应用教案(新版)北师大版的全部内容。
课题:4。
4.1 一次函数的应用教学目标:1.了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.2.经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法;3.经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.教学重点与难点重点:根据所给信息,利用待定系数法确定一次函数的表达式.难点:在实际问题情景中寻找条件,确定一次函数的表达式.课前准备教师准备:彩色粉笔,对多媒体课件.学生准备:三角尺.教学过程一、创设情境,导入新课活动内容:回顾与思考下列问题.(多媒体出示)问题1.一次函数的一般形式是什么?正比例函数呢?问题2.一次函数图像是什么?正比例函数的图像呢?问题3.一次函数具有什么性质?问题4.已知一次函数表达式,如何画一次函数图像?处理方式:学生口答,教师用多媒体展示上述各题。
然后教师提出问题:若已知一次函数的图像,你能确定一次函数表达式吗?(师板书课题——4。
4一次函数的应用)设计意图:学生回顾一次函数正比例函数相关知识,使学生深信确定了两点,一次函数图像也就确定了.为下边根据题意(或图像)确定函数表达式做好铺垫.二、探究学习,感悟新知活动内容1:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3秒时物体的速度是多少?问题1:观察图象,你知道它是什么函数吗?问题2:如何写出v与t之间的关系式?问题3:求下滑3秒时物体的速度是多少,实质是已知什么?求什么?处理方式:学生讨论交流,在完成上述3个问题后再完成(1)、(2)题的解答,学生之间互相补充.教师适时点评,强调:图象是一条过原点的直线,确定函数的类型是正比例函数,然后设它对应的解析式,再把已知点的坐标代入解析式求出k即可.教师要规范解题过程。
八年级数学教师集体备课教案根据实际问题列一次函数表达式.一、新课导入1.导入课题某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队由大本营向上登高xkm时,他们所在位置的气温是y℃,让学生试用x表示y,然后提问:这个y关于x的函数表达式是什么函数关系呢?由此导入课题(板书课题).2.学习目标(1)知道什么样的函数是一次函数,能根据一次函数的定义求函数表达式中未知字母系数的值.(2)知道正比例函数是特殊的一次函数.(3)根据等量关系列一次函数关系式.3.学习重、难点重点:一次函数的概念.难点:根据实际问题列一次函数表达式.二、分层学习1.自学指导(1)自学内容:P89到P90练习以上的内容.(2)自学时间:10分钟.(3)自学要求:看书、动手、观察关系式的共同特点,尝试归纳一次函数的一般形式.(4)自学参考提纲:①思考中的四个解析式有什么共同特点?②请叙述一次函数的定义,注意不能忽视什么问题?③一次函数与正比例函数有什么联系和区别?④已知y=(a2-1)x+b-2,a.当a≠±1,b≠2时,它是一次函数.b.当a≠±1,b=2时,它是正比例函数.⑤完成P90的练习.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生在完成提纲时存在的问题和困难.②差异指导:对个别存在疑难问题的学生进行指导.(2)生助生:学生研讨疑难之处.4.强化(1)一次函数的定义及确定字母系数的依据.(2)展示练习的答案,并点评.(3)正比例函数与一次函数的异同点.1.自学指导(1)自学内容:一次函数意义的应用.(2)自学时间:10分钟.(3)自学要求:结合自学参考提纲进行自主学习,合作交流.(4)自学参考提纲:①下列函数中,是一次函数的是(B)本课时的教学,教师应选取适当的材料帮助学生从不同的角度认识一次函数,引导学生把握一次函数与正比例函数之间的区别和联系,并通过一定的练习指导学生巩固知识,明白正比例函数是特殊的一次函数.由特殊到一般,循序渐进,让学生经历观察、思考、讨论、分析、归纳的过程,进行更加深刻地学习.(时间:12分钟满分:100分)一、基础巩固(65分)1.(10分)下列说法中不正确的是(D)A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数2.(10分)矩形的周长为50,设它的长为x,宽为y,则y与x的函数关系式为(A)A.y=-x+25B.y=x+25C.y=-x+50D.y=x+503.(10分)王明妈妈购进一批苹果,到售货市场零售,已知卖出的苹果重量x(千克)与销售额y(元)之间的对应关系如下表.则y关于x的函数关系式是(B)A.y=2x+0.1B.y=2x+0.1xC.y=4x+0.2D.y=4x+0.2x4.(10分)若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是(A)A.(1,1)B.(-1,1)C.(-2,-2)。
5.4一次函数的应用新授课初二年级组一、教学目标1、能根据实际问题中变量之间的关系,确定一次函数关系式。
2、能利用函数图象解决简单的实际问题,培养学生的数形结合意识。
3、在应用一次函数解决问题的过程中,体会数学的抽象性和应用的广泛性。
二、教学过程讲授新课例1:在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米。
写出y与x之间的关系式,并求出所挂物体的质量为4千克时的弹簧的长度。
练习一1、根据条件确定函数的表达式:y是x的正比例函数,当x=2时,y=6,求y与x的关系式。
2、某班同学秋游时,照相共用了3卷胶卷,秋游后冲洗3卷胶卷并根据同学需要加印照片。
已知冲洗胶卷的价格是3.0元/卷,加印照片的价格是0.45元/张。
(1)试写出冲印合计的费用y元与加印张数x之间的函数关系式:(2)如果秋游后尚结余49.5元,那么冲洗胶卷后还可以加印照片多少张?3、某市出租车的收费标准:不超过3km记费为7.0元,3km后按2.4元/km记费。
(1)写出车费y(元)与路程x(km)之间的函数关系式;(2)小亮乘出租车出行,付费12.3元,你能算出小亮乘车的路程吗?(精确到0.1)例2 我国很多城市水资源缺乏,为了加强居民的节水意识,雉城镇制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:指每吨水的价格),用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图所示。
(1)观察图象,求出函数在不同范围内的解析式;说出自来水公司在这两个月用水范围内的收费标准;(2)若一用户5月份交水费12.8元,求他用了多少吨水?例3、某单位要制作一批宣传材料。
甲公司提出:每份材料收费20元,另收3000元的设计费;乙公司提出:每份材料收费30元,不收设计费。
(1)什么情况下选择甲公司比较合算?(2)什么情况下选择乙公司比较合算?(3)什么情况下两家的收费相同?练习二1、蔬菜基地要把一批新鲜蔬菜运往外地,有2种运输方式可供选择,主要参考数据如下(1)请分别写出汽车、火车运输的总费用y1(元)、y2(元)与运输路程x(km)之间的函数式;(2)你能指出用哪种运输方式较好?2、某公司要租一辆车,出租公司的租肺费为:每百千米租费110元;个体出租司机的租费为:每月付800元工资,另外每百千米付10元油费。
北师大版数学八年级上册4《一次函数的应用》教案1一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。
本节课主要让学生了解一次函数在实际生活中的应用,学会利用一次函数解决实际问题,培养学生的数学应用能力。
教材通过实例引导学生理解一次函数的定义,掌握一次函数的性质,并能运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,具备了一定的问题解决能力。
但部分学生对实际问题与数学知识的联系还不够明确,需要老师在教学中加以引导。
此外,学生对数学应用题的兴趣不高,教师应注重激发学生的学习兴趣,提高他们的数学应用意识。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。
2.学会利用一次函数解决实际问题,提高数学应用能力。
3.培养学生的团队协作能力和问题解决能力。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。
2.启发式教学法:引导学生主动探究一次函数的定义和性质,培养学生的思维能力。
3.小组合作学习:鼓励学生分组讨论,共同解决实际问题,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示一次函数的定义、性质及实际应用。
2.实例材料:收集一些与生活密切相关的一次函数实例,用于引导学生学习。
3.练习题:准备一些有关一次函数的应用题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一次函数在生活中的应用实例,如线性增长、直线距离等,引导学生关注一次函数的实际意义。
2.呈现(10分钟)(1)介绍一次函数的定义:y=kx+b(k≠0,k、b为常数)。
(2)讲解一次函数的性质:随着x的增大,y的值会按照k的的正负和大小变化。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,分析实例中的一次函数关系,并绘制函数图像。
教师巡回指导,解答学生疑问。
北师大版八年级数学上册:4.4 《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版八年级数学上册第4章“一次函数”的最后一节内容。
本节课的主要内容是让学生掌握一次函数在实际问题中的应用,培养学生的实际问题解决能力。
教材通过生活实例引入一次函数的应用,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析学生在学习本节课之前,已经学习了初中阶段的一次函数、不等式和方程等基础知识,对一次函数的概念、性质和图象有一定的了解。
但学生对实际问题与一次函数之间的联系还需加强,本节课通过具体的生活实例,让学生将已学知识运用到实际问题中,提高学生解决问题的能力。
三. 教学目标1.让学生理解一次函数在实际问题中的应用,提高学生的实际问题解决能力。
2.培养学生运用数学知识描述生活现象的能力,感受数学与生活的紧密联系。
3.提高学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.一次函数在实际问题中的应用。
2.如何将实际问题转化为一次函数问题,找出合适的自变量和因变量。
五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。
以生活实例为载体,引导学生发现实际问题与一次函数之间的联系,通过小组合作、讨论交流,培养学生解决问题的能力。
六. 教学准备1.准备相关的生活实例,用于引导学生发现实际问题与一次函数之间的联系。
2.准备课件,展示一次函数在实际问题中的应用。
3.准备练习题,巩固学生对一次函数应用的理解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如购物问题,引导学生发现实际问题中存在一种线性关系。
让学生思考如何用数学语言描述这种关系,引出一次函数的概念。
2.呈现(15分钟)呈现一组实际问题,如的身高与年龄的关系,让学生尝试用一次函数来表示。
引导学生找出合适的自变量和因变量,并解释为什么选择这两个变量。
3.操练(15分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数来表示。
第19章一次函数一、教学目标与要求1.经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生抽象思维能力;经历一次函数的图象及其性质的探索过程,在合作交流中发展学生的合作意识和能力.2.经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别与应用过程,发展学生的形象思维能力.3.初步理解函数的概念;理解一次函数极其图象的有关性质;初步体会方程和函数的关系.4. 根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.二、知识结构生活中充满着许许多多变化的量,函数就是刻画变量之间关系的常用模型,其中最为简单的是一次函数.本章是在探索了变量之间关系的基础上,继续通过对变量间关系的考察,让学生初步体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数,通过解剖一次函数这一“麻雀”,使学生了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力.在具体内容的呈现上,教科书力求为学生提供生动有趣的问题情境,提供观察、操作、交流、归纳等数学活动,在活动中加深学生对数学知识的理解,发展学生的数学思维;在新知的导入上,既注重了与学生生活实际的联系,又注意了新旧知识的联系,在新旧知识的比较与联系中,促进了学生新的认知结构的建立与完善.三、本章涉及到的主要思想方法1.函数思想2.数形结思想3.待定系数法4.方程思想四、教学建议1.素材贯穿整章教学的始终.充分挖掘结合学生生活实际的素材,体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,在实际问题情境中抽象出函数以及一次函数的概念,进而探索一次函数及其图象的性质,加强数学与现实的联系,让学生体会数学的广泛应用.2.鼓励学生的自主探索和合作交流.函数是现实世界变化规律的一个重要模型,与学生的生活实际紧密联系,学生有能力和条件进行探索,注重学生对学习函数过程、方法的体验,所以教师应引导学生主动从事观察、操作、交流、归纳,并应给予学生足够的活动和空间,从而使学生形成自己对数学知识的理解和有效的学习模式,而不要以教师的讲解代替学生的探索.3.加强新旧知识的联系,促进学生新的认知结构的建构.教材开始引入变量和变量之间关系的内容,非形式化地开始对函数内容的学习,学生感受现实世界中变量和变量之间存在的各种各样的关系及其规律,了解表示这些关系的基本方法,在此基础上建立函数的概念,进一步构建“数”与“形”的模型.4.尊重学生的个体差异,满足多样化的学习需要,鼓励探索方式、表达方式和解题方法的多样化.对于学习有困难的学生,教师要给予及时的帮助与指导,鼓励他们主动参与数学学习活动,鼓励他们自主地解决问题,发表自己的看法;对于学有余力的学生,鼓励他们探索问题的多种表述方式和解题方法,给他们提供丰富的学习材料,拓宽他们的知识视野,发展他们的数学才能.五、课时安排------------------------------------------总计17课时19.1.1 函数————————————共计3课时(1) 变量与常量 1课时(2) 函数 2课时19.1.2 函数图像———————————————共计2课时(1) 画函数图像 1课时(2) 读函数图像及函数的表示法 1课时19.2 一次函数——————————————共计7课时19.2.1 正比例函数 1课时19.2.2 一次函数 3课时19.2.3 一次函数与方程、不等式 3课时19.3 课题学习选择方案————————共计2课时复习小结——————————————————共计3课时第一课时:变量与常量教学目标:理解变量与常量的概念及相互关系。
研修活动纪实表
《一次函数》集体备课 杨小明陈述教学设想: 教学目标 1. 知识与技能 (1)理解一次函数和正比例函数的概念 ,以及它们之间的关系; (2)能根据所给条件写出简单的一次函数表达式 2. 过程与方法 (1)经历一般规律的探索过程,发展学 生的抽象思维能力; (2)通过由已知信息写一次函数表达式 的过程,发展学生的数学 应用能力. 3. 情感态度价值观 通过函数与变量之间的关系的联系,一次函数与一元一次方 教学重点 根据实际情景写出一次函数的表达式; 应用一次函数知识解决实际问题. 席成:如何在课堂上让学生更充分地占有学习时间,让学生得到更规范 有效的训练,达到教学目标,这非常重要。
因此在导语设计、若干问题 设置要有一定的趣味性,激发学生自主学习的积极性 寇强:一次函数非常重要,是对函数的进一步认识与提升,进一步发展 学生的抽象思维能力,本节课具有承前启后的作用,主要需要了解一次
活动主题
研修形式
参加人数
201469 《一次函数》集体备课 集体研讨 数学组全体教师 负责人 活动地点 主讲人 培训学时 寇强 会议室 杨小明 程的联系, 发展学生的数学思维. 研修内容
(1) 一次函数、正比例函数的概念及关系. (2) 教学难点 会根据已知信息写出一次函数的表达式
函数的概念和应用,为今后学习反比例函数和二次函数提供了一般思路 和方法。
因此这节课应争取让每位学生学有所得。
张丹:就是因为一次函数这么重要,因此本节课设置过程中应注意学生 的主动参与,可设置较多的与实际生活紧密联系的问题让学生做答, 只有真正参与并且领悟到重要性了,才能更好地听讲并且探究,这样 的教学效果一定会好。
白银乐:作为一名年轻老师,可能有时候比较爱表现自己,但是老师这 个工作一味的表现自己效果是不会好的,因此应该放手让学生去做, 自己去引导就好。
应重视学生的数学学习过程和他们的个性体验,充分让学生体会
数学源于生活中的实际问题,又应用于生活。
帮助学生在学习过程中真 正理解和掌握基本的数学知识与技能、数学思想和方法,获得数学活动 的经验。
给学生充分思考的空间和时间。
让学生自已互相学习,形成互 动的局
面。
互相评价、互相尊重和互相信任。
在一种和谐、热烈讨论的
气氛中进步成长,从而激发学生的学习兴趣。
学校意见:
学校盖章
年 月 日
反思建议 绩效评价 负责人签字:。