小学奥数知识点:盈亏问题、巧妙求和、画图显示法
- 格式:docx
- 大小:66.45 KB
- 文档页数:5
小学奥数问题之盈亏问题,不会没关系,看下面的文章你就理解了盈亏问题简析:盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),球物品的数量和分配对象的数量。
例如:把一袋饼干分给一班的小朋友,每人分三块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏得情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;(记公式真没劲,好好理解一下公式的意义吧)例题:总份数=总差÷个差(1)一盈一亏:总差=盈+亏(2)两盈:总差=大盈-小盈(3)两亏:总差=大亏-小亏(4)一盈一正好:总差=盈(5)一亏一正好:总差=亏环保小组的同学上山植树,如果每人种3棵,则还剩3棵;如果每人种4棵,则还差2棵。
环保小组有多少人?一共植树多少棵?分析与解:这是一道典型的盈亏应用题。
盈,就是多余;亏,就是不足、少的意思。
比较两种植树方式,第一种多了3棵,第二种少了2棵,一多一少共相差3+2=5(棵)。
显然,相差5棵的原因是第二种植树方式每人种的棵数比第一种多了4-3=1(棵)。
根据“相差的总数÷相差的每份数=份数”得出,环保小组的人数是5÷1=5(人),一共植树3×5+3=18(棵),或4×5-2=18(棵)。
从中得出:解盈亏问题,要先比较“盈”与“亏”两种情况,求出两种情况下总数之间的差,像上题是一盈一亏,差=盈+亏;再找出出现这个差的原因是每份数不同,求出两个每份数之间的差;最后根据“差——差”对应求出份数以及总数。
盈亏问题还有另外两种情况:两盈与两不足。
有些题还要通过转化,先找出“盈亏”数。
例1.工程队修一条路,如果每天修150米,则可以提前2天完成任务;如果每天修180米,则可以提前5天完成任务。
这条路全长多少米?分析与解:这道题没有直接给出“盈亏”数,但由题意可知,第一种情况如果再修2天,还可以修150×2=300(米);第二种情况如果再修5天,还可以修180×5=900(米)。
盈亏问题知识要点:1、什么是盈亏问题把一定数量的物品,平均分给一定数量的人,每人少分,则物品有余(盈);每人多分,则物品不足(亏)。
已知所盈和所亏的数量,求物品数量和人数的应用题叫盈亏问题。
2、解决方法(1)标准的盈亏问题份数=(盈+亏)÷两次分配数的差(2)非标准的盈亏问题<即“两盈”问题,两次分配都有多余>两次盈数的差÷两次分配数的差=参与分配对象的总数3、解题关键(1)是要求出总差额和两次分配的数量差,然后利用基本公式求出分配人数。
(2)非平均分配的盈亏问题要先化成平均分配的基本盈亏问题后再求解。
习题:1.三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?2.明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?3.老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?4.有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?5.猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多多少只?6.学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?7.幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?8.王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?9.工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?10.某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?11.学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?12.智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?13.秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?14.猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?15.学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?16.学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?17.一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?18.实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?19.甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 信纸,乙每封信用3 信纸,一段时间后,甲用完了所有的信封还剩下20 信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少信纸?20.幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。
盈亏问题盈亏问题一、学习内容基本盈亏题目;典型盈亏题目;变形盈亏题目。
两个不变:给谁分(单位是什么)分什么(盈亏指什么)一、盈盈问题【例1】沫沫老师将一批树苗分给学生种。
若给每人分8棵树苗,最后还剩12棵树苗;若给每人分10棵树苗,则刚好分完。
沫沫老师一共给学生分了多少棵树苗?【巩固】学校给寄宿生分配宿舍。
如果每间宿舍安排5名学生,那么还有10名学生没有宿舍住;如果每间宿舍安排6名学生,那么刚好够住。
一共有多少间宿舍?有多少名学生?【例2】沫沫老师给学生发作业本,给每个人发了同样多的作业本后,还剩下36本。
后来,沫沫老师给新来的3个人也发了同样数目的作业本,此时还剩下24本。
沫沫老师给每个人发了多少本作业本?剩下的作业本还能再发给多少人?【巩固】老师将一些剪纸分给5名学生,每名学生分到的剪纸数量相同,还剩22张剪纸。
后来又来了2名学生,分给他们同样多的剪纸后,还剩6张剪纸。
老师一共拿来了多少张剪纸?【例3】体育老师给参赛选手分矿泉水。
如果给每名选手分4瓶矿泉水,那么还剩23瓶矿泉水;如果给每名选手分5瓶矿泉水,那么还剩13瓶矿泉水。
一共有多少名选手?一共有多少瓶矿泉水?【巩固】幼儿园老师将一筐苹果分给小朋友,要求给每个小朋友分的苹果数量相同。
如果分给9个小朋友,那么这筐苹果还剩21个;如果分给12个小朋友,那么这筐苹果还剩12个。
这筐苹果一共有多少个?二、亏亏问题:【例1】饲养员将一筐桃分给猴子吃。
如果给每只猴子分5个桃,那么还少9个桃;如果给每只猴子分4个桃,一筐桃刚好分完。
这筐桃有多少个?【例2】开学时,老师想给学生发铅笔。
如果给每名学生发同样多的铅笔,那么还差12支铅笔。
后来有2名学生转走了,这样还差4支铅笔。
老师想给每名学生发多少支铅笔?【例3】运动会上,学校给四年级的运动员分矿泉水。
如果给每名运动员分4瓶矿泉水,那么还差3瓶;如果给每名运动员分6瓶矿泉水,那么就会差19瓶。
四年级有多少名运动员?一共有多少瓶矿泉水?【巩固】1、某仓库来了一队货车,工人们都去卸货。
盈亏问题解题思路详解(附盈亏问题公式)解题思路:盈亏问题的解法要点是先求两次分配中分配者每份所得物品数量的差,再求两次分配中的总差额,用前一个差去除后一个差,就得到分配者的人数,进而再求得物品数。
解题规律:总差额÷每人差额=人数。
一般解法:(盈数+亏数)÷两次每份分配之差=份数、(大盈-小盈)÷两次分配之差=份数、(大亏--小亏)÷两次分配之差=份数,再求总数量。
每次分的数量*份数+盈=总数量或。
每次分的数量*份数-亏=总数量。
物品数可由其中一种分法的份数和盈亏数求出。
其它(高级):盈亏临界点——交易所股票交易量的基数点,超过这一点就会实现盈利,反之则亏损。
盈亏临界点计算的基本模型设以P代表利润,V代表销量,SP代表单价、VC代表单位变动成本,FC代表固定成本,BE代表盈亏临界点,根据利润计算公式可求得盈亏临界点的基本模型为:盈亏临界点的计算,可以采用实物和金额两种计算形式:1.按实物单位计算:其中,单位产设某产品单位售价为10元,单位变动成本为6元,相关固定成本为8000元,则盈亏临界点的销售量(实物单位)=8000÷(10-6)=2000(件)。
品贡献毛益=单位产品销售收入-单位变动成本2.按金额综合计算:盈亏临界点的销售量(用金额表现)=固定成本÷贡献毛益率其中,贡献毛益率=贡献毛益/销售收入附盈亏问题公式:(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差/大分-小分)=人数。
(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差/大分-小分)=人数。
(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差/大分-小分)=人数。
(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差/大分-小分)=人数。
(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差/大分-小分)=人数。
小学四年级奥数讲解:盈亏问题小学四年级奥数讲解:盈亏问题在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组有多少人?一共有多少棵树?由题意可知,植树的人数和树的棵数是不变的。
比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。
这是因为两种分配方案每人植树的棵数相差7-5=2棵。
所以植树小组有18÷2=9人,一共有5×9+14=59棵树。
练习一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。
问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
问:这个班共有多少学生?例2:学校将一批铅笔奖给三好学生。
如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。
三好学生有多少人?铅笔有多少支?分析与解答:这是两亏的问题。
由题意可知:三好学生人数和铅笔支数是不变的。
比较两种分配方案,结果相差45-7=38支。
这是因为两种分配方案每人得到的铅笔相差9-7=2支。
所以,三好学生有38÷2=19人,铅笔有9×19-45=126支。
专题十:[盈亏应用题]一、考点、热点回顾:盈亏问题是指把一定数量的物品平均分给固定的对象,根据两种分配方案和分配后出现的余数,求物品的数量和分配对象的数量。
东西有余称作“盈”,东西不足称作“亏”,东西刚好分完叫做“尽”。
二.方法、技巧归纳:解决盈亏问题的关键是确定两次分配数之差有与盈亏总额。
解题时可以理解并掌握一些数量关系:1、一盈一亏:(盈数+亏数)÷两次分配的数量差=分配对象的个数2.、一盈一尽:盈数÷两次分配的数量差=分配对象的个数3、一亏一尽:亏数÷两次分配的数量差=分配对象的个数4、两盈:(大盈数-小盈数)÷两次分配的数量差=分配对象的个数5、两亏:(大亏数-小亏数)÷两次分配的数量差=分配对象的个数三、典型例题。
例1:“邹鹰小队”的同学们参加植树活动,如果每人栽5棵树,还剩12棵;如果每人栽7棵树,就缺4棵。
这个小队有多少人?一共要栽多少棵树?试一试1 同学们分小棒。
如果每人分12根则少18根;如果每人分9根则正好分完。
有多少个小朋友?多少根小棒?例2:五年级同学去划船。
如果每只船坐8人,还有24人留在岸边;如果每只船坐12人,就多出3只船。
五年级有多少人?共租多少只船?试一试2大猴子采到一堆桃子,平均分给小猴吃。
每只小猴分10个桃子,有2只猴子没有分到;第二次重分,每只小猴分8个桃子,刚好分完。
这堆桃子有多少个?小猴有多少只?例3:在一次大扫除中,老师分配若干人擦玻璃。
如果其中两人各擦4块,其余每人擦5块,则余22块;如果每人擦7块,正好擦完。
求擦玻璃的人数和玻璃的块数。
试一试3 猴子分桃子,如果有2只猴子各分5个,其余的各分3个,则还剩余9个桃子;如果有4只猴子各分3个,其余的各分6个,则剩余10个桃子。
猴子有多少只?桃子有多少个?例4:王老师给小朋友分苹果核橘子,苹果个数时橘子个数的2倍。
橘子每人分3个,多4个;苹果每人分7个,少5个。
四年级奥数教程(五)盈亏问题课题盈亏问题教学目标1、了解盈亏问题的概念,明白其原理2、尽量用公式去解决盈亏问题教学重难点重点:盈亏问题的概念及简算原理难点:盈亏问题公式的理解教学过程一、本讲知识点“老猴子给小猴子分梨。
每只小猴子分6个梨,就多出12个梨;每只小猴子分7个梨,就少11个梨。
有几只小猴子和多少个梨?”这道应用题是已知两种分配的方法,一次分配有余,一次分配不足,求参加分配的数量及被分配的总量。
这样的应用题,通常叫做盈亏问题(有余时称盈,不足时称亏)。
解盈亏问题,常常采用比较的方法。
一般地,在盈亏问题中:(盈数+亏数)÷两次差=参加分配的数二、新课指导例1 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?分析比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差5-4=1(块)。
第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:7+2=9(块)每人相差1块,结果总数就相差9块,所以有少先队员9÷1=9(人)。
共有砖:4×9+7=43(块)。
解:(7+2)÷(5-4)=9(人)4×9+7=43(块)或5×9-2=43(块)答:共有少先队员9人,砖的总数是43块。
例2 妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?分析题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。
小学奥数知识点:盈亏问题、巧妙求和、画图显示法
专题简析:一定数量的物品,平均分给一定数量的人。
每人少分,则物品有余(盈);每人多分,则物品不足(亏)。
解答盈亏问题的关键是要求出总差额和两次分配的数量差。
基本解法是:份数=(盈+亏)÷两次分配数的差,由其中一种分法的份和盈亏数求出物品数。
例题1:小明的妈妈买回一篮梨,分给全家。
如果每人分 5 个,就多出10个;如果每人分6 个,就少2个。
小明全家有多少人?这篮梨有多少个?
解答:
思路:根据题目中的条件,我们可知:
第一种分法:每人分5 个,多10 个(盈)
第二种分法:每人分6 个,少2 个(亏)
全家人数:(10 +2)÷(6-5)=12 (人)
梨的个数:5×12 +10=70 (个)
试一试1 :
(1 )有一根绳子绕树4 圈,余2 米;如果绕树5 圈,则差6 米。
树周长是多少米?绳子长多少米?
(2 )幼儿园买来一些玩具,如果每班分8 个玩具,则多出2 个玩具;如果每班分10 个玩具,则少12
个玩具。
幼儿园有几个班?这批玩具有多少个?
例题2:老师买来一些练习本分给优秀少先队员,如果每人分 5 本,则多了14 本;如果每人分7 本,则多了2
本。
优秀少先队员有几人?买来多少本练习本?
解答:
思路:根据题目中的条件,我们可知:
第一种分法:每人5 本,多了14 本(多盈);
第二种分法:每人7 本,多了2 本(少盈)。
每份相差:7-5=2 本
人数:(14 -2)÷(7-5)=6 人练习本数:5×6+14=44 本。
试一试2:把一袋糖分给小朋友们,如果每人分4粒,则多了12 粒;如果每人分6粒,则多了2 粒
有小朋友几人?有多少粒糖?
例题3:
学校派一些学生去搬一批树苗,如果每人搬6棵,则差4棵;如果每人搬8棵,则差18 棵。
学生有几人?这
批树苗有多少棵?
解答:
思路:根据题意,我们可知搬树苗的两种方案:
第一种方案:每人搬 6 棵,差4 棵(少亏);
第二种方案:每人搬8 棵,差18 棵(多亏)
棵树苗,
每人多搬了8 -6=2
人数= (18 -4)÷(8 -6)7 人
树苗棵数:6×7-4=38 棵。
试一试3:数学兴趣小组的同学做数学题,如果每人做6 道,则少4 道;如果每人做8 道,则少16 道。
有几个学生?多少道数学题?
例题4:三(1)班学生去公园划船,如果每条船坐 4 人,则少一条船;如果每条船坐6人,则多出4 条船。
公园里有多少条船?三(1)班有多少学生?
解答
思路:先把题目中的条件进行转化。
“每条船坐4 人,少一条船”则多4 人;“每条船坐6 人,多4 条船”则少6 ×4=24 人再用例1 的方法计算。
船数:(4 +6×4 )÷(6-4)=14 条
学生人数:4×(14+1)=60 人。
试一试4:小明从家到学校,如果每分钟走40 米,则要迟到2 分钟;如果每分钟走50 米,则早到4
分钟。
小明家到学校有多远?
画图显示法例1 :小明比小英小5 岁,小方比小明大2 岁.那么小英和小方差几岁?
5 岁,
②表示小方比小明大2 岁,由图可见,小英比小方大 3 岁.
注意:画这个图时,由题意应以小明为基准.
例2 :
小初、小美、小英三个人分糖块.小美比小英多3 块,小初比小美多2 块.已知糖块总数是50 块,那么
每人各分到多少块?
解:依题意画图,可以先画小英,见下图中①,再画小美,它比小英多3 块,见下图中②,接着再画小初,它又比小美多2 块,见下图中③,
至此,图已画完,下面借助此图进行分析推理.
由图可见,小初比小英多3+2=5 块,由图还可以看出,50-(3+5)=42(块)就是小英糖数的3 倍,所以小英的一份是:42 ÷3=14(块);
由此可求出小美的一份是14+3=17(块);
小初的一份是17+2=19(块).
例3 :小健到商店去买练习本,他的钱若买4 本还剩2 分;若买5 本,就差1 角.问小健有多少钱?
解:依题意画出下图:
①表示小明比小英小
由图易见一本的价钱是:
2+10=12( 分 ),
所以小健有的钱是
12 ×4+2=50( 分)
或 12 ×5-10=50( 分 ),即 5 角 .
例 4: 妈妈的年龄是小铃的 3 倍,两个人年龄加起来是 40 岁 .问小铃和妈妈各多少岁
所以小铃的年龄是: 40 ÷4=10( 岁);
而妈妈的年龄则是: 10 ×3=30( 岁)
.。